

DUAL FREQUENCY CRYSTAL OSCILLATOR (XO) 100 kHz to 250 MHz

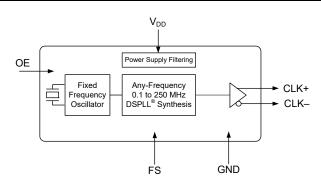
Features

- Supports any frequency from 100 kHz to 250 MHz
- Two selectable output frequencies
- Low-jitter operation
- 2 to 4 week lead times
- Total stability includes 10-year aging
- Comprehensive production test coverage includes crystal ESR and DLD
- On-chip LDO regulator for power supply noise filtering

- 3.3, 2.5, or 1.8 V operation
- Differential (LVPECL, LVDS, HCSL) or CMOS output options
- Optional integrated 1:2 CMOS fanout buffer
- Runt suppression on OE and power on
- Industry standard 5x7, 3.2x5, and 2.5x3.2 mm packages
- Pb-free, RoHS compliant
- –40 to 85 °C operation

Si512 2.5x3.2mm 5x7mm and 3.2x5mm Ordering Information: See page 13.

Applications


- SONET/SDH/OTN
- Gigabit Ethernet
- Fibre Channel/SAS/SATA
- PCI Express

- Broadcast video
- Switches/routers
- Telecom
- FPGA/ASIC clock generation

Description

The Si512/513 dual frequency XO utilizes Skyworks Solutions' advanced PLL technology to provide any frequency from 100 kHz to 250 MHz. Unlike a traditional XO where a different crystal is required for each output frequency, the Si512/513 uses one fixed crystal and Skyworks Solutions' proprietary any-frequency synthesizer to generate any frequency across this range. This IC-based approach allows the crystal resonator to provide enhanced reliability, improved mechanical robustness, and excellent stability. In addition, this solution provides superior supply noise rejection, simplifying low jitter clock generation in noisy environments. The Si512/513 is factory-configurable for a wide variety of user specifications, including frequency, supply voltage, output format, output enable polarity, and stability. Specific configurations are factory-programmed at time of shipment, eliminating long lead times and non-recurring engineering charges associated with custom frequency oscillators.

Functional Block Diagram

Pin Assignments: See page 12. 6 5 Œ 2 NC GND 3 4 Si512 CMOS Dual XO 6 Œ 2 5 FS NC 4 3 GND ак Si513 CMOS Dual XO 6 5 CLK-4 3 GND CLK+ Si512 LVDS/LVPECL/HCSL/CMOS **Dual XO** 6 5 CLK-4 GND Si513 LVDS/LVPECL/HCSL/CMOS **Dual XO**

Si512/513

TABLE OF CONTENTS

Section	Page
1. Electrical Specifications	3
2. Solder Reflow and Rework Requirements for 2.5x3.2 mm Packages	10
3. Pin Descriptions	
3.1. Dual CMOS Buffer	12
4. Ordering Information	13
5. Package Outline Diagram, 5 x 7 mm, 6-pin	
6. PCB Land Pattern: 5 x 7 mm, 6-pin	
7. Package Outline Diagram: 3.2 x 5.0 mm, 6-pin	
8. PCB Land Pattern: 3.2 x 5.0 mm	
9. Package Outline Diagram: 2.5 x 3.2 mm, 6-pin	
10. PCB Land Pattern: 2.5 x 3.2 mm, 6-pin	
11. Top Marking	
11.1. Si512/513 Top Marking	
11.2. Top Marking Explanation	
Document Change List	

1. Electrical Specifications

Table 1. Operating Specifications

 V_{DD} = 1.8 V ±5%, 2.5 or 3.3 V ±10%, T_A = -40 to +85 °C

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Supply Voltage	V _{DD}	3.3 V option	2.97	3.3	3.63	V
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	V
Supply Current	I _{DD}	CMOS, 100 MHz, single-ended	_	21	26	mA
		LVDS (output enabled)	_	19	23	mA
		LVPECL (output enabled)	_	39	43	mA
		HCSL (output enabled)	_	41	44	mA
		Tristate (output disabled)	_	_	18	mA
FS, OE "1" Setting	V _{IH}	See Note	0.80 x V _{DD}	_	_	V
FS, OE "0" Setting	V _{IL}	See Note	_	_	0.20 x V _{DD}	V
FS, OE Internal Pull- Up/Pull-Down Resistor*	R _I			45		kΩ
Operating Temperature	T _A		-40		85	°C

Note: Active high and active low polarity OE options available. Active high uses internal pull-up. Active low uses internal pull-down. See ordering information on page 12.

