

Grove-2.5A-DC-Current-Sensor-ACS70331

The Grove - 2.5A DC Current Sensor(ACS70331) is a high precision DC current sensor
based on ACS70331. The ACS70331 is a chip series, this module uses
ACS70331EESATR-2P5U3, which is Allegro’s high sensitivity,current sensor IC for <2.5
A current sensing applications. It incorporates giant magneto-resistive (GMR)
technology that is 25 times more sensitive than traditional Hall-effect sensors to sense
the magnetic field generated by the current flowing through the low resistance,
integrated primary conductor.

The Grove - 2.5A DC Current Sensor(ACS70331) can measure the DC current up to
2.5A and has a base sensitivity of 800mV/A. This sensor do not support AC current, if
you want to measure the AC load please check the:

Feature

• 1 MHz bandwidth with response time <550 ns

• Low noise: 8 mA(rms) at 1 MHz

• 1.1 mΩ primary conductor resistance results in low power loss

• High DC PSRR enables use with low accuracy power supplies or batteries (3 to 4.5 V
operation)

• Analog output

Specification
Parameter Value

Supply voltage 3.3V / 5V

Operating ambient temperature -40 – 85℃

Storage temperature - 65°C – 125°C

Working Voltage <100V

Current sensing range 0 – 2.5A

Sensitivity 800mV/A(Typ.)

Output interface Analog

Input interface Screw terminal

Working Principle

There are two types of current sensing: direct and indirect. Classification is mainly
based on the technology used to measure current.

Direct sensing:

• Ohm's Law

Indirect seneing:

• Faraday's Law of Induction

• Magnetic field sensors

• Faraday Effect

The Grove - 2.5A DC Current Sensor(ACS70331) uses magnetic field sensors
technology. And there are three kinds of Magnetic field sensors technology:

• Hall effect

• Flux gate sensors

• Magneto-resistive current sensor

The Grove - 2.5A DC Current Sensor(ACS70331) is based on the Magneto-resistive
current sensor priciple, which is also known as GMR. A magneto-resistor (MR) is a two

terminal device which changes its resistance parabolically with applied magnetic field.
This variation of the resistance of MR due to the magnetic field is known as the
Magnetoresistive Effect.

The internal construction of the ACS70331 QFN package is shown in Figure 2. The die
sits above the primary current path such that magnetic field is produced in plane with
the GMR elements on the die. GMR elements 1 and 2 sense field in the +X direction for
positive IP current flow, and GMR elements 3 and 4 sense field in the –X direction for
positive IP current flow. This enables differential measurement of the current and
rejection of external stray fields.

Figure 1. ACS70331 Internal Construction

The four GMR elements are arranged in a Wheatstone bridge configuration as shown in
Figure 2 such that the output of the bridge is proportional to the differential field sensed
by the four elements, rejecting common fields.

Figure 2. Wheatstone Bridge Configuration

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/principle1.jpg
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/principle2.jpg

Hardware Overview

Figure 3. Pinout

Platforms Supported
Arduino Raspberry Pi BeagleBone Wio LinkIt ONE

Getting Started
Danger
The human body is forbidden to touch the module during the test, otherwise there is
danger of electric shock.

Play With Arduino

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/pinout.jpg

Materials required

Seeeduino V4.2 Base Shield 2.5A DC Current Sensor(ACS70331)

In addition, you can consider our new Seeeduino Lotus M0+, which is equivalent to the
combination of Seeeduino V4.2 and Baseshield.

Note
1 Please plug the USB cable gently, otherwise you may damage the port. Please use
the USB cable with 4 wires inside, the 2 wires cable can't transfer data. If you are not
sure about the wire you have, you can click here to buy
2 Each Grove module comes with a Grove cable when you buy. In case you lose the
Grove cable, you can click here to buy.

Hardware Connection

• Step 1. Connect the Grove - 2.5A DC Current Sensor(ACS70331) to the A0 port of
the Base Shield.

• Step 2. Connect the positive and negative poles of the circuit to be tested to the
corresponding positive and negative poles of the screw terminal.

Tip
If you reverse the positive and negative poles, the reading will be reversed. This sensor
need calibration before use, so please do not power on the circuit first.

• Step 3. Plug Grove - Base Shield into Seeeduino.

