
- 1.4-kΩ Pullup Resistors Integrated on All Open-Drain Outputs Eliminate the Need for Discrete Resistors
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Designed for the IEEE Std 1284-I (Level 1 Type) and IEEE Std 1284-II (Level 2 Type) Electrical Specifications
- Flow-Through Architecture Optimizes PCB Layout
- Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin-Shrink Small-Outline (DGG) Packages

description

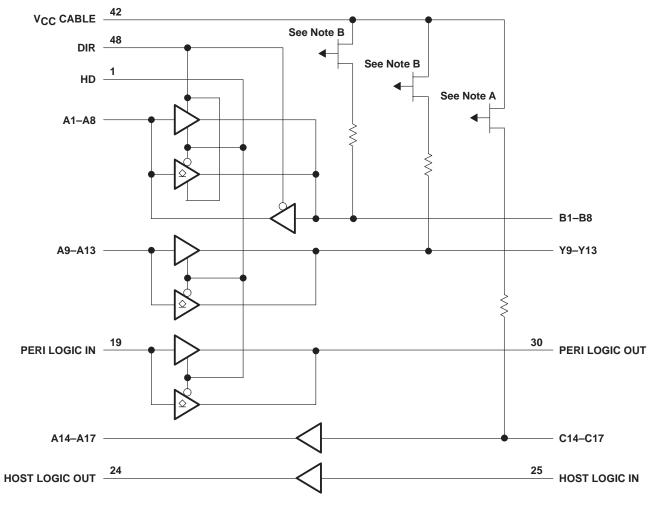
The SN74LVC161284 is designed for 3-V to 3.6-V V_{CC} operation. This device provides asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

This device has eight bidirectional bits; data can flow in the A-to-B direction when DIR is high, and in the B-to-A direction when DIR is low. This device also has five drivers, which drive the cable side, and four receivers. The SN74LVC161284 has one receiver dedicated to the HOST LOGIC line and a driver to drive the PERI LOGIC line.

The output drive mode is determined by the high-drive (HD) control pin. When HD is high, the outputs are in a totem-pole configuration, and in an open-drain configuration when HD is low. This meets the drive requirements as specified in the IEEE Std 1284-I (level 1 type) and IEEE Std 1284-II (level 2 type) parallel peripheral-interface specifications. Except for HOST LOGIC IN and PERI LOGIC OUT, all cable-side pins have a 1.4-k Ω integrated pullup resistor. The pullup resistor is switched off if the associated output driver is in the low state or if the output voltage is above V_{CC} CABLE. If V_{CC} CABLE is off, PERI LOGIC OUT is set to low.

The device has two supply voltages. V_{CC} is designed for 3-V to 3.6-V operation. V_{CC} CABLE supplies the inputs and output buffers of the cable side only and is designed for 3-V to 3.6-V and for 4.7-V to 5.5-V operation. Even when V_{CC} CABLE is 3 V to 3.6 V, the cable-side I/O pins are 5-V tolerant.

The SN74LVC161284 is characterized for operation from 0°C to 70°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE

INPUTS		CUITDUIT	MODE				
DIR	HD	OUTPUT	MODE				
		Open drain A9–A13 to Y9–Y13 and PERI LOGIC IN to PERI LOGIC OUT					
' ' [Totem pole	B1-B8 to A1-A8 and C14-C17 to A14-A17				
L	Н	Totem pole	B1-B8 to A1-A8, A9-A13 to Y9-Y13, PERI LOGIC IN to PERI LOGIC OUT, and C14-C17 to A14-A17				
Н		Open drain	A1-A8 to B1-B8, A9-A13 to Y9-Y13, and PERI LOGIC IN to PERI LOGIC OUT				
	L	Totem pole	C14-C17 to A14-A17				
Н	Н	Totem pole	A1-A8 to B1-B8, A9-A13 to Y9-Y13, C14-C17 to A14-A17, and PERI LOGIC IN to PERI LOGIC OUT				

logic diagram

NOTES: A. The PMOS transistor prevents backdriving current from the signal pins to V_{CC} CABLE when V_{CC} CABLE is open or at GND.