Si512/513

Table 2. Output Clock Frequency Characteristics

 V_{DD} = 1.8 V ±5%, 2.5 or 3.3 V ±10%, T_A = –40 to +85 $^{\rm o}C$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Nominal Frequency	Fo	CMOS, Dual CMOS	0.1	_	212.5	MHz
	Fo	LVDS/LVPECL/HCSL	0.1	_	250	MHz
Total Stability*		Frequency Stability Grade C	-30		+30	ppm
		Frequency Stability Grade B	-50		+50	ppm
		Frequency Stability Grade A	-100		+100	ppm
Temperature Stability		Frequency Stability Grade C	-20		+20	ppm
		Frequency Stability Grade B	-25		+25	ppm
		Frequency Stability Grade A	-50		+50	ppm
Startup Time	T _{SU}	Minimum V_{DD} to output frequency (F_{O}) within specification	_	_	10	ms
Disable Time	T _D	F _O ≥ 10 MHz	_	_	5	μs
		F _O < 10 MHz	_	_	40	μs
Enable Time	T _E	F _O ≥ 10 MHz	_	_	20	μs
		F _O < 10 MHz	_	_	60	μs
Settling Time after FS Change	t _{FRQ}		_	_	10	ms

*Note: Total stability includes initial accuracy, operating temperature, supply voltage change, load change, shock and vibration (not under operation), and 10 years aging at 40 °C.

Table 3. Output Clock Levels and Symmetry

 V_{DD} = 1.8 V ±5%, 2.5 or 3.3 V ±10%, T_A = –40 to +85 $^{\rm o}C$

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
CMOS Output Logic High	V _{OH}		0.85 x V _{DD}	_	_	V
CMOS Output Logic Low	V _{OL}		_	_	0.15 x V _{DD}	V
CMOS Output Logic	I _{OH}	3.3 V	-8	_		mA
High Drive		2.5 V	-6			mA
		1.8 V	-4	_	_	mA
CMOS Output Logic	I _{OL}	3.3 V	8	_	_	mA
Low Drive		2.5 V	6	_	_	mA
		1.8 V	4			mA
CMOS Output Rise/Fall Time	T _R /T _F	0.1 to 125 MHz, C _L = 15 pF	_	0.8	1.2	ns
(20 to 80% V _{DD})		0.1 to 212.5 MHz, C _L = no load	_	0.6	0.9	ns
LVPECL/HCSL Output Rise/Fall Time (20 to 80% V _{DD})	T _R /T _F		_		565	ps
LVDS Output Rise/Fall Time (20 to 80% V _{DD})	T _R /T _F		_		800	ps
LVPECL Output Common Mode	V _{OC}	50 Ω to V _{DD} – 2 V, single-ended	_	V _{DD} – 1.4 V	_	V
LVPECL Output Swing	V _O	50 Ω to V _{DD} – 2 V, single-ended	0.55	0.8	0.90	V _{PPSE}
LVDS Output Common	V _{OC}	100 Ω line-line, V _{DD} = 3.3/2.5 V	1.13	1.23	1.33	V
Mode		100 Ω line-line, V _{DD} = 1.8 V	0.83	0.92	1.00	V
LVDS Output Swing	V _O	Single-ended, 100 Ω differential termination	0.25	0.35	0.45	V _{PPSE}
HCSL Output Common Mode	V _{oc}	50 Ω to ground	0.35	0.38	0.42	V
HCSL Output Swing	V _O	Single-ended	0.58	0.73	0.85	V_{PPSE}
Duty Cycle	DC	All Output Formats	48	50	52	%

Table 4. Output Clock Jitter and Phase Noise (LVPECL)

 V_{DD} = 2.5 or 3.3 V ±10%, T_A = –40 to +85 $^{\rm o}$ C; Output Format = LVPECL