• Step 4. Connect Seeeduino to PC via a USB cable.

https://www.seeedstudio.com/Seeeduino-Lotus-Cortex-M0-p-2896.html
https://www.seeedstudio.com/Micro-USB-Cable-48cm-p-1475.html
https://www.seeedstudio.com/Grove-Universal-4-Pin-Buckled-20cm-Cable-%285-PCs-pack%29-p-936.html

Figure 4. We use the DC Power Supply in this demo, please set the current to 0A or do not

power on it at first

Software

Attention
If this is the first time you work with Arduino, we strongly recommend you to see Getting
Started with Arduinobefore the start.

• Step 1. Download the Grove Current Sensor Library from Github.

• Step 2. In the /example/ folder, you can find the demo code. Here we take
the Grove_2_5A_Current_Sensor.ino for instance. Just click the
Grove_2_5A_Current_Sensor.ino to open the demo. Or you can copy the following
code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

#ifdef ARDUINO_SAMD_VARIANT_COMPLIANCE
 #define RefVal 3.3
 #define SERIAL SerialUSB
#else
 #define RefVal 5.0
 #define SERIAL Serial
#endif
//An OLED Display is required here
//use pin A0
#define Pin A0

// Take the average of 10 times

const int averageValue = 10;

int sensorValue = 0;

float sensitivity = 1000.0 / 800.0; //1000mA per 800mV

http://wiki.seeedstudio.com/Getting_Started_with_Arduino/
http://wiki.seeedstudio.com/Getting_Started_with_Arduino/
https://github.com/Seeed-Studio/Grove_Current_Sensor
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/103020193-connect.png

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

float Vref = 265; //Firstly,change this!!!

void setup()
{
 SERIAL.begin(9600);
}

void loop()
{
 // Read the value 10 times:
 for (int i = 0; i < averageValue; i++)
 {
 sensorValue += analogRead(Pin);

 // wait 2 milliseconds before the next loop
 delay(2);

 }

 sensorValue = sensorValue / averageValue;

 // The on-board ADC is 10-bits
 // Different power supply will lead to different reference sources
 // example: 2^10 = 1024 -> 5V / 1024 ~= 4.88mV
 // unitValue= 5.0 / 1024.0*1000 ;
 float unitValue= RefVal / 1024.0*1000 ;
 float voltage = unitValue * sensorValue;

 //When no load,Vref=initialValue
 SERIAL.print("initialValue: ");
 SERIAL.print(voltage);
 SERIAL.println("mV");

 // Calculate the corresponding current
 float current = (voltage - Vref) * sensitivity;

 // Print display voltage (mV)
 // This voltage is the pin voltage corresponding to the current
 /*
 voltage = unitValue * sensorValue-Vref;
 SERIAL.print(voltage);
 SERIAL.println("mV");
 */

 // Print display current (mA)
 SERIAL.print(current);
 SERIAL.println("mA");

 SERIAL.print("\n");

 // Reset the sensorValue for the next reading
 sensorValue = 0;
 // Read it once per second
 delay(1000);
}

• Step 3. Upload the demo. If you do not know how to upload the code, please
check How to upload code.

• Step 4. Open the Serial Monitor of Arduino IDE by click Tool-> Serial Monitor. Or
tap the Ctrl + Shift + M key at the same time. Set the baud rate to 9600.

• Step 5. Calibration
When there is no current flowing, the sensor will still have a small output value. We
call this value zero offset.

Figure 5. The zero offset of this board is 283.20mV，Converted into current is 22.75mA

Due to the presence of zero offset, the sensor will also have a reading when there is no
current. So we set a parameter Vref to fix it, you can find it in the code block above.

Line 21:

1
2

float Vref = 265;
//Vref is zero drift value, you need to change this value to the value you
actually measured before using it.

In the demo code, we set the Vref to 265, however, the zero offset value varies from
board to board. As you know, the board we use in this demo is 288.09. So let's modify
the Line 21:

1 float Vref = 283.20;

http://wiki.seeedstudio.com/Upload_Code/
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/ca.jpg

Then save the code and upload the code again, follow the Step 2. and Step 3. Now let's
see：

Figure 6. Now the current zero offset turns to 0mA

When the current output becomes to 0mA or a small value, you have completed the
calibration.

• Step 5. Now it's all yours, you can power up the current. Please feel free to use it,
remember this is a 2.5A DC Current Sensor, current cannot exceed 2.5A!

If you want to know the calculation formula of the result, please refer to the FAQ Q1

Play with Raspberry

http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331/#faq
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/afca.jpg

Materials required

Raspberry pi Grove Base Hat for RasPi 2.5A DC Current Sensor

Hardware Connection

• Step 1. Plug the Grove Base Hat into Raspberry Pi.

• Step 2. Connect the Grove - 2.5A DC Current Sensor(ACS70331) to port A0 of the
Base Hat.

