MPC5746R

SPC5746R Microcontroller Data Sheet

Features

- This document provides electrical specifications, pin assignments, and package diagrams for the MPC5746R series of microcontroller units (MCUs).
- For functional characteristics, see the MPC5746R Microcontroller Reference Manual.

NXP reserves the right to change the production detail specifications as may be required to permit improvements in the design of its products.

Table of Contents

1 Introduction

The MPC5746R family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotivefocused products designed for flexibility to support a variety of applications. The advanced and cost-efficient host processor core of the MPC5746R automotive controller family complies with the Power Architecture embedded category. It operates at speeds as high as 200 MHz and offers high-performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems, and configuration code to assist with users' implementations. This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

Note

Within this document, V_{DD-HV} IO refers to supply pins V_{DD-HV} IO MAIN, $V_{\text{DD-HV}}$ to J_{TAG} , $V_{\text{DD-HV}}$ to Fec, and $V_{\text{DD-HV}}$ to MSC

Introduction

1.1 Block diagram

Figure 1. Core block diagram

Figure 2. Peripherals allocation

2 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

3 Absolute maximum ratings

Functional operating conditions are given in the DC electrical specifications. Absolute maximum voltages are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond listed maxima may affect device reliability or cause permanent damage to the device.

	Conditions ¹ Symbol Parameter		Value		Unit
			Min	Max	
Cycle	Lifetime power cycles			1000k	
$\mathsf{V}_{\mathsf{DD_LV}}$	1.2 V core supply voltage 2, 3, 4		-0.3	1.5	v
V _{DD_LV_BD}	Emulation module voltage ^{2, 3, 4}		-0.3	1.5	v
V _{DD} HV IO MAIN	I/O supply voltage ⁵		-0.3	6.0	v
V _{DD_HV_IO_JTAG}	Crystal oscillator and JTAG supply	Reference to V _{SS}	-0.3	6.0	V
V _{DD_HV_IO_FEC}	FEC supply voltage	Not using Ethernet Reference to V_{SS}	-0.3	6.0	\vee
$V_{DD_HV_IO_MSC}$	MSC supply voltage	Reference to V _{SS}	-0.3	6.0	V
V _{DD_HV_PMC}	Power Management Controller supply voltage ⁶		-0.3	6.0	V
V _{DD_HV_FLA}	Decoupling pin for flash regulator ⁶		-0.3		V
VDDSTBY	RAM standby supply voltage ⁶		-0.3	6.0	v
V _{SS_HV_ADV_SD}	S/D ADC ground voltage	Reference to V _{SS}	-0.3	0.3	v
V _{SS_HV_ADV_SAR}	SAR ADC ground voltage	Reference to V _{SS}	-0.3	0.3	v
V _{DD_HV_ADV_SAR}	SAR ADC supply voltage	Reference to V _{SS_HV_ADV_SAR}	-0.3	6.0	v
V _{DD_HV_ADV_SD}	S/D ADC supply voltage	Reference to V _{SS_HV_ADV_SD}	-0.3	6.0	v
V _{SS_HV_ADR_SD}	S/D ADC ground reference	Reference to V _{SS}	-0.3	0.3	v
V _{SS_HV_ADR_SAR}	SAR ADC ground reference	Reference to V _{SS}	-0.3	0.3	\vee
V _{DD_HV_ADR_SAR}	SAR ADC alternate reference	Reference to V _{SS_HV_ADR_SAR}	-0.3	6.0	v
V _{DD_HV_ADR_SD}	S/D ADC alternate reference	Reference to V _{SS_HV_ADR_SD}	-0.3	6.0	v
$V_{DD_LVV_BD}$ - V_{DD_LVV}	Emulation module supply differential to 1.2 V core supply		-0.3	1.5	v
$V_{SS} - V_{SS_HV_ADR_SAR}$	V _{SS_HV_ADR_SAR} differential voltage	$\overline{}$	-0.3	0.3	\vee
$V_{SS} - V_{SS}$ HV ADR SD	V _{SS_HV_ADR_SD} differential voltage		-0.3	0.3	V
$V_{SS} - V_{SS_HV_ADV_SAR}$	V _{SS_HV_ADV_SAR} differential voltage		-0.3	0.3	V
$V_{SS} - V_{SS_HV_ADV_SD}$	V _{SS HV ADV SD} differential voltage		-0.3	0.3	\vee
V_{IN}	I/O input voltage range ⁷		-0.3	6.0	v
		Relative to $V_{SS_HV_U}$ 8,9	-0.3	$\overline{}$	
		Relative to $V_{DD_HV_U}$ $^{8, 9}$		0.3	
I _{INJD}	Maximum DC injection current for digital pad	Per pin, applies to all digital pins	-5	5	mA

Table 1. Absolute maximum ratings

Symbol	Parameter	Conditions ¹	Value	Unit	
			Min	Max	
^I INJA	Maximum DC injection current for analog pad	Per pin, applies to all analog pins	-5	5	mA
I_{MAXSEG} ^{10, 11}	Maximum current per I/O segment		-120	120	mA
I_{STG}	Storage temperature range and non- operating times		-55	175	°C
STORAGE	Maximum storage time, assembled part programmed in ECU	No supply; storage temperature in range -40 °C to 60 °C		20	yrs
$\mathsf{T}_{\textsf{SDR}}$	Maximum solder temperature ¹²			260	°C
	Pb-free package				
MSL	Moisture sensitivity level ¹³			3	

Table 1. Absolute maximum ratings (continued)

- 1. Voltage is referenced to V_{SS} unless otherwise noted.
- 2. Allowed 1.45 1.5 V for 60 seconds cumulative time at maximum T $_{\rm J}$ = 150 °C, remaining time as defined in note -1 and note -1.
- 3. $\,$ Allowed 1.375 1.45 V for 10 hours cumulative time at maximum T $_{\rm J}$ = 150 °C, remaining time as defined in note -1.
- 4. 1.32 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at maximum T $_{\textrm{J}}$ = 150 °C.
- 5. Allowed 5.5 6.0 V for 10 hours cumulative time at maximum T_J = 150 °C, remaining time at or below 5.0 V +10%.
- 6. Allowed 3.6 4.5 V for 10 hours cumulative time at maximum T $_{\rm J}$ = 150 °C, remaining time at or below 3.3 V +10%. This is an internally regulated supply. Values given are for reference only.
- 7. The maximum input voltage on an I/O pin tracks with the associated I/P supply maximum. For the injection current condition on a pin, the voltage will be equal to the supply plus the voltage drop across the internal ESD diode from I/O pin to supply. The diode voltage varies greatly across process and temperature, but a value of 0.3V can be used for nominal calculations.
- 8. Relative value can be exceeded, if design measures are taken to ensure injection current limitation (parameters I_{INJD} and I_{INJA}).
- 9. V_{DD_HV_IO}/V_{SS_HV_IO} refers to supply pins and corresponding grounds: V_{DD_HV_IO_MAIN}, V_{DD_HV_IO_JTAG}, V_{DD_HV_IO_FEC}, V_{DD} HV IO MSC.
- 10. Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A V_{DD-HV} IO power segment is defined as one or more GPIO pins located between two V_{DD-HV} io supply pins.
- 11. The average current values given in the "I/O pad current specifications" section should be used to calculate total I/O segment current.
- 12. Solder profile per IPC/JEDEC J-STD-020D.
- 13. Moisture sensitivity per JEDEC test method A112.

4 Electromagnetic Compatibility (EMC)

EMC measurements to IC-level IEC standards are available from Freescale on request.

5 Electrostatic discharge (ESD)

The following table describes the ESD ratings of the device.

Operating conditions

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

Device failure is defined as: "If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature. Maximum DC parametrics variation within 10% of maximum specification."

1. This parameter tested in conformity with ANSI/ESD STM5.1-2007 Electrostatic Discharge Sensitivity Testing

2. This parameter tested in conformity with ANSI/ESD STM5.3-1990 Charged Device Model - Component Level

6 Operating conditions

The following table describes the operating conditions for the device, and for which all specifications in the data sheet are valid, except where explicitly noted.

The device operating conditions must not be exceeded in order to guarantee proper operation and reliability.

NOTE

All power supplies need to be powered up to ensure normal operation of the device.

	Conditions Parameter		Value			Unit
Symbol			Min	Typ	Max	
	Frequency					
$f_{\rm{SYS}}$	Device operating frequency ¹	T _J -40 °C to 150 °C			200	MHz
	Temperature					
$T_{\rm J}$	Operating temperature range - junction		-40.0		150.0	$^{\circ}C$
T_A (T_L to T_H)	Operating temperature range - ambient		-40.0		125.0	$^{\circ}C$
	Voltage					
V_{DD_LVV}	External core supply voltage ^{2, 3}	LVD/HVD enabled	1.2		1.32	\vee
		LVD/HVD disabled ^{4, 5, 6}	1.18		1.38	
V _{DD_HV_IO_MAIN}	I/O supply voltage 7		3.5		5.5	v

Table 3. Device operating conditions

Table continues on the next page...

Table 3. Device operating conditions (continued)

1. Maximum operating frequency is applicable to the computational cores and platform for the device.

2. Core voltage as measured on device pin to guarantee published silicon performance.

3. During power ramp, voltage measured on silicon might be lower. maximum performance is not guaranteed, but correct silicon operation is guaranteed. See power management and reset management for description.

- 4. Maximum core voltage is not permitted for entire product life. See absolute maximum rating.
- 5. When internal LVD/HVDs are disabled, external monitoring is required to guarantee device operation. Failure to monitor externally supply voltage may result in erroneous operation of the device.

