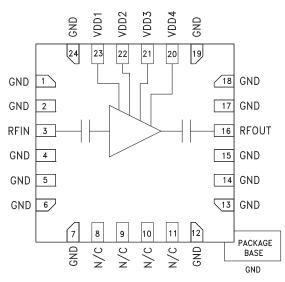


v02.0609



The HMC566LP4E is ideal for:


- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment and Sensors
- Military & Space

## GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 28 - 36 GHz

#### Features

Low Noise Figure: 2.8 dB High Gain: 21 dB High OIP3: +24 dBm Single Positive Supply: +3V @ 82 mA 50 Ohm Matched & DC Blocked I/Os 24 Lead 4x4mm QFN Package: 16mm<sup>2</sup>

#### **Functional Diagram**

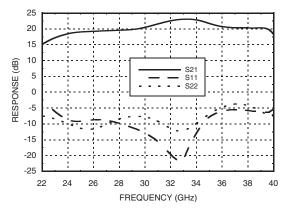


#### **General Description**

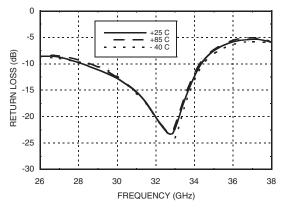
The HMC566LP4E is a high dynamic range GaAs pHEMT MMIC Low Noise Amplifier (LNA) in a 4x4 mm SMT package which operates from 28 to 36 GHz. The HMC566LP4E provides 21 dB of small signal gain, 2.8 dB of noise figure and output IP3 of 24 dBm. This self-biased LNA is ideal for hybrid and MCM assemblies due to its compact size, single +3V supply operation, and DC blocked RF I/O's. The RoHS packaged HMC566LP4E eliminates the need for wirebonding and allows the use of high volume surface mount manufacturing techniques. The HMC566LP4E is also available in chip form as the HMC566.

#### Electrical Specifications, $T_4 = +25^{\circ}$ C, Vdd 1, 2, 3, 4 = +3V

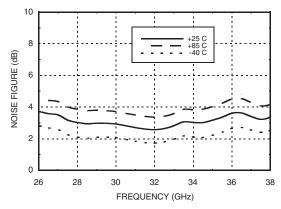
| Parameter                                | Min.      | Тур. | Max.        | Min. | Тур.      | Max. | Min. | Тур. | Max. | Units  |
|------------------------------------------|-----------|------|-------------|------|-----------|------|------|------|------|--------|
| Frequency Range                          | 28 - 31.5 |      | 31.5 - 33.5 |      | 33.5 - 36 |      | GHz  |      |      |        |
| Gain                                     | 18        | 21   |             | 19.5 | 22.5      |      | 18   | 21   |      | dB     |
| Gain Variation Over Temperature          |           | 0.03 |             |      | 0.03      |      |      | 0.03 |      | dB/ °C |
| Noise Figure                             |           | 2.8  | 3.6         |      | 2.8       | 3.6  |      | 3.3  | 4.3  | dB     |
| Input Return Loss                        |           | 14   |             |      | 18        |      |      | 12   |      | dB     |
| Output Return Loss                       |           | 8    |             |      | 10        |      |      | 7    |      | dB     |
| Output Power for 1 dB Compression (P1dB) |           | 11   |             |      | 12        |      |      | 11   |      | dBm    |
| Saturated Output Power (Psat)            |           | 13   |             |      | 14        |      |      | 13   |      | dBm    |
| Output Third Order Intercept (IP3)       |           | 23.5 |             |      | 24.5      |      |      | 24.5 |      | dBm    |
| Supply Current (Idd1+Idd2+Idd3+Idd4)     | 50        | 82   | 106         | 50   | 82        | 106  | 50   | 82   | 106  | mA     |