Parameter	Symbol	Test Condition	Min	Тур	Max	Units
Period Jitter (RMS)	JPRMS	10k samples ¹	_	_	1.3	ps
Period Jitter (Pk-Pk)	JPPKPK	10k samples ¹	_	_	11	ps
Phase Jitter (RMS)	φJ	1.875 MHz to 20 MHz integration bandwidth ² (brickwall)	_	0.31	0.5	ps
		12 kHz to 20 MHz integration bandwidth (brickwall) ²	_	0.8	1.0	ps
Phase Noise,	φΝ	100 Hz	_	-86	_	dBc/Hz
156.25 MHz		1 kHz	_	-109	_	dBc/Hz
		10 kHz		-116		dBc/Hz
		100 kHz		-123		dBc/Hz
		1 MHz		-136		dBc/Hz
Additive RMS	JPSR	10 kHz sinusoidal noise		3.0		ps
Jitter Due to External Power		100 kHz sinusoidal noise		3.5		ps
Supply Noise ³		500 kHz sinusoidal noise		3.5		ps
		1 MHz sinusoidal noise	_	3.5	_	ps
Spurious	SPR	LVPECL output, 156.25 MHz, offset > 10 kHz	_	-75	_	dBc

- **1.** Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5, 250 MHz.
- 2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 and 250 MHz.
- 3. 156.25 MHz. Increase in jitter on output clock due to sinewave noise added to VDD (2.5/3.3 V = 100 mVPP).

Table 5. Output Clock Jitter and Phase Noise (LVDS)

 V_{DD} = 1.8 V ±5%, 2.5 or 3.3 V ±10%, T_A = -40 to +85 o C; Output Format = LVDS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Period Jitter (RMS)	JPRMS	10k samples ¹	_	_	2.1	ps
Period Jitter (Pk-Pk)	JPPKPK	10k samples ¹	_	_	18	ps
Phase Jitter (RMS)	φJ	1.875 MHz to 20 MHz integration bandwidth ² (brickwall)		0.25	0.55	ps
		12 kHz to 20 MHz integration bandwidth ² (brickwall)	_	0.8	1.0	ps
Phase Noise, 156.25 MHz	φΝ	100 Hz	_	-86	_	dBc/Hz
130.23 MHZ		1 kHz	_	-109	_	dBc/Hz
		10 kHz	_	-116	_	dBc/Hz
		100 kHz	_	-123	_	dBc/Hz
		1 MHz	_	-136	_	dBc/Hz
Spurious	SPR	LVPECL output, 156.25 MHz, offset>10 kHz	—	– 75	—	dBc

- **1.** Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5, 250 MHz.
- 2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 and 250 MHz.

Table 6. Output Clock Jitter and Phase Noise (HCSL)

 V_{DD} = 1.8 V ±5%, 2.5 or 3.3 V ±10%, T_A = -40 to +85 °C; Output Format = HCSL

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Period Jitter (RMS)	JPRMS	10k samples [*]	_	_	1.2	ps
Period Jitter (Pk-Pk)	JPPKPK	10k samples [*]		_	11	ps
Phase Jitter φJ (RMS)		1.875 MHz to 20 MHz integration bandwidth [*] (brickwall)		0.25	0.30	ps
		12 kHz to 20 MHz integration bandwidth* (brickwall)		0.8	1.0	ps
Phase Noise,	φN	100 Hz	_	-90	_	dBc/Hz
156.25 MHz		1 kHz	_	-112	_	dBc/Hz
		10 kHz	_	-120	_	dBc/Hz
		100 kHz	_	-127	_	dBc/Hz
		1 MHz	_	-140	_	dBc/Hz
Spurious	SPR	LVPECL output, 156.25 MHz, offset>10 kHz	_	- 75	_	dBc
*Note: Applies to an	output freque	ency of 100 MHz.	•	•	•	•

Table 7. Output Clock Jitter and Phase Noise (CMOS, Dual CMOS)

 V_{DD} = 1.8 V ±5%, 2.5 or 3.3 V ±10%, T_A = –40 to +85 °C; Output Format = CMOS, Dual CMOS

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Phase Jitter φJ (RMS)		1.875 MHz to 20 MHz integration bandwidth ² (brickwall)	_	0.25	0.35	ps
		12 kHz to 20 MHz integration bandwidth ² (brickwall)	_	0.8	1.0	ps
Phase Noise, φN 156.25 MHz	φΝ	100 Hz	_	-86	_	dBc/Hz
		1 kHz	_	-108	_	dBc/Hz
		10 kHz	_	-115	_	dBc/Hz
		100 kHz	_	-123	_	dBc/Hz
		1 MHz	_	-136	_	dBc/Hz
Spurious	SPR	LVPECL output, 156.25 MHz, offset>10 kHz	_	- 75	_	dBc

- **1.** Applies to output frequencies: 74.17582, 74.25, 75, 77.76, 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 MHz.
- 2. Applies to output frequencies: 100, 106.25, 125, 148.35165, 148.5, 150, 155.52, 156.25, 212.5 MHz.