• Step 3. Connect the positive and negative poles of the circuit to be tested to the
corresponding positive and negative poles of the screw terminal.

Figure 7. We use the DC Power Supply in this demo, please set the current to 0A or do not

power on it at first

Tip
If you reverse the positive and negative poles, the reading will be reversed. This sensor
need calibration before use, so please do not power on the circuit first.

• Step 4. Power the Raspberry Pi via the Micro-USB cable.

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/img/103020193-connect_pi.png

Attenton
You can power the Raspberry Pi by computer USB port or DC adapter, however, if you
are using the Raspberry pi 3B+, we strongly recommend you to power it by DC adapter,
if you use the USB port of the PC, you may damage the Raspberry Pi 3B+.

Software

• Step 1. Follow Setting Software to configure the development environment.

• Step 2. Download the source file by cloning the grove.py library.
1
2

cd ~
git clone https://github.com/Seeed-Studio/grove.py

• Step 3. Excute following commands to run the code.
1
2

cd grove.py/grove # to enter the demo file folder
python grove_current_sensor.py 0 2.5A # to run the demo program

Then the terminal will output as following:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

pi@raspberrypi:~/grove.py/grove $ python grove_current_sensor.py 0 2.5A
pin_voltage(mV):
270
current(mA):
13.0
()
pin_voltage(mV):
270
current(mA):
13.0
()
pin_voltage(mV):
270
current(mA):
13.0
()
pin_voltage(mV):
269
current(mA):
11.0
()
pin_voltage(mV):
270
current(mA):
13.0
()
^CTraceback (most recent call last):
 File "grove_current_sensor.py", line 200, in <module>
 main()
 File "grove_current_sensor.py", line 185, in main
 time.sleep(1)

http://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi/#installation
https://github.com/Seeed-Studio/grove.py

32 KeyboardInterrupt

Tap Ctrl + C to quit.

Note
Please note the second command, There are two parameters after the file name:

• 0 means the sensor is connected to port A0. If you connect the sensor to port A2,
then you need to change this parameter to 2. This parameter has a range of 0-7,
but if you use the Grove base hat, you can only use 0/2/4/6 because of the physical
limitations of the interface.

• 2.5A means the current sensor type is 2.5A DC

Sensor Current type Parameter Value

Grove - 2.5A DC Current Sensor(ACS70331) DC 2.5A

Grove - ±5A DC/AC Current Sensor (ACS70331) DC 5A_DC

AC 5A_AC

Grove - 10A DC Current Sensor (ACS725) DC 10A

This series has three current sensors, the parameter list is as above

• Step 4 Calibration.

When there is no current flowing, the sensor will still have a small output value. We
call this value zero offset. As you can see, in the step 3, the zero offset of this board
is 270mV, converted into current is 13mA.

Due to the presence of zero offset, the sensor will also have a reading when there
is no current. So we set a parameter Vref to fix it, you can find it in the python
grove_current_sensor.py. For the Grove - 2.5A DC Current Sensor(ACS70331),
we set the Vref to 260 by default, however the zero offset varies from board to
board. That's why we need to do the calibration first.

Check the python code below：

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

#!/usr/bin/env python
-*- coding: utf-8 -*-

The MIT License (MIT)
Copyright (C) 2018 Seeed Technology Co.,Ltd.

This is the library for Grove Base Hat
which used to connect grove sensors for Raspberry Pi.
'''
This is the code for

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67

 - `Grove - 2.5A DC current sensor <https://www.seeedstudio.com/Grove-
2-5A-DC-Current-Sensor-ACS70331-p-2929.html>`_
 - `Grove - 5A AC/DC current sensor <https://www.seeedstudio.com/Grove-
5A-DC-AC-Current-Sensor-ACS70331-p-2928.html>`_
 - `Grove - 10A current sensor <https://www.seeedstudio.com/Grove-
10A-DC-Current-Sensor-ACS725-p-2927.html>`_
Examples:
 .. code-block:: python
 import time
 from grove_current_sensor import Current
 pin = 0
 sensor_type = "2.5A"
 #if use 10A current sensor input: pin = 0 , sensor_type = "10A"
 if (sensor_type == "2.5A"):
 sensitivity = 1000.0 / 800.0
 Vref = 260
 if (sensor_type == "5A_DC"):
 sensitivity = 1000.0 / 200.0
 Vref = 1498
 if (sensor_type == "5A_AC"):
 sensitivity = 1000.0 / 200.0
 Vref = 1498
 if (sensor_type == "10A"):
 sensitivity = 1000.0 / 264.0
 Vref = 322
 averageValue = 500
 ADC = Current()
 while True:
 if(sensor_type == "5A_AC"):
 pin_voltage =
ADC.get_nchan_vol_milli_data(pin,averageValue)
 current =
ADC.get_nchan_AC_current_data(pin,sensitivity,Vref,averageValue)
 else:
 temp =
ADC.get_nchan_current_data(pin,sensitivity,Vref,averageValue)
 current = temp[0]
 pin_voltage = temp[1]

 current = round(current)
 print("pin_voltage(mV):")
 print(pin_voltage)
 print("current(mA):")
 print(current)
 print()
 time.sleep(1)