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



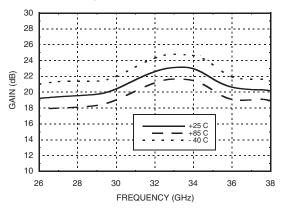

v02.0609



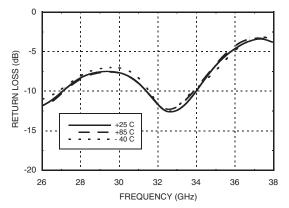

#### Broadband Gain & Return Loss



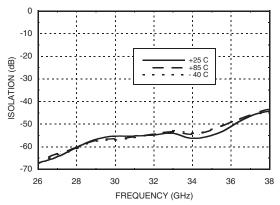
Input Return Loss vs. Temperature




Noise Figure vs. Temperature




## GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 28 - 36 GHz


#### Gain vs. Temperature



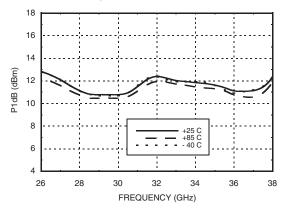
#### **Output Return Loss vs. Temperature**



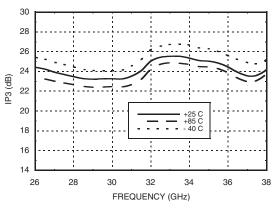
#### **Reverse Isolation vs. Temperature**



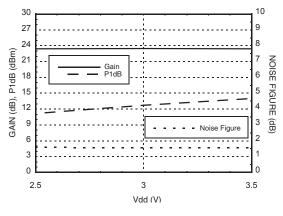
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



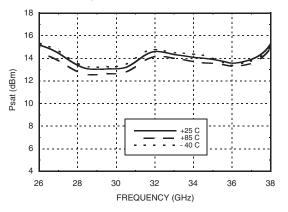

AMPLIFIER, 28 - 36 GHz


v02.0609



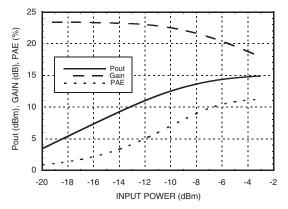

#### P1dB vs. Temperature




**Output IP3 vs. Temperature** 



#### Gain, Noise Figure & Power vs. Supply Voltage @ 32 GHz




#### Psat vs. Temperature



GaAs pHEMT MMIC LOW NOISE

#### Power Compression @ 32 GHz



#### Absolute Maximum Ratings

| Drain Bias Voltage (Vdd1, 2, 3, 4)                            | +3.5 V         |  |
|---------------------------------------------------------------|----------------|--|
| RF Input Power (RFIN)(Vdd = +3 Vdc)                           | +5 dBm         |  |
| Channel Temperature                                           | 175 °C         |  |
| Continuous Pdiss (T= 85 °C)<br>(derate 9.6 mW/°C above 85 °C) | 0.8 W          |  |
| Thermal Resistance<br>(channel to ground paddle)              | 104 °C/W       |  |
| Storage Temperature                                           | -65 to +150 °C |  |
| Operating Temperature                                         | -40 to +85 °C  |  |



#### ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



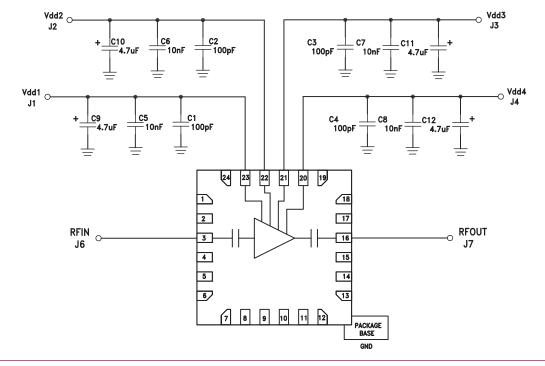
#### v02.0609



## GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 28 - 36 GHz

HMC566LP4E

### Typical Supply Current vs. Vdd


| Vdd (V) | ldd (mA) |
|---------|----------|
| +2.5    | 79       |
| +3.0    | 82       |
| +3.5    | 85       |

Note: Amplifier will operate over full voltage ranges shown above.