Operating conditions

- 6. This LVD/HVD disabled supply voltage condition only applies after LVD/HVD are disabled by the application during the reset sequence, and the LVD/HVD are active until that point.
- 7. The pad are operative till 3.0V full performance. The IRC oscillator is supplied by this pin and it is setting the min voltage limit.
- 8. FEC will be used only in 3.3V mode. In 5V mode the segment is a general IO segment with the same characteristics of IO_MAIN.
- 9. MSC will be used only in 3.3V mode. In 5V mode the segment is a general IO segment with the same characteristics of IO_MAIN.
- 10. If XOSC is enabled via DCF_UTEST_Miscellaneous[XOSC_EN], V_{DD_HV_IO}_JTAG must be within the operating range before RESET pin is released.
- 11. JTAG will be used only in 3.3V mode. In 5V mode the segment is a general IO segment with the same characteristics of IO_MAIN.
- 12. V_{DDSTBY} supply must be present before and after power up/down of the device supplies and the ramp rate should be less than 33.3 kV/s.
- 13. RAM retention is not guaranteed below 1.3 V, but no effect on RAM operation for voltages below 1.3 V when V_{DD-LV} is above the minimum value.
- 14. For supply voltages between 3.6V and 4.5V there will be no guaranteed precision of ADC (accuracy/linearity). ADC will recover to a fully functional state when the voltage rises above 4.5V.
- 15. $V_{DDHVADVSD}$ must be higher or equal than the $V_{DD_HV_ADV_SAR}$ supply to guarantee full performance. It is recommended to connect the $V_{DD_HV_ADV_SD}$ to $V_{DD_HV_ADV_SAR}$ at board level.
- 16. Temperature Sensor and its associated Band-Gap reference are supplied by this pin. The temperature sensor performance is guaranteed only between 4.5 V and 5.5 V.
- 17. Full device lifetime without performance degradation.
- 18. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the absolute maximum ratings table for maximum input current for reliability requirements.
- 19. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current will be injected through the clamp diode to the supply rail. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature. For more information, see the device characterization report.
- 20. Sum of all controller pins (including both digital and analog) must not exceed 200 mA. A V_{DD-HV} io power segment is defined as one or more GPIO pins located between two $V_{DD_HV_U}$ supply pins.
- 21. The average current values given in the "I/O pad current specifications" section should be used to calculate total I/O segment current.

Table 4. Emulation (buddy) device operating conditions

7 DC electrical specifications

The following table describes the DC electrical specifications.

			Value			
Symbol	Parameter	Conditions	Min	Typ	Max	Unit
I_{DD_LVV}	Maximum operating current on the V _{DD LV}	MPC5746R/ MPC5745R			700	mA
	supply ¹	MPC5743R/ MPC5742R			610	
I _{DD_LV_PE}	Operating current on the V _{DD LV} supply for flash program/erase				40	mA
I _{DD_HV_PMC}	Operating current on the	Flash read			40	mA
	V _{DD HV} PMC Supply ²	Flash P/E			70	
		PMC only			35	
	Operating current on the	Flash read			10	mA
	V _{DD HV_PMC} supply (internal core reg bypassed)	Flash P/E			40	
IVRCCTRL	Core regulator DC current output on VRC_CTRL pin				25	mA
IDDSTBY_ON	32 KB RAM Standby Leakage Current	$\rm V_{\rm{DDSTBY}}$ @1.3 V to 5.9 V, $T_{\rm J}$ = 150 °C			575	μA
	(standby regulator on, RAM not operational) ^{3, 4, 5}	V_{DDSTBY} @ 1.3 V to 5.9 V, $T_A = 40 °C$			55	
		V_{DDSTBY} @ 1.3 V to 5.9 V, $T_A = 85 °C$			65	
IDDSTBY_REG	32 KB RAM Standby Regulator Current 6	V_{DDSTBY} @ 1.2 V to 5.9 V, Tj = 150 $^{\circ}$ C			50	μA
I DD_LV_BD	BD Debug/Emulation low	$T_{J} = 150 °C$			250	mA
	voltage supply operating current ⁷	$V_{DD LV BD} = 1.32$ V				
I _{DD_HV_IO_BD}	Debug/Emulation high voltage supply operating current (Aurora + JTAG/ LFAST)	$T_J = 150 °C$			130	mA
^I BG	Bandgap reference current consumption				600	μA
I DD_BD_STBY	BD Debug/Emulation low voltage supply standby current	$T_J = 150 °C$ $V_{DD_LV_BD} = 1.32$ v			120	mA
I VDDA	VDDA supply current			16	25	mA

Table 5. DC electrical specifications

^{1.} Value is derived from a typical application at 200MHz, Core 0 Data and Instruction Cache On, Core 1 in Lockstep mode, typical usage for SARADC, SDADC, DMA, eTPU, eMIOS, CAN, MSC, SPI, SENT, PIT, and Flash reads.

I/O pad specification

- 2. This value is considering the use of the internal core regulator with an external ballast with the minimum value of h_{FF} of 60.
- 3. Data is retained for full TB range of -40 °C to 125 °C. RAM supply switch to the standby regulator occurs when the V_{DDLV} supply falls below 0.95V.
- 4. V_{DDSTBY} may be supplied with a non-regulated power supply, but the absolute maximum voltage on V_{DDSTBY} given in the absolute maximum ratings table must be observed.
- 5. The maximum value for I_{DOSTBY} _{ON} is also valid when switching from the core supply to the standby supply, and when powering up the device and switching the RAM supply back to V_{DD-LV}
- 6. When the V_{DDSTBY} pin is powered, the standby RAM regulator current is present on the pin, regardless if the device is in standby mode or not. No current is present on the pin when V_{DDSTBY} pin is set to 0V, disabling the standby regulator.
- 7. Worst case usage (data trace, data overlay, full Aurora utilization).

8 I/O pad specification

The following table describes the different pad type configurations.

Note

Each I/O pin on the device supports specific drive configurations. See the signal description table in the device reference manual for the available drive configurations for each I/O pin.

8.1 Input pad specifications

Figure 3. I/O input DC electrical characteristics definition

^{1.} Supported input levels vary according to pad types. Pad type "pad_sr_hv" supports only the CMOS input level, while pad type "pad_isatww_st_hv" supports TTL and CMOS levels. Refer to the IO spreadsheet attached to the Reference Manual for the pad type of each pin.

I/O pad specification

- 2. TTL level input specifications apply to the digital inputs on the analog input pins, and not the GPIO pins on the device.
- 3. In a 1 ms period, assuming stable voltage and a temperature variation of ± 30 ŰC, VIL/VIH shift is within ± 50 mV. For SENT requirement, refer to Note in the "I/O pad current specifications" section.
- 4. For LFAST, microsecond bus, and LVDS input characteristics, refer to dedicated communication module chapters.

The following table provides the current specifications for the GPIO pad weak pull-up and pull-down.

Table 8. GPIO Pull-Up/Down DC electrical characteristics

1. Weak pull-up/down is enabled within tWK_PU = 1 µs after internal/external reset has been asserted. Output voltage will depend on the amount of capacitance connected to the pin.

Figure 4. Weak pull-up electrical characteristics definition

Analog input leakage and pull up/down information is located in the ADC input description section.

8.2 Output pad specifications

The following figure provides the description of output DC electrical characteristics.

Figure 5. I/O output DC electrical characteristics definition

Table continues on the next page...

Symbol	Parameter	Conditions			Value $1, 2$		Unit
				Min	Typ	Max	
		$MSCR[OERC] = 00$, $IOL = 6mA$					
		$3.0V < VDD_HV_U = 3.6V$				$0.2 *$	
		$MSCR[OERC] = 11$, $IOL = 24mA$				VDD_H V ^{IO}	
		$MSCR[OERC] = 10$, $IOL = 12mA$					
		$MSCR[OERC] = 01$, $IOL = 9mA$					
		$MSCR[OERC] = 00$, $IOL = 6mA$					
tR _F	GPIO pad output transition	$MSCR[OERC] = 11$	$CL = 25pF$			1.5	ns
time (rise/fall)			$CL = 50pF$			3	
		$MSCR[OERC] = 10$	$CL = 50pF$			6.5	
		$MSCR[OERC] = 01$	$CL = 50pF$			25	
		$MSCR[OERC] = 00$	$CL = 50pF$			40	
tPD	GPIO pad output propagation	$MSCR[OERC] = 11$	$CL = 25pF$			6	ns
	delay time		$CL = 50pF$			7.5	
		$MSCR[OERC] = 10$	$CL = 50pF$			11.5	
		$MSCR[OERC] = 01$	$CL = 50pF$			45	
		$MSCR[OERC] = 00$	$CL = 50pF$			75	
It _{SKEW_W} I	Difference between rise and fall time					10	$\%$

Table 9. GPIO pad output buffer electrical characteristics (continued)

1. All GPIO pad output specifications are valid for 3.0V < VDD_HV_IO < 5.5V, except where explicitly stated.

2. All values need to be confirmed during device validation.

8.3 I/O pad current specifications

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD_HV_IO/VSS_HV_IO supply pair.

The following tables provides I/O consumption figures.

Reset pad (PORST, RESET) electrical characteristics

Table 10. I/O current consumption at VDD_HV_IO = 3.6 V (continued)

Table 11. I/O current consumption at VDD_HV_IO = 5.5 V

Cell	VDD_HV_IO	Load (pF)	Period1 (ns)	MSCR[OERC]	Idde AVG (mA)	Idde RMS (mA)
	(V)					
pad_sr_hv	5.5	25	9	11	37	83
		50	10.2		42	89
		200	26		46	92
		25	10.5	10	25	53
		50	16		21	44
		200	44		26	49
		50	54	01	6	14
		200	80		15	35
		50	80	00	$\overline{4}$	9
		200	130		9	22

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{MAXSEG} value given in the table "Absolute maximum ratings".

In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain below the I_{MAXSEG} value given in the table "Device operating conditions".

Note

The MPC5746R I/O Signal Description and Input Multiplexing Tables are contained in a Microsoft Excel workbook file attached to the Reference Manual.

9 Reset pad (PORST, RESET) electrical characteristics

The device implements a dedicated bidirectional reset pin (PORST).

NOTE

PORST pin does not require active control. It is possible to implement an external pull-up to ensure correct reset exit sequence. Recommended value is 4.7 kohm.

PORST can optionally be connected to an external power-on supply circuitry.

