

Metal oxide varistor

EnergetiQ series

Series/Type: Ordering code: Q14K510

B72214Q0511K101

2007-09-05 Date:

Version:

EnergetiQ series

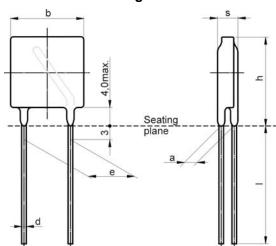
Q14K510

Applications

Overvoltage protection

Features

• UL approval to UL1449 (file number E97877)


Nomenclature

Q = EnergetiQ[™] series 14 = Rated disk diameter

K = Tolerance of V_V at 1 mA : $\pm 10\%$

510 = Max. AC voltage

Dimensional drawings in mm

16.5 b_{max} h_{max} 19.5 S_{max} 8.6 = 10.0 ±1.0 е 4.6 ±1.0 а I_{min} = 25.0 = 1.0 ±0.05 $\emptyset d$

¹⁾ seating plane in accordance with IEC 60717

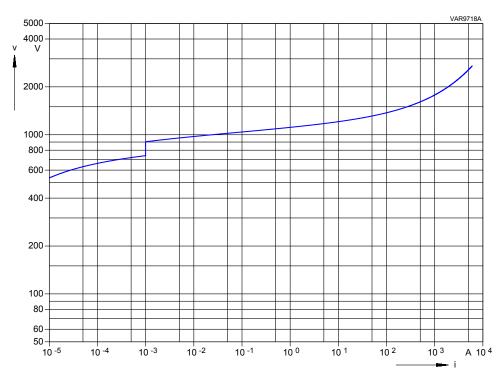
Electrical data

Maximum Ratings (85 °C)

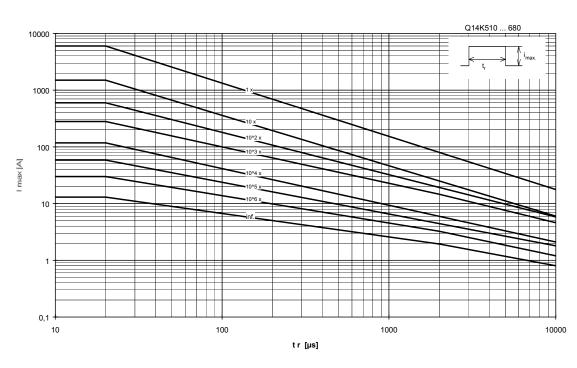
Max. operating AC voltage		V_{RMS}	=	510 V
Max. operating DC voltage		V_{DC}	=	670 V
Surge current (8/20 μs)	1 time	I_{max}	=	6000 A
Energy absorption (2 ms)	1 time	W_{max}	=	240.0 J
Average power dissipation		P_{max}	=	0.80 W

Characteristics (25 °C)

Varistor voltage at 1 mA	V_V	=	820 V ±10%
Clamping voltage at 65 A (8/20 μs)	$V_{C,max}$	=	1355 V
Typ. capacitance at 1 kHz	С	=	260 pF


Metal oxide varistor

B72214Q0511K101


EnergetiQ series

Q14K510

v/i characteristic

Derating

Please read Important notes at the end of this document.

EnergetiQ series

Q14K510

Reliability data, electrical

Characteristics	Test Methods/Description	Specifications
Varistor Voltage	The voltage between two terminals with the specified measuring current applied is called V_v (1 mA _{DC} @ 0.2 2 s).	To meet the specified value.
Clamping Voltage	The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) illustrated below applied.	To meet the specified value.
Surge current derating, 8/20 µs	100 surge currents (8/20 μs), unipolar, interval 30 s, amplitude corresponding to derating curve for 20 μs	Δ V/V (1 mA) ≤ 10% (measured in direction of surge current) No visible damage
Surge current derating, 2 ms	100 surge currents (2ms), unipolar, interval 120 s, amplitude corresponding to derating curve for 2 ms	Δ V/V (1 mA) ≤ 10% (measured in direction of surge current) No visible damage