Table 8. Environmental Compliance and Package Information

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross and Fine Leak	MIL-STD-883, Method 1014
Resistance to Solder Heat	MIL-STD-883, Method 2036
Contact Pads	Gold over Nickel

Table 9. Thermal Characteristics

Parameter	Symbol	Test Condition	Value	Unit
CLCC, Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still air	110	°C/W
2.5x3.2mm, Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	Still air	164	°C/W

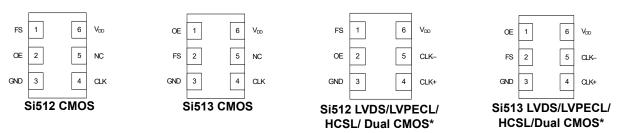
Table 10. Absolute Maximum Ratings¹

Parameter	Symbol	Rating	Units
Maximum Operating Temperature	T _{AMAX}	85	°C
Storage Temperature	T _S	-55 to +125	°C
Supply Voltage	V_{DD}	-0.5 to +3.8	V
Input Voltage (any input pin)	V _I	-0.5 to V _{DD} + 0.3	V
ESD Sensitivity (HBM, per JESD22-A114)	НВМ	2	kV
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	°C
Soldering Temperature Time at T _{PEAK} (Pb-free profile) ²	T _P	20–40	sec

- 1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.
- 2. The device is compliant with JEDEC J-STD-020E.

2. Solder Reflow and Rework Requirements for 2.5x3.2 mm Packages

Reflow of Skyworks Solutions' components should be done in a manner consistent with the IPC/JEDEC J-STD-20E standard. The temperature of the package is not to exceed the classification Temperature provided in the standard.


The part should not be within -5°C of the classification or peak reflow temperature (T_{PEAK}) for longer than 30 seconds. Key to maintaining the integrity of the component is providing uniform heating and cooling of the part during reflow and rework. Uniform heating is achieved through having a preheat soak and controlling the temperature ramps in the process.

J-STD-20E provides minimum and maximum temperatures and times for the preheat/Soak step that need to be followed, even for rework. The entire assembly area should be heated during rework. Hot air should be flowed from both the bottom of the board and the top of the component. <u>Heating from the top only will cause un-even heating of component and can lead to part integrity issues.</u>

Temperature Ramp-up rate are not to exceed 3°C/second. Temperature ramp-down rates from peak to final temperature are not to exceed 6°C/second. Time from 25°C to peak temperature is not to exceed 8 min for Pb-free solders.

11

3. Pin Descriptions

*Note: Supports integrated 1:2 CMOS buffer. See section 2.1 "3.1. Dual CMOS Buffer" and section 3 "4. Ordering Information".

Table 11. Si512 Pin Descriptions (CMOS, OE Pin 2)

Pin	Name	CMOS Function
1	FS	Frequency Selected.
		0 = First frequency selected.
		1 = Second frequency selected.
2	OE	Output Enable. Internal pull-up for OE active high. Pull-down for OE active low. See ordering information.
3	GND	Electrical and Case Ground.
4	CLK	Clock Output.
5	NC	No connect. Make no external connection to this pin.
6	V_{DD}	Power Supply Voltage.

Table 12. Si513 Pin Descriptions (CMOS, OE Pin 1)

Pin	Name	CMOS Function
1	OE	Output Enable. Internal pull-up for OE active high. Pull-down for OE active low. See ordering information.
2	FS	Frequency Selected.
		0 = First frequency selected.
		1 = Second frequency selected.
3	GND	Electrical and Case Ground.
4	CLK	Clock Output.
5	NC	No connect. Make no external connection to this pin.
6	V_{DD}	Power Supply Voltage.