No restrictions exist on reset signal slew rate apart from absolute maximum rating compliance.

Figure 6. Start-up reset requirements

The following figure describes device behavior depending on supply signal on PORST:

- 1. PORST low pulse amplitude is too low—it is filtered by input buffer hysteresis. Device remains in current state.
- 2. PORST low pulse duration is too short—it is filtered by a low pass filter. Device remains in current state.
- 3. PORST low pulse is generating a reset:
	- a) PORST low but initially filtered during at least W_{FRST} . Device remains initially in current state.
	- b) PORST potentially filtered until W_{NFRST} . Device state is unknown. It may either be reset or remains in current state depending on extra condition (temperature, voltage, device).
	- c) PORST asserted for longer than W_{NFRST} . Device is under reset.

Reset pad (PORST, RESET) electrical characteristics

Figure 7. Noise filtering on reset signal

Table continues on the next page...

Table 12. Reset electrical characteristics (continued)

1. An external 4.7 KOhm pull-up resistor is recommended to be used with the PORST and RESET pins for fast negation of the signals.

2. Strong pull-down is enabled during power up / phase0 on both pads but after that a weak pull-down is enabled on PORST and a weak pull-up is enabled on RESET.

10 Oscillator and FMPLL

Two on-chip PLLs, the peripheral clock and reference PLL (PLL0), and the frequency modulated system PLL (PLL1) generate the system and auxiliary clocks from the external oscillator.

Figure 8. PLL integration

1. PLL0IN clock retrieved directly from either internal RCOSC or external FXOSC clock. Input characteristics are granted when using internal RCOSC or external oscillator is used in functional mode.

2. V_{DD_L} noise due to application in the range $V_{DD_L} = 1.25V$ (+/-5%) with frequency below PLL bandwidth (40 KHz) will be filtered.

		Conditions		Value		
Symbol	Parameter		Min	Typ	Max	Unit
f _{PLL1IN}	PLL1 input clock ¹		38		78	MHz
Δ PLL _{1IN}	PLL1 input clock duty cycle		35		65	$\%$
^t PLL ₁ VCO	PLL1 VCO frequency		600		1250	MHz
TPLL1PHI0	PLL1 output clock PHI0		4.762		200	MHz
^t PLL1LOCK	PLL1 lock time				100	μs
^t PLL ₁ MOD	PLL1 modulation frequency				250	kHz
1δ PLL1MOD	PLL1 modulation depth (when enabled)	Center spread	0.25		\overline{c}	$\%$
		Down spread	0.5		4	$\frac{1}{6}$
Δ PLL1PHI0SPJ	PLL1_PHI0 single period peak to peak iitter	F _{PLL1PHI0} = 200 MHz, 6- sigma pk-pk			500 ²	ps
IPLL1	PLL1 consumption	FINE LOCK state			6	mA

Table 14. FMPLL1 electrical characteristics

1. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock. Input characteristics are granted when using internal PLL0 or external oscillator is used in functional mode.

2. 1.25V +/-5%, application noise below 40kHz at V_{DD-LV} pin - no frequency modulation

All oscillator specifications are valid for V_{DD-HV} to $JTAG = 3.0 V$ to 5.5 V.

Table 15. XOSC External Oscillator electrical specifications

Table continues on the next page...

Table 15. XOSC External Oscillator electrical specifications (continued)

- 1. The range is selectable by UTEST miscellaneous DCF clients XOSC_LF_EN and XOSC_EN_40MHZ.
- 2. This value is determined by the crystal manufacturer and board design.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load capacitor value.
- 5. This parameter is guaranteed by design rather than 100% tested.
- 6. See crystal manufacturer's specification for recommended load capacitor $(C₁)$ values. The external oscillator requires external load capacitors when operating from 8 MHz to 16 MHz. Account for on-chip stray capacitance (C_S _{EXTAL}/C_S_{XTAL}) and PCB capacitance when selecting a load capacitor value. When operating at 20 MHz/40 MHz, the integrated load capacitor value is selected via S/W to match the crystal manufacturer's specification, while accounting for on-chip and PCB capacitance. The capacitance on "EXTAL" and "XTAL" by internal capacitance array is controlled by the XOSC LOAD CAP SEL field of the UTEST Miscellaneous DCF client. See the DCF Records chapter of the Reference Manual.
- 7. Amplitude on the EXTAL pin after startup is determined by the ALC block, i.e., the Automatic Level Control Circuit. The function of the ALC is to provide high drive current during oscillator startup, but reduce current after oscillation in order to reduce power, distortion, and RFI, and to avoid overdriving the crystal. The operating point of the ALC is dependent on the crystal value and loading conditions.
- 8. IXTAL is the oscillator bias current out on the XTAL pin with both EXTAL and XTAL pins grounded. This is the maximum current during startup of the oscillator. The current after oscillation is typically in the 2-3 mA range and is dependant on the load and series resistance of the crystal. Test circuit is shown in the figure below.

Table 16. Selectable load capacitance

Table continues on the next page...

Table 16. Selectable load capacitance (continued)

- 1. Values are determined from simulation across process corners and voltage and temperature variation. Capacitance values vary ±12% across process, 0.25% across voltage, and no variation across temperature.
- 2. Values in this table do not include the internal stray capacitances C_{xtal}/C_{extal} .

Figure 9. Test circuit

Table 17. Internal RC Oscillator electrical specifications

Table continues on the next page...

Symbol	Parameter	Conditions	Value			Unit
			Min	Typ	Max	
AVDD ₅	Current consumption on 5 V power supply	∣After T _{start_T}			400	μA
IDVDD12	Current consumption on 1.2 V power supply	∣After T _{start} ⊤			175	μA

Table 17. Internal RC Oscillator electrical specifications (continued)

11 ADC modules

This device's analog sub-system contains a total of four independent 12-bit Successive Approximation (SAR) ADCs and three independent 16-bit Sigma-Delta (S/D) ADCs.

11.1 ADC input description

The following table provides the current specifications for the analog input pad weak pull-up and pull-down, and the resistance for the analog input bias/diagnostic pull up/ down.

Symbol	Parameter	Conditions		Value		Unit
			Min	Typ	Max	
ILK_AD	Analog input leakage	Input channel off	-200		200	nA
current		4.5 V < V _{DD HV IO} < 5.5V				
		$V_{SS_HV_ADV_SAR}$ < V_{IN} < V _{DD_HV_ADV_SAR}				
		$V_{SS_HV_ADV_SD}$ < V_{IN} < $V_{DD_HV_ADV_SD}$				
RPUPD	Analog input bias/	$200K\Omega$	130	200	280	KΩ
	diagnostic pull up/down resistance	3.0 V < V _{DD HV} _{IO} < 5.5V				
		$100K\Omega$	65	100	140	
		$3.0V < V_{DD_HV_U} < 5.5V$				
		$5K\Omega$	1.4	5	8.8	
		3.0 V < V _{DD_HV_IO} < 5.5V				
APUPD	RPUPD pull up/down resistance mismatch	$3.0V < V_{DD HV}$ = 5.5V			5	$\%$

Table 18. Analog Input Leakage and Pull-Up/Down DC electrical characteristics

11.2 SAR ADC

The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

Figure 10. ADC characteristics and error definitions

11.2.1 Input equivalent circuit and ADC conversion characteristics

Figure 11. Input equivalent circuit

Table continues on the next page...

Symbol	Parameter	Conditions ¹	Min	Typ	Max	Unit
SNR	Signal-to-noise ratio	V_{REF} = 3.3 V, Fin ≤ 125 kHz	66			dB
SNR	Signal-to-noise ratio	$V_{\text{BFF}} = 5.0 \text{ V}, \text{Fin} \leq 125$ kHz	68			dB
THD	Total harmonic distortion	@ 125 kHz	65	70		dB
ENOB ⁸	Effective number of bits	$Fin < 125$ kHz	10.5			bits
SINAD	Signal-to-noise and distortion	$Fin < 125$ kHz	$(6.02*ENOB)+1.76$			dB
TUE _{IS1WINJ}	Total unadjusted error for IS1WINJ	Without current injection	-6		6	LSB
TUE _{IS1WWINJ}	Total unadjusted error for IS1WWINJ	Without current injection	-6		6	LSB
I DD VDDA	Maximum operating current on VDDA	$Ti = 150C$ VDD LV COR $= 1.32 V$		3.7	5	mA
I DD VDDR	Maximum operating current on VREF	$Tj = 150C VDD_LV_COR$ $= 1.32 V$		150	600	μA
$V_{BG REF'}$ ⁹	Band gap reference for self test	Trimmed, INPSAMP=0xFF	1.164	-10	1.236	\vee

Table 19. ADC conversion characteristics (continued)

- 1. V_{DD_HV_IO} = 3.3 V -5%,+10%, T_J = –40 to +150 °C, unless otherwise specified, and analog input voltage from V_{AGND} to **VARFF**
- 2. SAR ADC performance is not guaranteed when IRC is used as clock source for PLL0 to generate SAR ADC clock.
- 3. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
- 4. During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{sample} depend on programming.
- 5. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.
- 6. See the above figure.
- 7. Subject to change with additional -40°C characterization on final silicon version.
- 8. Below 4.5V, ENOB 9.5b, THD- 60dB at Fin= 125KHz
- 9. Band gap reference only applies to Cut 2 silicon.
- 10. Minimum and maximum values are typical +/-3%

NOTE

- For spec complaint operation, do not expose clock sources, including crystal oscillator, IRC, PLL0, and PLL1 on the CLKOUT pads while the SAR ADC is converting.
- The ADC performance specifications are not guaranteed if two or more ADCs simultaneously sample the same shared channel.

11.3 S/D ADC

The SD ADCs are Sigma Delta 16-bit analog-to-digital converters with 333 Ksps maximum output rate.