B. The PMOS transistors prevent backdriving current from the signal pins to V_{CC} CABLE when V_{CC} CABLE is open or at GND. The PMOS transistor is turned off when the associated driver is in the low state.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range: V _{CC} CABLE	0.5 V to 7 V
V _{CC}	0.5 V to 4.6 V
Input and output voltage range, V _I and V _O : Cable side (see Notes 1 and 2)	–2 V to 7 V
Peripheral side (see Note 1) .	\dots -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO: Except PERI LOGIC OUT	±50 mA
PERI LOGIC OUT	±100 mA
Continuous current through each V _{CC} or GND	±200 mA
Output high sink current, I _{SK} (V _O = 5.5 V and V _{CC} CABLE = 3 V)	65 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	89°C/W
DL package	94°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The ac input voltage pulse duration is limited to 40 ns if the amplitude is greater than -0.5 V.
- 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
V _{CC} CABLE	Supply voltage for the cable side, V_{CC} CABLE $\geq V_{CC}$		3	5.5	V	
VCC	Supply voltage		3	3.6	V	
		A, B, DIR, and HD	2			
V.	High level input voltage	C14-C17	2.3		v	
VIH	High-level input voltage	HOST LOGIC IN	2.6		·	
		PERI LOGIC IN	2			
		A, B, DIR, and HD		0.8	0.8 0.8 1.6	
Mar	Law Investigation to a literature	C14-C17		0.8		
VIL	Low-level input voltage	HOST LOGIC IN		1.6		
		PERI LOGIC IN		0.8		
1/-	Peripheral side		0	Vcc	V	
VI	Input voltage	Cable side	0	5.5		
VO	Open-drain output voltage	HD low	0	5.5	V	
		HD high, B and Y outputs		-14		
ЮН	High-level output current	A outputs and HOST LOGIC OUT	-4 -0.5		mA	
		PERI LOGIC OUT				
		B and Y outputs		14		
loL	Low-level output current	A outputs and HOST LOGIC OUT		4	mA	
		PERI LOGIC OUT		84		
TA	Operating free-air temperature		0	70	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

recommended electrical characteristics over operating free-air temperature range, V_{CC} CABLE = 5 V (unless otherwise noted)

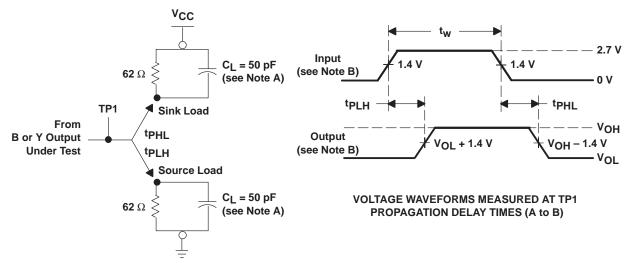
PARAMETER		TEST CONDITIONS	VCC	MIN	TYP [†]	MAX	UNIT	
ΔV_t		V _{thH} – V _{thL} for all inputs except the C inputs and HOST LOGIC IN	3.3 V	0.4			V	
	Input hysteresis	V _{thH} – V _{thL} for the HOST LOGIC IN	3.3 V	0.2				
		V _{thH} – V _{thL} for the C inputs	3.3 V	0.8				
Vон	HD high R and V outputs	14.00	3 V	2.23				
	HD high, B and Y outputs	I _{OH} = -14 mA	3.3 V [‡]	2.4				
	HD high, A outputs, and	I _{OH} = -4 mA	3 V	2.4			V	
	HOST LOGIC OUT	I _{OH} = -50 μA	3 V	2.8				
	PERI LOGIC OUT	Jan - 0.5 mA	3.15 V	3.1				
	PERI LOGIC OUT	$I_{OH} = -0.5 \text{ mA}$	3.3 V [‡]	4.5				
	B and Y outputs	I _{OL} = 14 mA	3 V			0.77	V	
V/~.	A outputs and HOST LOGIC OUT	I _{OL} = 50 μA	3 V			0.2		
VOL	A outputs and HOST LOGIC OUT	I _{OL} = 4 mA	3 V			0 4	\ \ \ \	
	PERI LOGIC OUT	I _{OL} = 84 mA	3 V			0.8		
	Cinnuta	VI = VCC	3.6 V§			50	μА	
II	C inputs	V _I = GND (pullup resistors)	3.6 V§			-3.5	mA	
	All inputs except the B or C inputs	$V_I = V_{CC}$ or GND	3.6 V			±1	μА	
	B outpute	VO = VCC	3.6 V			20	μА	
1	B outputs	V _O = GND (pullup resistors)	3.6 V§			-3.5	mA	
loz	A1–A8	$V_O = V_{CC}$ or GND	3.6 V			±20	μΑ	
	Open-drain Y outputs	V _O = GND (pullup resistors)	3.6 V§			-3.5	mA	
۱.,,	Leakage to GND, B and Y outputs	V _I or V _O = 0 to 7 V	0 V			100		
loff	Leakage to V _{CC} , B and Y outputs	\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0 0			10	μΑ	
, ¶		$V_I = V_{CC},$ $I_O = 0$	3.6 V			0.8	− I mA	
ICC¶		$V_I = GND (12 \times pullup)$	3.6 V			45		
Ci	Control inputs	$V_I = V_{CC}$ or GND	3.3 V		3	4	pF	
C _{io}	All inputs	$V_O = V_{CC}$ or GND	3.3 V		7	15	pF	
ZO	Cable side	I _{OH} = -35 mA	3.3 V		45		Ω	
R pullup	Cable side	V _O = 0 V (in Hi Z)	3.3 V	1.15		1.65	kΩ	

[†] Typical values are measured at $V_{CC} = 3.3 \text{ V}$, V_{CC} CABLE = 5 V, and $T_A = 25^{\circ}$ C.