Table 13. Si512 Pin Descriptions (OE Pin 2)

Pin	Name	LVPECL/LVDS/HCSL/Dual CMOS Function
1	FS	Frequency Selected.
		0 = First frequency selected.
		1 = Second frequency selected.
2	OE	Output Enable. Internal pull-up for OE active high. Pull-down for OE active low. See ordering information.
3	GND	Electrical and Case Ground.
4	CLK+	Clock Output.
5	CLK-	Complementary Clock Output.
6	V_{DD}	Power Supply Voltage.

Pin	Name	LVPECL/LVDS/HCSL/Dual CMOS Function
1	OE	Output Enable. Internal pull-up for OE active high. Pull-down for OE active low. See ordering information.
2	FS	Frequency Selected.
		0 = First frequency selected.
		1 = Second frequency selected.
3	GND	Electrical and Case Ground.
4	CLK+	Clock Output.
5	CLK-	Complementary Clock Output.
6	V_{DD}	Power Supply Voltage.

3.1. Dual CMOS Buffer

Dual CMOS output format ordering options support either complementary or in-phase output signals. This feature enables replacement of multiple XOs with a single Si512/13 device.

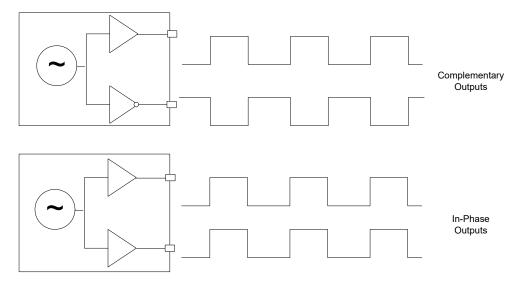
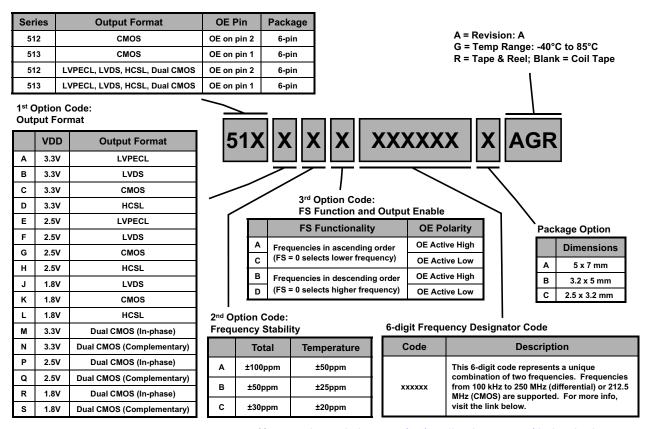



Figure 1. Integrated 1:2 CMOS Buffer Supports Complementary or In-Phase Outputs

4. Ordering Information

The Si512/513 supports a wide variety of options including frequency, stability, output format, and V_{DD} . Specific device configurations are programmed into the Si512/513 at time of shipment. Configurations can be specified using the Part Number Configuration chart below. Skyworks Solutions provides a web browser-based part number configuration utility to simplify this process. Refer to www.skyworksinc.com/products/timing-oscillators and click "Customize" in the product table. The Si512/513 XO series is supplied in industry-standard, RoHS compliant, lead-free, 2.5 x 3.2 mm, 3.2 x 5.0 mm, and 5 x 7 mm packages. Tape and reel packaging is an ordering option.

** www.skyworksinc.com/en/application-pages/timing-lookup-customize

Figure 2. Part Number Convention

Example part number: 512PCA000104BAGR:

The series prefix, 512, indicates the device is a Dual CMOS XO with the OE function on pin 2. The output format code P specifies the outputs are dual in-phase CMOS with a 2.5 V supply. The frequency stability code C indicates a total stability of ± 30 ppm. The frequency select and output enable code A specifies that the two frequencies are listed in ascending order, with the output frequency f0 (the lower frequency) selected when FS=0, and f1 (the higher frequency) selected when FS = 1. The device's output enable polarity is active High.

The six-digit code is 000104. Refer to the part number lookup at www.skyworksinc.com/products/timing-oscillators. f0 is 155.52 MHz (the lower frequency) and f1 is 156.25 MHz (the higher frequency). The package code B refers to the 3.2 x 5 mm footprint with six pins. The last A refers to the product revision, G indicates the temperature range (-40 to +85°C), and R means the device ships in tape and reel format.

Note: CMOS and Dual CMOS maximum frequency is 212.5 MHz.

5. Package Outline Diagram, 5 x 7 mm, 6-pin

Figure 3 illustrates the package details for the 5×7 mm Si512/513. Table 15 lists the values for the dimensions shown in the illustration.

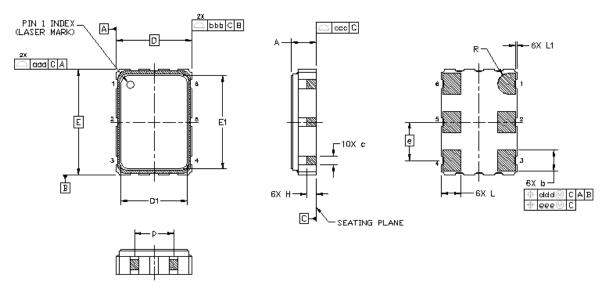


Figure 3. Si512/513 Outline Diagram

Dimension	Min	Nom	Max
A	1.50	1.65	1.80
b	1.30	1.40	1.50
С	0.50	0.60	0.70
D		5.00 BSC.	
D1	4.30	4.40	4.50
е		2.54 BSC.	
E		7.00 BSC.	
E1	6.10	6.20	6.30
Н	0.55	0.65	0.75
L	1.17	1.27	1.37
L1	0.05	0.10	0.15
р	1.80		2.60
R	0.70 REF.		
aaa	0.15		
bbb	0.15		
ccc	0.10		
ddd	0.10		
eee	0.05		
Notes			

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

6. PCB Land Pattern: 5 x 7 mm, 6-pin

Figure 4 illustrates the 5 x 7 mm PCB land pattern for the Si512/513. Table 16 lists the values for the dimensions shown in the illustration.

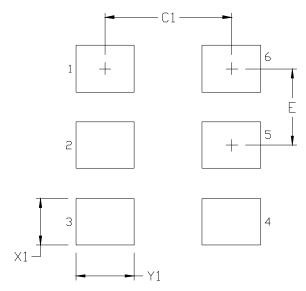


Figure 4. Si512/513 PCB Land Pattern

Table 16. PCB Land Pattern Dimensions (mm)

Dimension	(mm)
C1	4.20
E	2.54
X1	1.55
Y1	1.95

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

Stencil Design

- **6.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 7. The stencil thickness should be 0.125 mm (5 mils).
- 8. The ratio of stencil aperture to land pad size should be 1:1.

Card Assembly

- 9. A No-Clean, Type-3 solder paste is recommended.
- **10.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

7. Package Outline Diagram: 3.2 x 5.0 mm, 6-pin

Figure 5 illustrates the package details for the $3.2\,$ x $5.0\,$ mm Si512/513. Table 17 lists the values for the dimensions shown in the illustration.

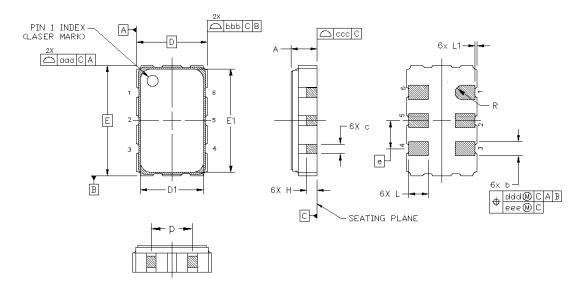


Figure 5. Si512/513 Outline Diagram

Dimension	Min	Nom	Max
Α	1.06	1.17	1.33
b	0.54	0.64	0.74
С	0.35	0.45	0.55
D		3.20 BSC	
D1	2.55	2.60	2.65
е	1.27 BSC		
E	5.00 BSC		
E1	4.35	4.40	4.45
Н	0.45	0.55	0.65
L	0.80	0.90	1.00
L1	0.05	0.10	0.15
р	1.17	1.27	1.37
R	0.32 REF		
aaa	0.15		
bbb	0.15		
ccc	0.10		
ddd	0.10		
eee	0.05		

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

8. PCB Land Pattern: 3.2 x 5.0 mm

Figure 6 illustrates the 3.2 x 5.0 mm PCB land pattern for the Si512/513. Table 18 lists the values for the dimensions shown in the illustration.