ADC modules

Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

Symbol	Parameter	Conditions	Value		Unit	
			Min	Typ	Max	
V_{IN}	ADC input signal	$\overline{}$	$\mathbf 0$		$V_{DD_HV_-}$ ADV_SD	V
V _{IN_PK2PK} ¹	Input range peak to	Single ended.				V
	peak	$V_{INM} = V_{SS_HV_ADR_SD}$		V _{DD_HV_ADR_SD} /GAIN		
	V_{IN} PK2PK = V_{INP}^2 – V_{INM} , 3	Single ended.				
		$V_{INM} = 0.5*V_{DD_HV_ADR_SD}$		± 0.5 [*] $V_{DD_HV_ADR_SD}$		
		$GAIN = 1$				
		Single ended.				
		$V_{INM} = 0.5*V_{DD_HV}\text{ADR}_SD$		$\pm V_{DD_HV_{ADR_SD}}/GAIN$		
		$GAIN = 2,4,8,16$				
		Differential				
		$0 < V_{IN} < V_{DD_HV_U_0_MAN}$		$\pm V_{DD}$ HV ADR SD/GAIN		
f _{ADCD_M}	S/D clock frequency	$T_J < 150 °C$	$\overline{4}$	14.4	16	MHz
$f_{\text{ADCD_S}}$	Conversion rate	$T_J < 150 °C$			333	ksps
	Oversampling ratio	Internal modulator	24		256	
RESOLUTION	S/D register resolution	2's complement notation	16 ⁴		bit	
GAIN	ADC gain	Defined through ADC_SD[PGA] register. Only integer power of 2 are valid gain.	$\mathbf{1}$		16	
$ \delta_{GAIN} $	Absolute value of the ADC gain error ⁵	Before calibration (applies to gain settings $=1$)			1	$\%$
		After calibration ⁶			0.1	$\%$
		$\Delta V_{DD_HV_ADR_SD}$ < 5%				
		$\Delta V_{DD_HV_ADV_SD} < 10\%$				
		$T_J < 50 °C$				
		After calibration ⁶			0.2	$\%$
		$\Delta V_{DD_HV_ADR_SD}$ < 5%				
		$\Delta V_{DD_HV_{ADV_SD}} < 10\%$				
		$T_J < 150 °C$				
VOFFSET	Conversion offset	Before calibration		$10*$	20	mV
		(applies to all gain settings -1 , 2, 4, 8, 16)		$(1+1)$ gain)		
		After calibration ⁶	$\overline{}$		5	mV
$SNRDIFF150$, 7	Signal to noise ratio in	$4.5 < V_{DD}$ HV ADV SD $< 5.5^7$	78			dB
	differential mode 150 ksps output rate	$V_{DD_HV_ADR_D} = V_{DD_HV_ADV_D}$				

Table 20. SDn ADC electrical specification

Table 20. SDn ADC electrical specification (continued)

ADC modules

Table 20. SDn ADC electrical specification (continued)

Table 20. SDn ADC electrical specification (continued)

ADC modules

Table 20. SDn ADC electrical specification (continued)

Table 20. SDn ADC electrical specification (continued)

ADC modules

Table 20. SDn ADC electrical specification (continued)

Table 20. SDn ADC electrical specification (continued)

Table continues on the next page...

ADC modules

Table 20. SDn ADC electrical specification (continued)

Table continues on the next page...

Table 20. SDn ADC electrical specification (continued)

- 1. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the signal will only be 'clipped'.
- 2. VINP is the input voltage applied to the positive terminal of the SD ADC.
- 3. VINM is the input voltage applied to the negative terminal of the SD ADC.
- 4. For Gain=16, SDADC Resolution is 15 bit.
- 5. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device.
- 6. Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5*V_{DD} HV ADR SD for differential "differential mode" and single ended mode with negative input=0.5*V_{DD} HV ADR SD ". Offset Calibration should be done with respect to 0 for "single ended mode with negative input=0". Both Offset and Gain Calibration is guaranteed for +/-5% variation of $V_{DD_HV_ADR_SD}$, +/-10% variation of $V_{DD_HV_ADV_SD}$, +/-50 C temperature variation.
- 7. S/D ADC is functional in the range 3.6V < V_{DD} $_{HV}$ ADV sp < 4.5V and 3.0V < V_{DD} $_{HV}$ ADR sp < 4.5 V, SNR paramter degrades by 9 dB.
- 8. Input impedance in differential mode $Z_{\text{IN}} = Z_{\text{DIFF}}$
- 9. Input impedance given at $f_{ADCD-M} = 16$ MHz. Impedance is inversely proportional to SDADC clock frequency. Z_{DIFF} $(f_{ADCD_M}) = (16 \text{ MHz} / f_{ADCD_M}) \times Z_{DIFF}$, Z_{CM} , $(f_{ADCD_M}) = (16 \text{ MHz} / f_{ADCD_M}) \times Z_{CM}$.
- 10. Input impedance in single-ended mode $Z_{\text{IN}} = (2 \times Z_{\text{DIFF}} \times Z_{\text{CM}}) / (Z_{\text{DIFF}} + Z_{\text{CM}})$
- 11. V_{INTCM} is the Common Mode input reference voltage for the SDADC. It has a nominal value of $(V_{RH-SD} V_{RL-SD}) / 2$.
- 12. The $\pm 1\%$ passband ripple specification is equivalent to 20 $*$ log10 (0.99) = 0.873 dB.
- 13. Propagation of the information from the pin to the register CDR[CDATA] and flags SFR[DFEF], SFR[DFFF] is given by the different modules that need to be crossed: delta/sigma filters, high pass filter, fifo module, clock domain synchronizers. The time elapsed between data availability at pin and internal S/D module registers is given by the following formula: REGISTER LATENCY = tLATENCY + 0.5/fADCD_S + 2 (\sim +1)/fADCD_M + 2(\sim +1)fPBRIDGEx_CLK where fADCD_S is the frequency of the sampling clock, fADCD_M is the frequency of the modulator, and fPBRIDGEx_CLK is the frequency of the peripheral bridge clock feeds to the ADC S/D module. The (~+1) symbol refers to the number of clock cycles uncertainty (from 0 to 1 clock cycle) to be added due to resynchronization of the signal during clock domain crossing. Some further latency may be added by the target module (core, DMA, interrupt) controller to process the data received from the ADC S/D module.
- 14. This capacitance does not include pin capacitance, that can be considered together with external capacitance, before sampling switch.

12 Temperature sensor

The following table describes the temperature sensor electrical characteristics.

LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics

Symbol	Parameter	Conditions		Unit		
			Min	Typ	Max	
	Junction temperature monitoring range		-40		150	$^{\circ}$ C
$\mathsf{T}_{\mathsf{SENS}}$	Sensitivity			5.18		mV/°C
$\mathsf{T}_{\mathsf{ACC}}$	Accuracy		$\overline{}$			$^{\circ}$ C

Table 21. Temperature sensor electrical characteristics

13 LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics

The LFAST pad electrical characteristics apply to both the LFAST and high-speed debug serial interfaces on the device. The same LVDS pad is used for the Microsecond Channel (MSC) and DSPI LVDS interfaces, with different characteristics given in the following tables.

13.1 LFAST interface timing diagrams

LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics

Figure 12. LFAST timing definition

LVDS fast asynchronous serial transmission (LFAST) pad electrical characteristics

Figure 14. Rise/fall time

13.2 LFAST and MSC /DSPI LVDS interface electrical characteristics

The following table contains the electrical characteristics for the LFAST interface.

The LVDS pad electrical characteristics in this table apply to both the LFAST and Highspeed Debug (HSD) LVDS pad, and the MSC/DSPI LVDS pad except where noted in the conditions.

All LVDS pad electrical characteristics are valid from -40 °C to 150 °C.

Symbol	Parameter	Conditions		Value					
			Min	Typ	Max	Unit			
t _{PD2NM_TX}	Transmitter startup time (power down to normal mode) ¹			0.4	0.55	μs			
t _{SM2NM_TX}	Transmitter startup time (sleep mode to normal mode) ²	Not applicable to the MSC/ DSPI LVDS pad		0.2	0.5	μs			
t _{PD2NM} RX	Receiver startup time (power down to normal mode) ³			20	40	ns			
t _{PD2SM} RX	Receiver startup time (power down to sleep mode) 4	Not applicable to the MSC/ DSPI LVDS pad		20	50	ns			
ILVDS_BIAS	LVDS bias current consumption	Tx or Rx enabled		$\overline{}$	0.95	mA			
TRANSMISSION LINE CHARACTERISTICS (PCB Track)									
Z_0	Transmission line characteristic impedance		47.5	50	52.5	Ω			
Z_{DIFF}	Transmission line differential impedance		95	100	105	Ω			
		RECEIVER							
V _{ICOM}	Common mode voltage		0.15^{5}	$\overline{}$	1.6 ⁶	\vee			
$ \Delta_{VI} $	Differential input voltage		100			mV			
V_{HYS}	Input hysteresis		25			mV			
R_{IN}	Terminating resistance	$V_{DD_HV_IO}$ = 5.0 V ± 10%	80	100	120	Ω			
		$V_{DD_HV_IO} = 3.3 V \pm 10\%$	80	115	150	Ω			
C_{IN}	Differential input capacitance ⁷			3.5	6.0	pF			
LVDS RX	Receiver DC current consumption	Enabled			0.5	mA			

Table 22. LVDS pad startup and receiver electrical characteristics

- 1. Total transmitter startup time from power down to normal mode is t_{STRT_BIAS} + t_{PD2NM_TX} + 2 peripheral bridge clock periods. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance values.
- 2. Total transmitter startup time from sleep mode to normal mode is t_{SM2NM_TX} + 2 peripheral bridge clock periods. Bias block remains enabled in sleep mode. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.
- 3. Total receiver startup time from power down to normal mode is $t_{\text{STRT_BIAS}} + t_{\text{PD2NM_RX}} + 2$ peripheral bridge clock periods.
- 4. Total receiver startup time from power down to sleep mode is $t_{PD2SM-RX} + 2$ peripheral bridge clock periods. Bias block remains enabled in sleep mode.
- 5. Absolute min = 0.15 V (285 mV/2) = 0 V
- 6. Absolute max = $1.6 V + (285 mV/2) = 1.743 V$
- 7. Total internal capacitance including receiver and termination, co-bonded GPIO pads, and package contributions.