EnergetiQ series Q14K510

Reliability data, mechanical

Characteristics	Test Methods/Description	Specifications
Tensile strength	After gradually applying the force specified below and keeping the unit fixed for 10 seconds, the terminal shall be visually examined for any damage.	Δ V/V (1 mA) ≤ 5% No break of solder joint, no wire break
	Terminal diameter Force 0.5 mm 5 N 0.6 mm 10 N 0.8 mm 10 N 1.0 mm 20 N	
Vibration	After repeatedly applying a single harmonic vibration according to the table below. Thereafter, the unit shall be visually examined.	$\begin{array}{c c} \mid \Delta \text{ V/V (1 mA)} \mid \\ \leq 5\% \\ \text{No visible damage} \end{array}$
	frequency range: 10 55 Hz amplitude: 0.75 mm or 98 m/s² duration: 6 h (3 x 2 h) pulse: sine wave	
Solderability	After dipping the terminals to a depth of approximately 3 mm from the body in a lead-free soldering bath at 245 °C for 5 seconds, the terminals shall be visually examined.	The inspection shall be carried out under adequate light with normal eyesight or with the assistance of a magnifier capable of giving a magnification of 4 times to 10 times. The dipped surface shall be covered with a smooth and bright solder coating with no more than small amounts of scattered imperfections such as pinholes or unwetted or de-wetted areas. These imperfections shall not be concentrated in one area.

EnergetiQ series Q14K510

Characteristics	Test Methods/Description	Specifications
Resistance to soldering heat	Each lead shall be dipped into a solder bath having a temperature of 260 ± 5 °C to a point 2.0 to 2.5 mm from the body of the unit, be held there for 10 ± 1 s and then be stored at room temperature and normal humidity for 1 to 2 hours. The change of V_v and mechanical damage shall be examined.	$\mid \Delta$ V/V (1 mA) \mid \leq 5% No visible damage
Electric strength	2500 V _{RMS} , 10 s The varistor is placed in a container holding 1.6 ±0.2 mm diameter metal balls such that only the terminations of the varistor are protruding. The specified voltage shall be applied between both terminals of the specimen connected together and the electrode inserted between the metal balls.	No breakdown

EnergetiQ series Q14K510

Reliability data, environmental

Characteristics	Test Methods/Description	Specifications
Max. AC operating voltage	After being continuously applied the maximum allowable voltage at 85 ± 2 °C for 1000 hours, the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of $V_{\rm v}$ shall be measured.	Δ V/V (1 mA) ≤ 10%
Damp heat, steady state	The specimen shall be subjected to 40 \pm 2 °C, 90 to 95 % r.H. for 56 days without load and then stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V_{ν} shall be measured.	Δ V/V (1 mA) ≤ 10%
Climatic sequence	The specimen shall be subjected to: a) dry heat at +85°C, 16 h b) damp heat, 1st cycle: 55 °C, 93% r.H., 24 h c) cold, -40 °C, 2 h d) damp heat, additional 5 cycles: 55 °C, 93% r.H., 24 h/cycle Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. Thereafter, the change of V _v shall be measured.	Δ V/V (1 mA) ≤ 10%
Fast temperature cycling	The temperature cycle shown below shall be repeated 5 times. Then the specimen shall be stored at room temperature and normal humidity for 1 to 2 hours. The change of V _v and mechanical damage shall be examined. Step Temperature (°C) Period (min.) 1 -40 ±3 30 ±3 2 transition time <10 s 3 85 ±2 30 ±3	Δ V/V (1 mA) ≤ 5% No visible damage

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of passive electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention or life-saving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of a passive electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as "hazardous"). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed guestions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, **the products described in this publication may change from time to time**. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order.
 - We also **reserve the right to discontinue production and delivery of products**. Consequently, we cannot quarantee that all products named in this publication will always be available.
- 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, EPCOS-JONES, BAOKE, Alu-X, CeraDiode, CSSP, MLSC, MotorCap, PhaseCap, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMID, SIOV, SIP5D, SIP5K, WindCap are **trademarks registered or pending** in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.