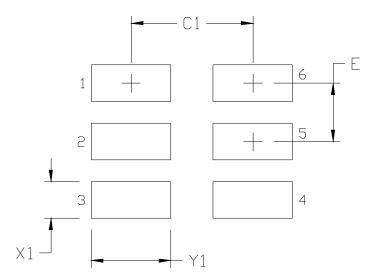


Figure 6. Si512/513 Recommended PCB Land Pattern

Table 18. PCB Land Pattern Dimensions (mm)

Dimension	(mm)
C1	2.60
E	1.27
X1	0.80
Y1	1.70

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on the IPC-7351 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

Stencil Design

- **6.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 7. The stencil thickness should be 0.125 mm (5 mils).
- 8. The ratio of stencil aperture to land pad size should be 1:1.

Card Assembly

- 9. A No-Clean, Type-3 solder paste is recommended.
- **10.** The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Package Outline Diagram: 2.5 x 3.2 mm, 6-pin

Figure 7 illustrates the package details for the $2.5 \times 3.2 \text{ mm}$ Si512/513. Table 19 lists the values for the dimensions shown in the illustration.

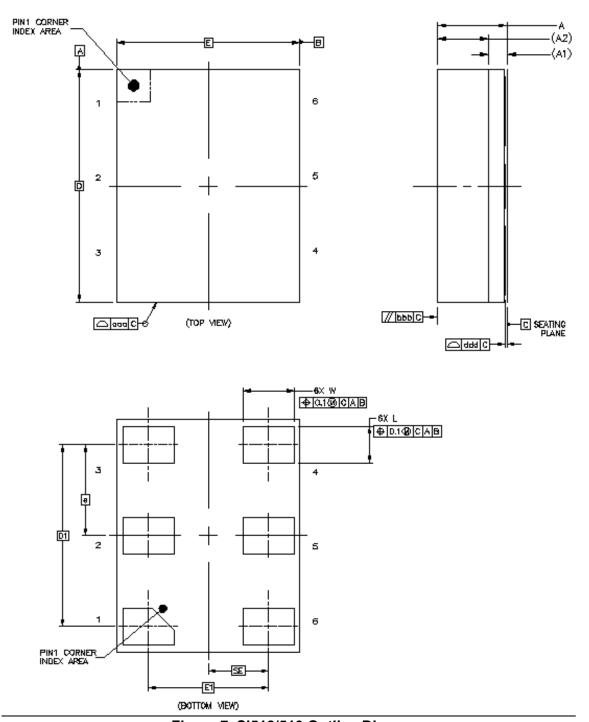


Figure 7. Si512/513 Outline Diagram

Table 19. Package Diagram Dimensions (mm)

Dimension	Min	Nom	Max
А	-	_	1.1
A1	0.26 REF		
A2		0.7 REF	
W	0.65	0.7	0.75
D	3.20 BSC		
е	1.25 BSC		
E	2.50 BSC		
М	0.30 BSC		
L	0.45	0.5	0.55
D1	2.5 BSC		
E1	1.65 BSC		
SE	0.825 BSC		
aaa	0.1		
bbb	0.2		
ddd	0.08		
NI. C.			

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

10. PCB Land Pattern: 2.5 x 3.2 mm, 6-pin

Figure 8 illustrates the 2.5 x 3.2 mm PCB land pattern for the Si512/513. Table 20 lists the values for the dimensions shown in the illustration.

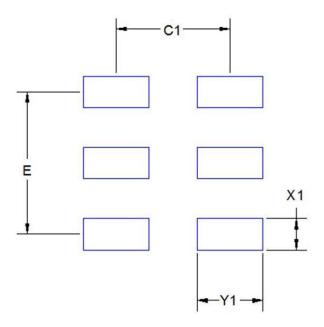


Figure 8. Si512/513 Recommended PCB Land Pattern

Table 20. PCB Land Pattern Dimensions (mm)

Dimension	(mm)
C1	1.9
E	2.50
X1	0.70
Y1	1.05

Notes:

General

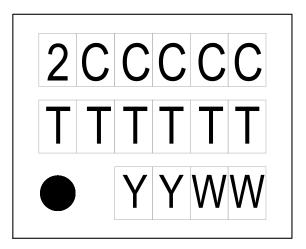
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
- 4. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.