Table 23. LFAST transmitter electrical characteristics

Table continues on the next page...

Symbol	Parameter	Conditions		Unit		
			Min	Typ	Max	
C_{L}	External lumped differential load capacitance ¹	$V_{DD HV IO}$ = 4.5 V			10.0	pF
		$V_{DD HV IO}$ = 3.0 V			8.5	
ILVDS TX	Transmitter DC current consumption	Enabled			3.2	mΑ

Table 23. LFAST transmitter electrical characteristics (continued)

1. Valid for maximum data rate f_{DATA} . Value given is the capacitance on each terminal of the differential pair, as shown in the figure below.

2. Valid for maximum external load C_1 .

3. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance values.

4. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.

The MSC and DSPI LVDS pad electrical characteristics are based on the application circuit and typical worst case internal capacitance values given in Figure 14.

All MSC and DSPI LVDS pad electrical characteristics are valid from -40 °C to 150 °C.

1. Valid for maximum data rate f_{DATA} . Value given is the capacitance on each terminal of the differential pair, as shown in the figure below.

2. Valid for maximum external load C_1 .

3. The LFAST and High-Speed Debug LFAST pad electrical characteristics are based on worst case internal capacitance values.

4. All LFAST and High-Speed Debug LVDS pad electrical characteristics are valid from -40 °C to 150 °C.

NOTE

For optimum LVDS performance, it is recommended to set the neighbouring GPIO pads to use Weak Drive.

Figure 15. LVDS pad external load diagram

14 LFAST PLL electrical characteristics

The following table contains the electrical characteristics for the LFAST PLL.

The specifications in this table apply to both the interprocessor bus and debug LFAST interfaces.

	Parameter	Conditions		Value		Unit
Symbol			Min	Nominal	Max	
^t RF REF	PLL reference clock frequency		10		26	MHz
ERR_{REF}	PLL reference clock frequency error		-1			$\%$
D_{CREF}	PLL reference clock duty cycle		45		55	$\%$
PN	Integrated phase noise (single side band)	f_{RF} $_{REF}$ = 20 MHz			-58	dBc
		f_{RF_REF} = 10 MHz			-64	
f_{VCO}	PLL VCO frequency			6401		MHz
t _{LOCK}	PLL phase lock ²				40	μs
Δ PER _{REF}	Input reference clock single period jitter	Single period,			300	ps
	(peak to peak)	f_{RF_REF} = 10 MHz				

Table 25. LFAST PLL electrical characteristics

Table continues on the next page...

Aurora LVDS electrical characteristics

Table 25. LFAST PLL electrical characteristics (continued)

- 1. The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO frequency is 624 MHz.
- 2. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral bridge clock that is connected to the PLL on the device.
- 3. Measured at the transmitter output across a 100 Ohm termination resistor on a device evaluation board. Refer to the figure below.

Figure 16. LFAST output 'eye' diagram

15 Aurora LVDS electrical characteristics

The following table describes the Aurora LVDS electrical characteristics.

All Aurora electrical characteristics are valid from -40 °C to 150 °C.

All specifications valid for maximum transmit data rate F_{TX} .

Power management PMC POR LVD sequencing

Table 26. Aurora LVDS electrical characteristics

1. All specifications valid for maximum transmit data rate F_{TX} .

2. The minimum value of 400 mV is only valid for differential resistance (R_{V_L}) = 99 ohm to 101 ohm. The differential output voltage swing tracks with the value of R_{V-L} .

3. Transimission line loss maximum value is specified for the maximum drive level of the Aurora transmit pad.

Power management PMC POR LVD sequencing 16

16.1 Power management electrical characteristics

The power management module monitors the different power supplies. It also generates the internal supplies that are required for correct device functionality. The power management is supplied by the $V_{DD-HV-PMC}$ supply.

16.1.1 Recommended power transistors

The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON SemiconductorTM NJD2873. The collector of the external transistor is preferably connected to the same voltage supply source as the $V_{DD-HV-PMC}$ pin.

The following table describes the characteristics of the power transistors.

Symbol	Parameter	Value	Unit
h_{FE}	DC current gain (Beta)	60-550	
P_D	Absolute minimum power dissipation	1.60	w
CMaxDC	Maximum DC collector current	2.0	A
VCE _{SAT}	Collector to emitter saturation voltage	300	mV
V_{BE}	Base to emitter voltage	0.95	
V_C	Minimum voltage at transistor collector	2.5	

Table 27. Recommended operating characteristics

16.1.2 Power management integration

In order to ensure correct functionality of the device, it is recommended to follow the integration scheme shown below.

Power management PMC POR LVD sequencing

Figure 17. Recommended supply pin circuits

The following table describes the supply stability capacitances required on the device for proper operation.

	Parameter	Conditions		Unit		
Symbol			Min	Typ	Max	
C_{LV}	Minimum V _{DD LV} external bulk capacitance [,] 2, 3		4.7			μF
$C_{\text{HV_PMC}}$	Minimum V _{DD HV} _{PMC} external bulk capacitance 2, 4		4.7			μF
$\mathrm{C_{HV_IO}}$	Minimum VDD_HV_IO external capacitance ²		4.7			μF
$\mathrm{C_{HV_FLA}}$	Minimum V _{DD_HV_FLA} external capacitance ^{, 5}		2.0			μF
$C_{HV_ADC_SA}$ R	Minimum V _{DD_HV_ADV_SAR} external capacitance ^{, 6}		10			μF

Table 28. Device power supply integration

Table continues on the next page...

Power management PMC POR LVD sequencing

- 1. See the above figure for capacitor integration.
- 2. Recommended X7R or X5R ceramic low ESR capacitors, ±15% variation over process, voltage, temperature, and aging.
- 3. Each V_{DDLV} pin requires both a 47nF and 0.01µF capacitor for high-frequency bypass and EMC requirements. Remaining capacitance to meet minimum CLV requirement should be placed near the emitter of NPN ballast (if using internal regulation mode), or it should be evenly distributed across VDD_LV pins (if using external regulation mode).
- 4. Each $V_{DD-HV-PMC}$ pin requires both a 47nF and 0.01µF capacitor for high-frequency bypass and EMC requirements.
- 5. The recommended flash regulator composition capacitor is 1.5µF typical X7R or X5R, with -50% and +35% as min and max. This puts the min cap at 0.75 µF.
- 6. For noise filtering it is recommended to add high frequency bypass capacitors of three each 0.1 µF and three each 1nF between V_{DD}_{HV}_{ADV} S_{AR} and V_{SS}_{HV}_{ADV} S_{AR}. These capacitors need to be placed very close to the MCU pins/balls to have minimum PCB routing between pin/ball and the capacitors.
- 7. For noise filtering it is recommended to add a high frequency bypass capacitance of 0.1 μ F between V_{DD}_{HV} ADV sp and V_{SS} HV ADV SD.

16.1.3 Regulator example for the NJD2873 transistor

Figure 18. Regulator example

16.1.4 Regulator example for the 2SCR574d transistor

16.1.5 Device voltage monitoring

The LVD/HVDs for the device and their levels are given in the following table. Voltage monitoring threshold definition is provided in the following figure.

Figure 20. Voltage monitor threshold definition

For V_{DD-LV} levels, a maximum of 30 mV IR drop is incurred from the pin to all sinks on the die. For other LVD, the IR drop is estimated by multiplying the supply current by 0.5 ohm.

LVD is released after $t_{VDRELEASE}$ temporization when upper threshold is crossed, LVD is asserted $t_{VDASSERT}$ after detection when lower threshold is crossed.

HVD is released after t_{VDRELEASE} temporization when lower threshold is crossed, HVD is asserted $t_{VDASSERT}$ after detection when upper threshold is crossed.

				Configuration		Value			
Symbol	Parameter	Conditions		ĸ Opt.	Trim Mas Pow Up	Min Typ		Max I	Unit
	POR085_c ¹ LV internal supply power on	Rising voltage (power up)	N/A	No	Enab	870	920	970	mV
	reset	Falling voltage (power down)				850	900	950	

Table 29. Voltage monitor electrical characteristics

Table continues on the next page...

				Configuration			Value			
Symbol Parameter		Conditions	Trim bits	Mas k Opt.	Pow . Up	Min	Typ	Max	Unit	
	POR098_c LV internal supply power on	Rising voltage (power up)	N/A	No	Enab	960	1010	1060	mV	
	reset	Falling voltage (power down)				940	990	1040		
	$LVD_core_ LV$ internal ² supply low voltage	Rising voltage (trimmed)	6bit	No	Enab	1146	1169	1193	mV	
hot	monitoring	Falling voltage (trimmed)				1146	1169	1193		
$LVD_core_$	LV external ³ supply low voltage	Rising voltage	6bit	Yes	Disa	1161	1185	1208	mV	
cold	monitoring	Falling voltage			b.	1161	1185	1208		
HVD_core	LV internal cold supply high	Rising voltage	6bit	Yes	Disa	1353	1395	1438	mV	
	voltage monitoring	Falling voltage			b.	1343	1385	1438		
LVD_HV	HV internal supply low voltage	Rising voltage (trimmed)	6bit	No	Enab	3300	3400	3500	mV	
	monitoring	Falling voltage (trimmed)				3270	3370	3470		
HVD_HV	HV internal supply high voltage	Rising voltage	6bit	Yes		Disa	5530	5700	5870	mV
	monitoring	Falling voltage			b.	5500	5670	5840		
LVD_IO	Main IO and RC oscillator	Rising voltage (trimmed)	6bit	No	Enab	3300	3400	3500	mV	
	supply voltage monitoring	Falling voltage (trimmed)				3270	3370	3470		
LVD_SAR	SAR ADC supply low voltage	Rising voltage	6bit	Yes	Disa	2820	2910	3000	mV	
monitoring		Falling voltage			b.	2790	2880	2970		
t _{VDASSERT}	Voltage detector threshold crossing assertion					0.1		2.0	μs	
t _{VDRELEASE}	Voltage detector threshold crossing de-assertion					5		20	μs	

Table 29. Voltage monitor electrical characteristics (continued)

1. POR085_c and POR096_c threshold are untrimmed value, before the completion of the power-up sequence. All other LVD/HVD thresholds are provided after trimming.