'''

import sys
import time
from grove.i2c import Bus

ADC_DEFAULT_IIC_ADDR = 0X04

ADC_CHAN_NUM = 8

 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

REG_RAW_DATA_START = 0X10
REG_VOL_START = 0X20
REG_RTO_START = 0X30

REG_SET_ADDR = 0XC0

__all__ = ['Current','Bus']

class Current():
 '''
 Grove Current Sensor class
 '''

 def __init__(self,bus_num=1,addr=ADC_DEFAULT_IIC_ADDR):
 '''
 Init iic.
 Args:
 bus_num(int): the bus number;
 addr(int): iic address;
 '''
 self.bus = Bus(bus_num)
 self.addr = addr

 def get_nchan_vol_milli_data(self,n,averageValue):
 '''
 Get n chanel data with unit mV.
 :param int n: the adc pin.
 :param int averageValue: Average acquisition frequency.
 Returns:
 int: voltage value
 '''
 val = 0
 for i in range(averageValue):
 data =
self.bus.read_i2c_block_data(self.addr,REG_VOL_START+n,2)
 val += data[1]<<8|data[0]
 val = val / averageValue
 return val

 def get_nchan_current_data(self,n,sensitivity,Vref,averageValue):
 '''
 2.5A/5A DC/10A cunrrent sensor get n chanel data with unit mA.
 :param int n: the adc pin.
 :param float sensitivity: The coefficient by which voltage is
converted into current.
 :param int Vref: Initial voltage at no load.
 :param int averageValue: Average acquisition frequency.
 Returns:
 int: current value
 '''
 val = 0
 for i in range(averageValue):
 data =
self.bus.read_i2c_block_data(self.addr,REG_VOL_START+n,2)
 val += data[1]<<8|data[0]
 val = val / averageValue
 currentVal = (val - Vref) * sensitivity

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

 return currentVal,val

 def get_nchan_AC_current_data(self,n,sensitivity,Vref,averageValue):
 '''
 5A current sensor AC output and get n chanel data with unit mA.
 :param int n: the adc pin.
 :param float sensitivity: The coefficient by which voltage is
converted into current.
 :param int Vref: Initial voltage at no load.
 :param int averageValue: Average acquisition frequency.
 Returns:
 int: current value
 '''
 sensorValue = 0
 for i in range(averageValue):
 data=self.bus.read_i2c_block_data(self.addr,REG_VOL_START+n,2)
 val=data[1]<<8|data[0]
 if(val > sensorValue):
 sensorValue=val
 time.sleep(0.00004)
 currentVal = ((sensorValue - Vref) * sensitivity)*0.707
 return currentVal

ADC = Current()
def main():
 if(len(sys.argv) == 3):

 pin = int(sys.argv[1])
 sensor_type = sys.argv[2]
 if (pin < 8 and (sensor_type == "2.5A" or sensor_type == "5A_DC"
or sensor_type == "5A_AC" or sensor_type == "10A")):
 if (sensor_type == "2.5A"):
 sensitivity = 1000.0 / 800.0
 Vref = 260
 if (sensor_type == "5A_DC"):
 sensitivity = 1000.0 / 200.0
 Vref = 1498
 if (sensor_type == "5A_AC"):
 sensitivity = 1000.0 / 200.0
 Vref = 1498
 if (sensor_type == "10A"):
 sensitivity = 1000.0 / 264.0
 Vref = 322
 averageValue = 500

 while True:

 if(sensor_type == "5A_AC"):
 pin_voltage =
ADC.get_nchan_vol_milli_data(pin,averageValue)
 current =
ADC.get_nchan_AC_current_data(pin,sensitivity,Vref,averageValue)
 else:
 temp =
ADC.get_nchan_current_data(pin,sensitivity,Vref,averageValue)
 current = temp[0]
 pin_voltage = temp[1]