Stencil Design

- **6.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 7. The stencil thickness should be 0.125 mm (5 mils).
- 8. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.


Card Assembly

- 9. A No-Clean, Type-3 solder paste is recommended.
- The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

11. Top Marking

Use the part number utility located at: www.skyworksinc.com/en/application-pages/timing-lookup-customize to cross-reference the mark code to a specific device configuration.

11.1. Si512/513 Top Marking

11.2. Top Marking Explanation

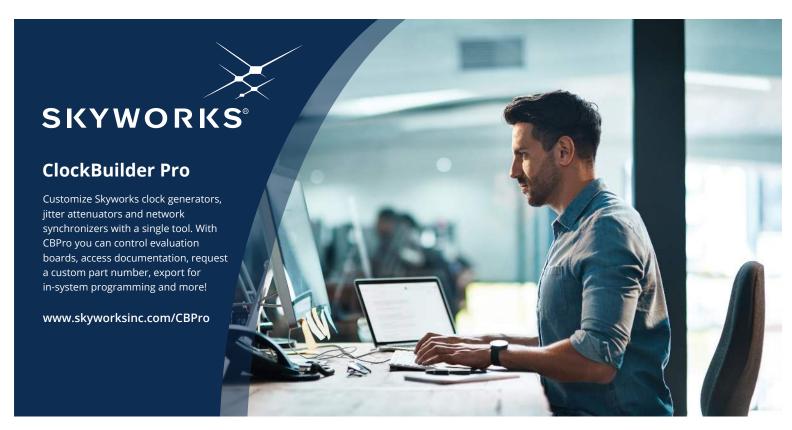
Mark Method:	Laser	Laser	
Line 1 Marking:	2 = Si512 3 = Si513 CCCCC = Mark Code	2CCCCC	
Line 2 Marking:	TTTTTT = Assembly Manufacturing Code	TTTTTT	
Line 3 Marking:	Pin 1 indicator.	Circle with 0.5 mm diameter; left-justified	
	YY = Year. WW = Work week. Characters correspond to the year and work week of package assembly.	YYWW	

REVISION HISTORY

Revision 1.2

June, 2018

■ Changed "Trays" to "Coil Tape" in Ordering Guide.


Revision 1.1

December, 2017

■ Add 2.5 x 3.2 mm package.

Revision 1.0

- Updated Table 1 on page 3.
 - Updates to supply current typical and maximum values for CMOS, LVDS, LVPECL and HCSL.
 - CMOS frequency test condition corrected to 100 MHz.
 - Updates to OE VIH minimum and VIL maximum values.
- Updated Table 2 on page 4.
 - Dual CMOS nominal frequency maximum added.
 - Total stability footnotes clarified for 10 year aging at 40 °C.
 - Disable time maximum values updated.
 - Enable time parameter added.
- Updated Table 3 on page 5.
 - CMOS output rise / fall time typical and maximum values updated.
 - LVPECL/HCSL output rise / fall time maximum value updated.
 - LVPECL output swing maximum value updated.
 - LVDS output common mode typical and maximum values updated.
 - HCSL output swing maximum value updated.
 - Duty cycle minimum and maximum values tightened to 48/52%.
- Updated Table 4 on page 6.
 - Phase jitter test condition and maximum value updated.
 - Phase noise typical values updated.
 - Additive RMS jitter due to external power supply noise typical values updated.
 - Footnote 3 updated limiting the VDD to 2.5/3.3V
- Added Tables 5, 6, 7 for LVDS, HCSL, CMOS, and Dual CMOS operations.
- Moved Absolute Maximum Ratings table.
- Added note to Figure clarifying CMOS and Dual CMOS maximum frequency.
- Updated Figure 5 outline diagram to correct pinout.
- Updated Table 17 on page 16.
- Updated "11. Top Marking" section and moved to page 21.

www.skyworksinc.com/CBPro

Quality www.skyworksinc.com/quality

Support & Resources www.skyworksinc.com/support

Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks' Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks' published specifications or parameters.

Skyworks, the Skyworks symbol, Sky5®, SkyOne®, SkyBlue™, Skyworks Green™, Clockbuilder®, DSPLL®, ISOmodem®, ProSLIC®, and SiPHY® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.