2. LV internal supply levels are measured on device internal supply grid after internal voltage drop.

3. LV external supply levels are measured on the die size of the package bond wire after package voltage drop.

16.1.6 Power up/down sequencing

The following shows the constraints and relationships for the different power supplies.

		VDD STDBY=0 VDD LV=0 VDD HV PMC=0 VDD HV IO MAIN=0 VDD HV IO JTAG=0	VDD HV IO FEC=0	VDD HV IO MSC=0 VDD HV ADR SD=0		VDD HV ADV SD=0 VDD HV ADR SAR=0	VDD HV ADV SARE0
VDD_STDBY							
VDD_LV							
VDD_HV_PMC							
VDD HV IO MAIN							
VDD HV IO JTAG							
VDD_HV_IO_FEC							
VDD HV IO MSC							
VDD HV ADR SD					Amps		
VDD HV ADV SD							
VDD HV ADR SAR							Amps
VDD HV ADV SAR						2mA	

Figure 21. Device supply relation during power-up/power-down sequence

Flash memory specifications

Each column indicates that the corresponding supply is 0 and the other supplies are UP. For example, the "Amps" cell in the " $V_{DD-HVADVSD}=0$ " column shows that when V_{DDHV} ADR_{SD} supply is 0 and all other supplies are UP, this supply has a current in Amp flowing into V_{DDHV} ADR SD.

Flash memory specifications 17

17.1 Flash memory program and erase specifications NOTE

All timing, voltage, and current numbers specified in this section are defined for a single embedded flash memory within an SoC, and represent average currents for given supplies and operations.

Table 30 shows the estimated Program/Erase times.

Symbol	Characteristic ¹	Type ²	Factory Programming ^{3, 4}		Field Update	Unit		
			Initial Max	Initial Max, Full Temp	Typical End of Life ⁵	Lifetime Max ⁶		
			20°C \leq T _A ≤30 $^{\circ}$ C	-40° C \leq T _J ≤150 $^{\circ}$ C	-40 $^{\circ}$ C \leq T _J ≤150 $^{\circ}$ C	≤ 1,000 cycles	$\leq 250,000$ cycles	
t _{dwpgm}	Doubleword (64 bits) program time	43	100	150	55	500		μs
t _{ppgm}	Page (256 bits) program time	73	200	300	108	500		μs
t _{qppgm}	Quad-page (1024 bits) program time	268	800	1,200	396	2,000		µs
\vert t _{16kers}	16 KB Block erase time	168	290	320	250	1,000		ms
$ t_{16kpgm} $	16 KB Block program time	34	45	50	40	1,000		l ms
t_{32kers}	32 KB Block erase time	217	360	390	310	1,200		ms
t _{32kpgm}	32 KB Block program time	69	100	110	90	1,200		ms
t_{64kers}	64 KB Block erase time	315	490	590	420	1,600		ms
t _{64kpgm}	64 KB Block program time	138	180	210	170	1,600		l ms
\vert t $_{256$ kers	256 KB Block erase time	884	1,520	2,030	1,080	4,000	—	l ms
t _{256kpgm}	256 KB Block program time	552	720	880	650	4,000		ms

Table 30. Flash memory program and erase specifications

1. Program times are actual hardware programming times and do not include software overhead. Block program times assume quad-page programming.

2. Typical program and erase times represent the median performance and assume nominal supply values and operation at 25 °C. Typical program and erase times may be used for throughput calculations.

- 3. Conditions: \leq 150 cycles, nominal voltage.
- 4. Plant Programing times provide guidance for timeout limits used in the factory.

- 5. Typical End of Life program and erase times represent the median performance and assume nominal supply values. Typical End of Life program and erase values may be used for throughput calculations.
- 6. Conditions: -40°C \leq T_J \leq 150°C, full spec voltage.

17.2 Flash memory Array Integrity and Margin Read specifications

Symbol Characteristic Min Typical Max¹ Units 2 t_{ai16ksea} Array Integrity time for sequential sequence on 16 KB block. \vert – \vert – \vert 512 x Tperiod x Nread t_{ai32ksen} Array Integrity time for sequential sequence on 32 KB block. \vert – \vert – \vert 1024 x Tperiod x Nread t_{ai64kseq} Array Integrity time for sequential sequence on 64 KB block. $-$ 2048 x Tperiod x Nread tai256kseq Array Integrity time for sequential sequence on 256 KB block. $\vert - \vert = \vert$ = 8192 x Tperiod x Nread t_{mr16ksea} | Margin Read time for sequential sequence on 16 KB block. \vert 73.81 | - | 110.7 | μs t_{mr32kseq} | Margin Read time for sequential sequence on 32 KB block. | 128.43 | $-$ | 192.6 | µs t_{mfd4ksea} Margin Read time for sequential sequence on 64 KB block. \vert 237.65 \vert – \vert 356.5 \vert µs $t_{\text{mr256kseq}}$ Margin Read time for sequential sequence on 256 KB block. $\begin{array}{|l|}\n893.01 & \text{---} & 1,339.5\n\end{array}$ µs

Table 31. Flash memory Array Integrity and Margin Read specifications

- 1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires 6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the address pipeline set to 2, Nread would equal 4 (or 6 - 2).)
- 2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the equation, the results of the equation are also unit accurate.

17.3 Flash memory module life specifications

Table 32. Flash memory module life specifications

Table continues on the next page...

Symbol	Characteristic	Conditions	Min	Typical	Units
		Blocks with 100,000 P/E cycles.	20		Years
		Blocks with 250,000 P/E cvcles.	10		Years

Table 32. Flash memory module life specifications (continued)

1. Program and erase supported across standard temperature specs.

2. Program and erase supported across standard temperature specs.

17.4 Data retention vs program/erase cycles

Graphically, Data Retention versus Program/Erase Cycles can be represented by the following figure. The spec window represents qualified limits. The extrapolated dotted line demonstrates technology capability, however is beyond the qualification limits.

17.5 Flash memory AC timing specifications

Table 33. Flash memory AC timing specifications

17.6 Flash read wait state and address pipeline control settings

Table 34 describes the recommended RWSC and APC settings at various operating frequencies based on specified intrinsic flash access times of the C55FMC array at 150 $\rm ^{\circ}C.$

Operating Frequency f _{SYS}	RWSC	APC	Flash read latency on mini- cache miss (# of f_{SYS} clock periods)	Flash read latency on mini- cache hit (# of f_{SYS} clock periods)
30 MHz				
100 MHz	っ			
133 MHz	з		6	
167 MHz				
200 MHz	5			

Table 34. Flash Read Wait State and Address Pipeline Control Guidelines

18 AC specifications

18.1 Debug and calibration interface timing

18.1.1 JTAG interface timing

These specifications apply to JTAG boundary scan only. See [Table 36](#page-60-0) for functional specifications.

#	Symbol	Characteristic	Value		Unit
			Min	Max	
	t _{JCYC}	TCK cycle time	100		ns
$\overline{2}$	t_{JDC}	TCK clock pulse width	40	60	ns
3	T TCKRISE	TCK rise and fall times		3	ns
$\overline{4}$	t_{TMSS} , t_{TDIS}	TMS, TDI data setup time	5		ns
5	t_{TMSH} , t_{TDH}	TMS, TDI data hold time	5		ns
6	t _{TDOV}	TCK low to TDO data valid		161	ns

Table 35. JTAG pin AC electrical characteristics

Table continues on the next page...

#	Symbol	Characteristic	Value		Unit
			Min	Max	
7	t _{TDOI}	TCK low to TDO data invalid	0		ns
8	^t TDOHZ	TCK low to TDO high impedance		15	ns
9	L JCMPPW	JCOMP assertion time	100		ns
10	t _{JCMPS}	JCOMP setup time to TCK low	40		ns
11	t _{BSDV}	TCK falling edge to output valid		6002	ns
12	t _{BSDVZ}	TCK falling edge to output valid out of high impedance		600	ns
13	^t BSDHZ	TCK falling edge to output high impedance		600	ns
14	t _{BSDST}	Boundary scan input valid to TCK rising edge	15		ns
15	^t BSDHT	TCK rising edge to boundary scan input invalid	15		ns

Table 35. JTAG pin AC electrical characteristics (continued)

1. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.

2. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.

Figure 22. JTAG test clock input timing

Figure 23. JTAG test access port timing

Figure 24. JTAG JCOMP timing

Figure 25. JTAG boundary scan timing

18.1.2 Nexus interface timing

Nexus timing specified for the whole V_{DD_LV} and $V_{DD_HV_IO}$ dynamic, $T_A = T_L$ to T_H , and maximum loading per pad type as specified in the I/O section of the data sheet.

#	Symbol	Characteristic	Value		Unit
			Min	Max	
	LEVTIPW	EVTI Pulse Width	4		t _{CYC} '
\overline{c}	EVTOPW	EVTO Pulse Width	40		ns
3	t _{TCYC}	TCK cycle time	$4^2, 3$		t _{CYC}
4	t _{TCYC}	Absolute minimum TCK cycle time ⁴ (TDO sampled on posedge of TCK)	40 ⁵		ns

Table 36. Nexus debug port timing

Table continues on the next page...