182
183
184
185
186
187
188
189
190

 current = round(current)
 print("pin_voltage(mV):")
 print(pin_voltage)
 print("current(mA):")
 print(current)
 print()
 time.sleep(1)

 else:
 print("parameter input error!")
 print("Please enter parameters for example: python
grove_current_sensor 0 2.5A")
 print("parameter1: 0-7")
 print("parameter2: 2.5A/5A_DC/5A_AC/10A")

 else:
 print("Please enter parameters for example: python
grove_current_sensor 0 2.5A")
 print("parameter1: 0-7")
 print("parameter2: 2.5A/5A_DC/5A_AC/10A")

if __name__ == '__main__':
 main()

You can modify the Vref at line 147 of the code block above:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

 if (pin < 8 and (sensor_type == "2.5A" or sensor_type == "5A_DC" or
sensor_type == "5A_AC" or sensor_type == "10A")):
 if (sensor_type == "2.5A"):
 sensitivity = 1000.0 / 800.0
 Vref = 260
 if (sensor_type == "5A_DC"):
 sensitivity = 1000.0 / 200.0
 Vref = 1498
 if (sensor_type == "5A_AC"):
 sensitivity = 1000.0 / 200.0
 Vref = 1498
 if (sensor_type == "10A"):
 sensitivity = 1000.0 / 264.0
 Vref = 322
 averageValue = 500

As you can see, for the 2.5A Current Sensor the default Vref is 260, and in the Step 3,
we can find it when there is no current the zero offset value is 270mV. So let's change it
into 270.

1
2
3

 if (sensor_type == "2.5A"):
 sensitivity = 1000.0 / 800.0
 Vref = 270

Now, let's run this demo again.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

pi@raspberrypi:~/grove.py/grove $ python grove_current_sensor.py 0 2.5A
pin_voltage(mV):
269
current(mA):
-1.0
()
pin_voltage(mV):
270
current(mA):
0.0
()
pin_voltage(mV):
270
current(mA):
0.0
()
pin_voltage(mV):
270
current(mA):
0.0
()
pin_voltage(mV):
270
current(mA):
0.0
()
^CTraceback (most recent call last):
 File "grove_current_sensor.py", line 200, in <module>
 main()
 File "grove_current_sensor.py", line 185, in main
 time.sleep(1)
KeyboardInterrupt

Well, better than before, now you can measure the current more accurately 😄

FAQ

Q1# What's the current calculation formula?

A1: If you think the principle part is very complicated, let's put it in a easy way. The
current in the circuit to be tested excites the magnetic field, which causes the resistance
value of the GMR elements change. And the resistance change in the bridge causes a
change in the voltage at the output of the chip. We call the voltage output as VIOUT.

VIOUT=Sens×IP+VIOUT(Q)VIOUT=Sens×IP+VIOUT(Q)

http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331/#working-principle

Sens: Sens is the coefficient that converts the current into an output voltage. For this
module it is 800mA/V.
Ip: Ip is the current value in the circuit to be tested, Unit mA.
VIOUT(Q): VIOUT(Q) is the voltage output when the Ip is 0mA(which means there is no current
in the circuit to be tested), Unit mV.

Here comes the current value:

IP=VIOUT−VIOUT(Q)SensIP=VIOUT−VIOUT(Q)Sens

Now, Let's review the figure 5, we will explain why the current value of the output is not
0 when the actual current value in the circuit to be tested is 0. As you can see in the
figure 5, the initialValue is 283.20mV, which is the VIOUT; the current is 22.75mA, which
is the Ip. As for the VIOUT(Q), it is the Vref we set in the code. In figure 5, it is 265. And
the Sens is 800mA/V, which is 800mA/1000mV. Now, just do some math:

283.20mV−265mV800mA/1000mV=22.75mA283.20mV−265mV800mA/100
0mV=22.75mA

So, in the figure 6, when we set the Vref to 283.20, the Ip turns to 0mA.

Resources

• [ZIP] Grove - 2.5A DC Current Sensor(ACS70331) Schematic file

• [PDF] ACS70331 Datasheet

Tech Support

Please submit any technical issue into our forum or drop mail to techsupport@seeed.cc

 http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331//4-19-19

https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/res/Grove%20-%202.5A%20DC%20Current%20Sensor(ACS70331).zip
https://github.com/SeeedDocument/Grove-2.5A_DC_Current_Sensor-ACS70331/raw/master/res/Current_Sensor_ACS70331.pdf
http://forum.seeedstudio.com/
mailto:techsupport@seeed.cc
http://wiki.seeedstudio.com/Grove-2.5A-DC-Current-Sensor-ACS70331/