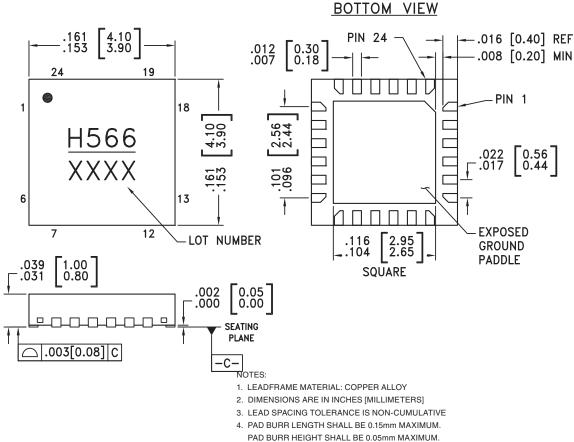
#### **Pin Descriptions**

| Pin Number                           | Function      | Description                                                                                                  | Interface Schematic |
|--------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------|---------------------|
| 1, 2, 4 - 7, 12 - 15,<br>17 - 19, 24 | GND           | This pins and exposed ground paddle must be connected to RF/DC ground.                                       |                     |
| 3                                    | RFIN          | This pin is AC coupled and matched to 50 Ohms.                                                               |                     |
| 8 - 11                               | N/C           | No Connection                                                                                                |                     |
| 16                                   | RFOUT         | This pin is AC coupled and matched to 50 Ohms.                                                               |                     |
| 23, 22, 21, 20                       | Vdd1, 2, 3, 4 | Power Supply Voltage for the amplifier. External bypass capacitors of 100 pF, 10 nF and 4.7 μF are required. | ⊖Vdd1,2,3,4<br>     |

#### **Application Circuit**



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




v02.0609



## GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 28 - 36 GHz

### **Outline Drawing**



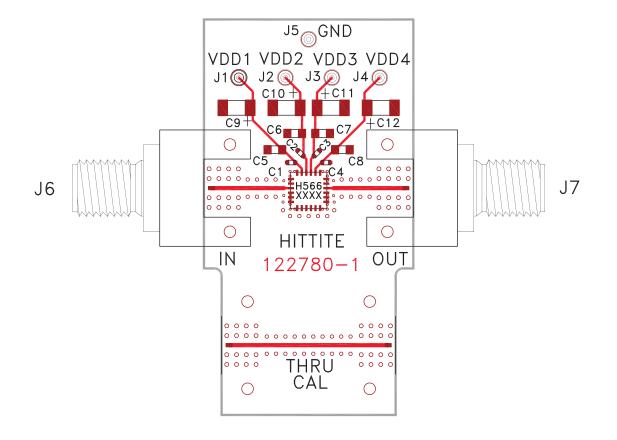
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND. 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN

#### Package Information

| Part Number |   | Package Body Material                             |                              | Package Marking <sup>[1]</sup> |  |
|-------------|---|---------------------------------------------------|------------------------------|--------------------------------|--|
| HMC566LP4   | F | OHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn <sup>[2]</sup> | <u>H566</u><br>XXXX            |  |

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



### GaAs pHEMT MMIC LOW NOISE AMPLIFIER, 28 - 36 GHz



#### **Evaluation PCB**



v02.0609

#### List of Materials for Evaluation PCB 122782 [1]

| Item     | Description                 |
|----------|-----------------------------|
| J1 - J5  | DC Pin                      |
| J6 - J7  | PCB Mount K Connector       |
| C1 - C4  | 100 pF Capacitor, 0402 Pkg. |
| C5 - C8  | 10 nF Capacitor, 0603 Pkg.  |
| C9 - C12 | 4.7 µF Capacitor, Tantalum  |
| U1       | HMC566LP4E                  |
| PCB [2]  | 122780 Evaluation PCB       |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25 FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.