AC specifications

#	Symbol Characteristic		Value		Unit
			Min	Max	
		Absolute minimum TCK cycle time ⁶ (TDO sampled on negedge of TCK)	20 ⁵		
5	^t NTDIS	TDI data setup time	5		ns
6	^t NTDIH	TDI data hold time	5		ns
$\overline{ }$	^t NTMSS	TMS data setup time	5		ns
8	^t NTMSH	TMS data hold time	5		ns
9		TDO propagation delay from falling edge of TCK ⁷		16	ns
10		TDO hold time with respect to TCK falling edge (minimum TDO propagation delay)	2.25		ns

Table 36. Nexus debug port timing (continued)

- 1. t_{CYC} is system clock period.
- 2. Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual peripheral frequency being used. To ensure proper operation TCK frequency should be set to the peripheral frequency divided by a number greater than or equal to that specified here.
- 3. This is a functionally allowable feature. However, it may be limited by the maximum frequency specified by the Absolute minimum TCK period specification.
- 4. This value is TDO propagation time 36ns + 4ns setup time to sampling edge.
- 5. This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system frequency being used.
- 6. This value is TDO propagation time 16ns + 4ns setup time to sampling edge.
- 7. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.

Figure 26. Nexus output timing

Figure 27. Nexus event trigger and test clock timings

Figure 28. Nexus TDI, TMS, TDO timing

18.1.3 Aurora LVDS interface timing Table 37. Aurora LVDS interface timing specifications

1. Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr_down (power down) has been deasserted. LVDS functionality is guaranteed only after the startup time.

2. Startup time is defined as the time taken by LVDS transmitter for settling after its pwr_down (power down) has been deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is guaranteed only after the startup time.

AC specifications

3. Startup time is defined as the time taken by LVDS receiver for settling after its pwr_down (power down) has been deasserted. Here it is assumed that current reference is already stable (see Bias start-up time). LVDS functionality is guaranteed only after the startup time.

18.1.3.1 Aurora debug port timing Table 38. Aurora debug port timing

1. ± 100 PPM

Figure 29. Aurora timings

18.2 DSPI timing with CMOS and LVDS

DSPI in TSB mode with LVDS pads can be used to implement Micro Second Channel bus protocol.

DSPI channel frequency support is shown in Table 39. Timing specifications are shown in [Table 40,](#page-65-0) [Table 41](#page-68-0), [Table 42,](#page-72-0) [Table 43,](#page-75-0) [Table 44](#page-76-0).

- 1. Maximum usable frequency can be achieved if used with fastest configuration of the highest drive pads.
- 2. Maximum usable frequency does not take into account external device propagation delay.

18.2.1 DSPI master mode full duplex timing with CMOS and LVDS pads

The values presented in these sections are target values. A complete performance characterization of the pads (in all configuration combinations) is required before the final specifications can be released.

18.2.1.1 DSPI CMOS master mode – classic timing

All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

NOTE

In Table 40, all output timing is worst case and includes the mismatching of rise and fall times of the output pads.

Table 40. DSPI CMOS master classic timing (full duplex and output only) - MTFE = 0, CPHA = 0 or 1

Table continues on the next page...

Table 40. DSPI CMOS master classic timing (full duplex and output only) - MTFE = 0, CPHA = 0 or 1 (continued)

1. All timing values for output signals in this table are measured to 50% of the output voltage.

2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation.

3. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).

4. t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).

AC specifications

- 5. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 6. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 7. PCSx and PCSS using same pad configuration.
- 8. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL voltage thresholds.
- 9. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 30. DSPI CMOS master mode – classic timing, CPHA = 0

Figure 31. DSPI CMOS master mode – classic timing, CPHA = 1

Figure 32. DSPI PCS strobe (PCSS) timing (master mode)

18.2.1.2 DSPI CMOS master mode – modified timing

All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

NOTE

In Table 41, all output timing is worst case and includes the mismatching of rise and fall times of the output pads.

Table 41. DSPI CMOS master modified timing (full duplex and output only) - MTFE = 1, CPHA = 0 or 1

Table continues on the next page...

Table 41. DSPI CMOS master modified timing (full duplex and output only) - MTFE = 1, CPHA = 0 or 1 (continued)

Table continues on the next page...

Table 41. DSPI CMOS master modified timing (full duplex and output only) - MTFE = 1, CPHA = 0 or 1 (continued)

- 1. All timing values for output signals in this table are measured to 50% of the output voltage.
- 2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation.
- 3. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 4. t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min $t_{SYS} = 10$ ns).
- 5. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 6. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 7. PCSx and PCSS using same pad configuration.
- 8. Input timing assumes an input slew rate of 1 ns (10% 90%) and uses TTL voltage thresholds.

AC specifications

- 9. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
- 10. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 33. DSPI CMOS master mode – modified timing, CPHA = 0

Figure 34. DSPI CMOS master mode – modified timing, CPHA = 1

Figure 35. DSPI PCS strobe (PCSS) timing (master mode)1

18.2.1.3 DSPI LVDS master mode – modified timing

Table 42. DSPI LVDS master timing - full duplex - modified transfer format (MTFE = 1), CPHA = 0 or 1

#	Symbol	Characteristic		Condition		Value ¹	Unit
			Pad drive	Load	Min	Max	
$\mathbf{1}$	t_{SCK}	SCK cycle time	LVDS	15 pF	30.0		ns
				to 25 pF			
				differential			
$\overline{2}$	t_{CSC}	PCS to SCK delay	PCS drive strength				
		(LVDS SCK)	Very strong	25 pF	$(N^2 \times t_{\text{SYS'}}^3) - 10$		ns
			Strong	50 pF	$(N^2 \times t_{\text{SYS}}^3, 3) - 10$		ns
			Medium	50 pF	$(N^2 \times t_{\text{SYS}}^{3}, 3) - 32$		ns
3	$ t_{\text{ASC}} $	After SCK delay	Very strong	$PCS = 0 pF$	$(M4 x tSYS3) - 8$		ns
		(LVDS SCK)		$SCK = 25 pF$			
			Strong	$PCS = 0 pF$	$(M4 x tSYS, 3) - 8$		ns
				$SCK = 25 pF$			
			Medium	$PCS = 0 pF$	$(M4 x tSYS, 3) - 8$		ns
				$SCK = 25 pF$			
4	$ t_{SDC}$	SCK duty cycle ⁵	LVDS	15 pF	$1/2$ tsck - 2	$1/2$ t _{SCK} + 2	ns
				to 25 pF			
				differential			
$\overline{7}$	t_{SUI}	SIN setup time					
		SIN setup time to	SCK drive strength				
		SCK	LVDS	15 pF	23 - $(P^7 \times t_{SYS}^3)$		ns
		$CPHA = 0^6$		to 25 pF			
				differential			
		SIN setup time to	SCK drive strength				
		SCK	LVDS	15pF	23		ns
		$CPHA = 16$		to 25 pF			
				differential			
8	$ t_{\text{H}} $	SIN Hold Time					

Table continues on the next page...

Table 42. DSPI LVDS master timing - full duplex - modified transfer format (MTFE = 1), CPHA = 0 or 1 (continued)

- 1. All timing values for output signals in this table are measured to 50% of the output voltage.
- 2. N is the number of clock cycles added to time between PCS assertion and SCK assertion and is software programmable using DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, N is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 3. t_{SYS} is the period of DSPI_CLKn clock, the input clock to the DSPI module. Maximum frequency is 100 MHz (min t_{SYS} = 10 ns).
- 4. M is the number of clock cycles added to time between SCK negation and PCS negation and is software programmable using DSPI_CTARx[PASC] and DSPI_CTARx[ASC]. The minimum value is 2 cycles unless TSB mode or Continuous SCK clock mode is selected, in which case, M is automatically set to 0 clock cycles (PCS and SCK are driven by the same edge of DSPI_CLKn).
- 5. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 6. Input timing assumes an input slew rate of 1 ns (10% 90%) and LVDS differential voltage = ± 100 mV.
- 7. P is the number of clock cycles added to delay the DSPI input sample point and is software programmable using DSPI_MCR[SMPL_PT]. The value must be 0, 1 or 2. If the baud rate divide ratio is /2 or /3, this value is automatically set to 1.
- 8. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 36. DSPI LVDS master mode – modified timing, CPHA = 0

Figure 37. DSPI LVDS master mode – modified timing, CPHA = 1

18.2.1.4 DSPI master mode – output only

For [Table 43](#page-75-0) :

- • All DSPI timing specifications apply to pins when using LVDS pads for SCK and SOUT and CMOS pad for PCS with pad driver strength as defined. Timing may degrade for weaker output drivers.
- $TSB = 1$ or $ITSB = 1$ automatically selects MTFE = 1 and CPHA = 1.

Table 43. DSPI LVDS master timing - output only - timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock

1. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

2. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

For [Table 44](#page-76-0) :

- TSB = 1 or ITSB = 1 automatically selects MTFE = 1 and CPHA = 1.
- All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

Table 44. DSPI CMOS master timing - output only - timed serial bus mode TSB = 1 or ITSB = 1, CPOL = 0 or 1, continuous SCK clock

1. All timing values for output signals in this table are measured to 50% of the output voltage.

2. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speeds and may cause incorrect operation.

3. With TSB mode or Continuous SCK clock mode selected, PCS and SCK are driven by the same edge of DSPI_CLKn. This timing value is due to pad delays and signal propagation delays.

- 4. t_{SDC} is only valid for even divide ratios. For odd divide ratios the fundamental duty cycle is not 50:50. For these odd divide ratios cases, the absolute spec number is applied as jitter/uncertainty to the nominal high time and low time.
- 5. SOUT Data Valid and Data hold are independent of load capacitance if SCK and SOUT load capacitances are the same value.

Figure 38. DSPI LVDS and CMOS master timing – output only – modified transfer format MTFE = 1, CHPA = 1

18.2.2 DSPI CMOS slave mode

NOTE

DSPI slave operation is only supported for a single master and single slave on the device. Timing is valid for that case only.

Table continues on the next page...

Table 45. DSPI CMOS slave timing - Modified Transfer Format (MTFE = 0/1) (continued)

1. Input timing assumes an input slew rate of 1 ns (10% - 90%) and uses TTL / Automotive voltage thresholds.

2. All timing values for output signals in this table, are measured to 50% of the output voltage. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.

Figure 39. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 0

Figure 40. DSPI Slave Mode - Modified transfer format timing (MFTE = 0/1) — CPHA = 1

18.3 FEC timing

The FEC supports the 10/100 Mbps MII, 10/100 Mbps MII-lite, and the 10 Mbps-only 7 wire interface.

18.3.1 MII-lite receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency.

All timing specifications are referenced from RX_CLK = 1.4 V to the valid input levels.

Spec	Characteristic	Value Min Max		Unit
M1	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5		ns
M2	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5		ns
M ₃	RX CLK pulse width high	35%	65%	RX_CLK period
M4	RX_CLK pulse width low	35%	65%	RX_CLK period

Table 46. MII-lite receive signal timing

Figure 41. MII-lite receive signal timing diagram

18.3.2 MII-lite transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.

All timing specifications are referenced from TX $CLK = 1.4$ V to the valid output levels.

	Characteristic	Value ¹		Unit
Spec		Min	Max	
M ₅	TX_CLK to TXD[3:0], TX_EN, TX_ER invalid	5		ns
M6	TX_CLK to TXD[3:0], TX_EN, TX_ER valid		25	ns
M7	TX_CLK pulse width high	35%	65%	TX_CLK period
M8	TX CLK pulse width low	35%	65%	TX_CLK period

Table 47. MII-lite transmit signal timing

1. Output parameters are valid for $C_1 = 25$ p_F, where CL is the external load to the device. The internal package capacitance is accounted for, and does not need to be subtracted from the 25 p_F value.

Figure 42. MII-lite transmit signal timing diagram

18.3.3 MII-lite async inputs signal timing (CRS and COL)

Table 48. MII-lite async inputs signal timing

Figure 43. MII-lite async inputs timing diagram

18.3.4 MII-lite serial management channel timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

NOTE

All timing specifications are referenced from MDC = 1.4 V (TTL levels) to the valid input and output levels, 0.8 V and 2.0 V (TTL levels). For 5 V operation, timing is referenced from $MDC = 50\%$ to 2.2 V/3.5 V input and output levels.

Spec	Characteristic	Value Min Max		Unit
M10	MDC falling edge to MDIO output invalid (minimum propagation delay)			ns
M11	MDC falling edge to MDIO output valid (max prop delay)		25	ns
M ₁₂	MDIO (input) to MDC rising edge setup			ns
M ₁₃	MDIO (input) to MDC rising edge hold	0		ns
M ₁₄	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period

Table 49. MII-lite serial management channel timing

Figure 44. MII-lite serial management channel timing diagram

18.3.5 RMII serial management channel timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Table continues on the next page...

Spec	Characteristic	Value	Unit	
		Min	Max	
M11	MDC falling edge to MDIO output valid (max prop delay)		25	ns
M12	MDIO (input) to MDC rising edge setup	10		ns
M ₁₃	MDIO (input) to MDC rising edge hold	0		ns
M14	MDC pulse width high	40%	60%	MDC period
M ₁₅	MDC pulse width low	40%	60%	MDC period

Table 50. RMII serial management channel timing (continued)

Figure 45. RMII-lite serial management channel timing diagram

18.3.6 RMII receive signal timing (RXD[1:0], CRS_DV)

The receiver functions correctly up to a REF_CLK maximum frequency of 50 MHz +1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the RX_CLK frequency, which is half that of the REF_CLK frequency.

All timing specifications are referenced from REF_CLK = 1.4 V to the valid input levels.

Spec	Characteristic	Value		Unit
		Min	Max	
R ₁	RXD[1:0], CRS_DV to REF_CLK setup	4		ns
R ₂	REF_CLK to RXD[1:0], CRS_DV hold	◠		ns
R ₃	REF_CLK pulse width high	35%	65%	REF_CLK period
R ₄	REF_CLK pulse width low	35%	65%	REF_CLK period

Table 51. RMII receive signal timing

Figure 46. RMII receive signal timing diagram

18.3.7 RMII transmit signal timing (TXD[1:0], TX_EN)

The transmitter functions correctly up to a REF_CLK maximum frequency of 50 MHz $+$ 1%. There is no minimum frequency requirement. The system clock frequency must be at least equal to or greater than the TX_CLK frequency, which is half that of the REF_CLK frequency.

The transmit outputs (TXD[1:0], TX_EN) can be programmed to transition from either the rising or falling edge of REF_CLK, and the timing is the same in either case. This options allows the use of non-compliant RMII PHYs.

All timing specifications are referenced from REF_CLK = 1.4 V to the valid output levels.

Spec	Characteristic		Value	Unit
		Min	Max	
R ₅	REF_CLK to TXD[1:0], TX_EN invalid			ns
R ₆	REF_CLK to TXD[1:0], TX_EN valid		16	ns
R ₇	REF_CLK pulse width high	35%	65%	REF_CLK period
R ₈	REF_CLK pulse width low	35%	65%	REF_CLK period

Table 52. RMII transmit signal timing

Figure 47. RMII transmit signal timing diagram

18.4 UART timings

UART channel frequency support is shown in the following table.

Table 53. UART frequency support

LINFlexD clock frequency LIN_CLK (MHz)	Oversampling rate	Voting scheme	Max usable frequency (Mbaud)
80	16	3:1 majority voting	
			10
	Limited voting on one sample 6		13.33
	5	with configurable sampling point	16
			20

18.5 eMIOS timing

Table 54. eMIOS timing

Symbol	Characteristic	Condition	Min. Value	Max. Value	Unit
^I MIPW	eMIOS Input Pulse Width	eMIOS CLK = 100 MHz			cycles

19 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to http://ww.freescale.com and perform a keyword search for the drawing's document number.

20 Thermal characteristics

The following tables describe the thermal characteristics of the device.

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

Rating	Conditions	Symbol	Value	Unit
Junction to Ambient Natural Convection 1, 2	Single layer board (1s)	R_{θ JA	41.3	\degree C/W
Junction to Ambient Natural Convection ^{1, 2, 3}	Four layer board (2s2p)	R_{θ JA	33.0	\degree C/W
Junction to Ambient (@200 ft/min) ^{1, 3}	Single layer board (1s)	$R_{\theta JMA}$	32.4	\degree C/W
Junction to Ambient (@200 ft/min) ^{1, 3}	Four layer board (2s2p)	$R_{\theta JMA}$	26.7	$\rm ^{\circ}$ C/W
Junction to Board ⁴		R_{θ JB	21.5	$\rm ^{\circ}$ C/W
Junction to Case 5		R_{θ JC	7.0	$\rm ^{\circ}$ C/W
Junction to Package Top ⁶	Natural Convection	Ψ JT	0.25	\degree C/W
Junction to Package Lead ⁷	Natural Convection	Ψ JB	16.5	\degree C/W

Table 56. Thermal characteristics for the 144-pin LQFP package

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12.

Table 57. Thermal characteristics for the 176-pin LQFP package

Rating	Conditions	Symbol	Value	Unit
Junction to Ambient Natural Convection 1, 2	Single layer board (1s)	R_{θ JA	49.9	°C/W
Junction to Ambient Natural Convection ^{1, 2, 3}	Four layer board (2s2p)	$R_{0,IA}$	33.8	°C/W

Table continues on the next page...

Table 57. Thermal characteristics for the 176-pin LQFP package (continued)

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.
- 7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12.

Table 58. Thermal characteristics for the 252-pin MAPBGA package with full solder balls

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12.

Table 59. Thermal characteristics for the 252-pin MAPBGA package 16 removed balls: 12 central, 4 corner peripheral

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12.

20.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J , can be obtained from this equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

- T_A = ambient temperature for the package (${}^{\circ}C$)
- R_{HIA} = junction to ambient thermal resistance (C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$
R_{\theta JA}=R_{\theta JC}+R_{\theta CA}
$$

Ordering information

where:

- R_{HIA} = junction to ambient thermal resistance (C/W)
- $R_{\text{BJC}} =$ junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 R_{BIC} is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{IT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

- T_T = thermocouple temperature on top of the package (${}^{\circ}C$)
- Ψ_{IT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

21 Ordering information

Part Number	Device Type	Flash/SRAM	Emulation RAM	Package	Frequency
SPC5746RK1MMT5	Sample PD ¹	4M / 256 KB		252 MAPBGA	200 MHz
SPC5745RK1MLU3	Sample PD	3M / 192 KB		176 LOFP	150 MHz
SPC5743RK1MLQ5	Sample PD	2M / 128 KB		144 LOFP	200 MHz
PPC5746R2K1MMZ5A	Sample ED ²	4M / 256 KB	1 MB	292 MAPBGA	200 MHz

Table 60. Ordering information

1. "PD" refers to a production device, orderable in quantity.

2. "ED" refers to an emulation device, orderable in limited quantities. An emulation device (ED) is for use during system development only and is not to be used in production. An ED is a Production PD chip combined with a companion chip to form an Emulation and Debug Device (ED) and includes additional RAM memory and debug features. EDs are provided

"as is" without warranty of any kind. In the event of a suspected ED failure, Freescale agrees to exchange the suspected failing ED from the customer at no additional charge, however Freescale will not analyze ED returns.

22 Revision history

Revision history

Table 61. Revision history

In section [Flash memory program and erase specifications](#page-53-0), [Table 30](#page-53-0) :

Table continues on the next page...

Revision history

Table 61. Revision history (continued)

Revision Date Description of changes

Table continues on the next page...

SPC5746R Microcontroller Data Sheet, Rev. 5, 10/2016

In section [Ordering information](#page-89-0), replaced the table.

3 09/2015 On the cover page:

Table 61. Revision history

Table continues on the next page...

Revision history

Table 61. Revision history (continued)

How to Reach Us:

Home Page: [nxp.com](http://www.nxp.com)

Web Support: [nxp.com/support](http://www.nxp.com/support) Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: [nxp.com/SalesTermsandConditions.](http://www.nxp.com/SalesTermsandConditions)

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, AMBA, ARM Powered, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2013–2016 NXP B.V.

Document Number MPC5746R Revision 5, 10/2016