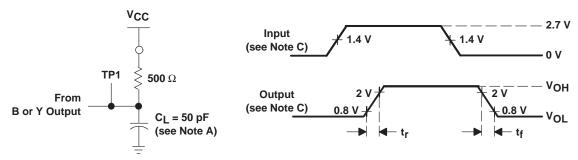
[‡] V_{CC} CABLE = 4.7 V § V_{CC} CABLE = 3.6 V ¶ A maximum current of 170 μA per pin is added to I_{CC} if the pullup resistor pin is above V_{CC}.

SCAS583I - NOVEMBER 1996 - REVISED MARCH 1999

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figures 1 and 2)


PARAMETER		FROM (INPUT)	TO (OUTPUT)	MIN	түр†	MAX	UNIT
tPLH	Totom nole	A or B	B or A	1		40	no
^t PHL	Totem pole	AUIB	BOLA	1		40	ns
t _{slew}	Totem pole	Cable-side outputs		0.05		0.4	V/ns
t _{en}	Totem pole	HD	B, Y, and PERI LOGIC OUT	1		25	ns
^t dis	Totem pole	HD	B, Y, and PERI LOGIC OUT	1		25	ns
^t en ^{-t} dis				1		10	ns
t _{en}		DIR	А	1		50	ns
t _{dis}		DID	А	1		15	ns
		DIR	В	1		50	110
t _r , t _f	Open drain	А	B or Y			120	ns
t _{sk(o)} ‡		A or B	B or A		2.5	10	ns

operating characteristics, V_{CC} = 3.3 V, T_A = 25°C


	PARAMETER			ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	Outputs enabled	C _L = 0,	f = 10 MHz	45	pF

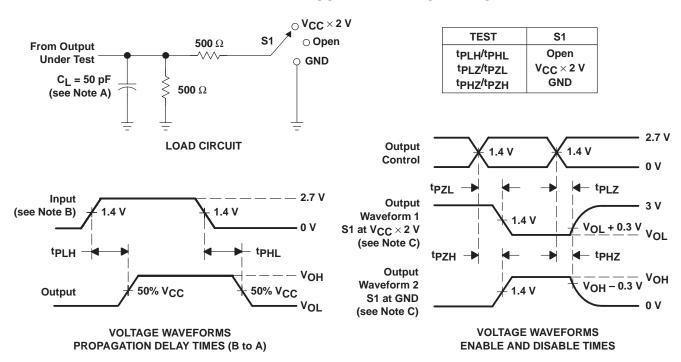
[†] Typical values are measured at V_{CC} = 3.3 V, V_{CC} CABLE = 5 V, and T_A = 25°C. ‡ Skew is measured at 1/2 (V_{OH} + V_{OL}) for signals switching in the same direction.

PARAMETER MEASUREMENT INFORMATION

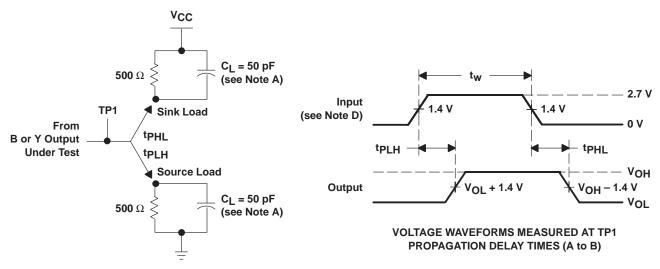
SLEW RATE A-TO-B OR A-TO-Y LOAD (Totem Pole)

VOLTAGE WAVEFORMS MEASURED AT TP1, B SIDE

A-TO-B LOAD OR A-TO-Y LOAD (Open Drain)


NOTES: A. C_I includes probe and jig capacitance.

- B. Input rise and fall times are 3 ns, 150 ns < pulse duration < 10 µs for both low-to-high and high-to-low transitions. Slew rate is measured between 0.4 V and 0.9 V for the rising edge and between 2.4 V and 1.9 V for the falling edge.
- C. Input rise and fall times are 3 ns. Rise and fall times (open drain) < 120 ns.
- D. The outputs are measured one at a time with one transition per measurement.


Figure 1. Load Circuits and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

B-TO-A LOAD (Totem Pole)

A-TO-B LOAD OR A-TO-Y LOAD (Totem Pole)

NOTES: A. C_I includes probe and jig capacitance.

- B. Input rise and fall times are 3 ns.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. Input rise and fall times are 3 ns. Pulse duration is 150 ns < t_W < 10 μs .
- E. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated