

MwT-PH15F

28 GHz Medium Power AlGaAs/InGaAs pHEMT

Features:

- 28.5 dBm typical Output Power at 18 GHz
- 12 dB typical Small Signal Gain at 18 GHz
- 45% typical PAE at 18 GHz
- 0.25 x 630 Micron Refractory Metal/Gold Gate
- Excellent for Power, Gain, and High Power Added Efficiency
- Ideal for Commercial, Military, Hi-Rel Space Applications

Chip Dimensions: 785 x 260 microns Chip Thickness: 100 microns

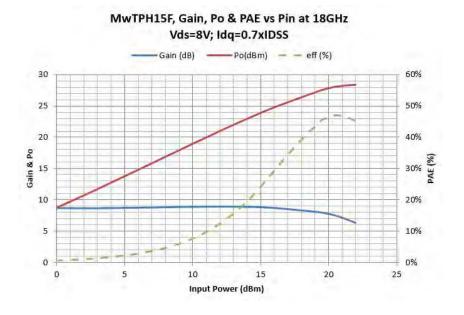
Description:

The MwT-PH15F is a AlGaAs/InGaAs pHEMT (Pseudomorphic-High-Electron-Mobility-Transistor) device whose nominal 0.25 micron gate length and 630 micron gate width make it ideally suited for applications requiring high-gain and medium power with frequency up to 28 GHz. The device is equally effective for either wideband (e.g. 6 to 18 GHz) or narrow-band applications. The chip is produced using reliable metal systems and passivated to insure excellent reliability.

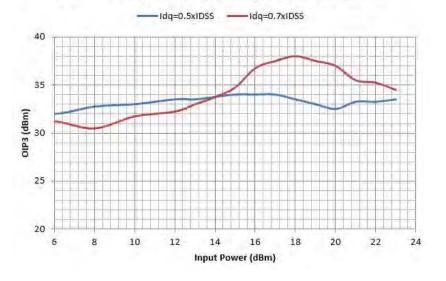
Electrical Specifications: • at Ta= 25° C

PARAMETERS & CONDITIONS	SYMBOL	FREQ	UNITS	MIN	TYP
Output Power at 1dB Compression Vds=8V; lds=0.7xlDSS	P1dB	18 GHz	dBm		28.0
Saturated Power Vds=8V; lds=0.7xlDSS	Psat	18 GHz	dBm		28.5
Output Third Order Intercept Point Vds=8V; Ids=0.7xIDSS	OIP3	18 GHz	dBm		34.0
Small Signal Gain Vds=8V; lds=0.7xlDSS	SSG	18 GHz	dB		12.0
Power Added Efficiency at P1dB Vds=8V; lds=0.7xlDSS	PAE	18 GHz	%		45

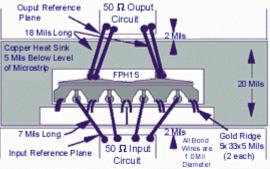
Note: Ids should be between 40% and 80% of Idss. Currently, our data shows Ids at 70% of IDSS. Low Ids will improve efficiency, but high Ids will make Psat and IP3 better.

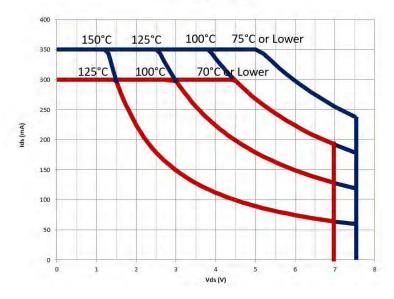

DC Specifications: • at Ta= 25 °C

PARAMETERS & CONDITIONS	SYMBOL	UNITS	MIN	TYP	MAX		
Saturated Drain Current Vds= 3.0 V Vgs= 0.0 V	IDSS	mA	150		190		
Transconductance Vds= 2.5 V Vgs= 0.0 V	Gm	mS		200			
Pinch-off Voltage Vds= 3.0 V lds= 1.0 mA	Vp	V		-0.8	-1.0		
Gate-to-Source Breakdown Voltage lgs= -0.3 mA	BVGSO	V		-17.0			
Gate-to-Drain Breakdown Voltage lgd= -0.3 mA	BVGDO	V		-18.0			
Chip Thermal Resistance	Rth	C/W		150 350*			
* Overall Rth depends on case mounting							


Updated October 2021

MwT-PH15F 28 GHz Medium Power AlGaAs/InGaAs pHEMT


MwT-PH15F, OIP3 at different Idq vs Po/tone at 18GHz



28 GHz Medium Power AlGaAs/InGaAs pHEMT

MwT-PH15F DUAL BIAS

SAFE OPERATING LIMITS vs BACKSIDE TEMPERATURE MwT-PH15F Chip and 71 Pkg

MAXIMUM RATINGS AT Ta = 25 °C

Sym bol	Parameter	Units	Cont Max1	Absolute Max2	
VDS	Drainto Source Volt.	V	7.5	8.0	
Tch	Channel Temperature	°C	+150	+175	
Tst	StorageTemperature	°C	-65 to +150	+175	
Pin	RF Input Power	m₩	200	300	
Pt	Total Power Dissipation	m₩	1900	2300	

Notes:

1. Exceeding any one of these limits in continuous operation may reduce the mean-time- to-failure below the design goal.

2. Exceeding any one of these limits may cause permanent damage.

28 GHz Medium Power AlGaAs/InGaAs pHEMT

S-PARAMETER Vds=7V, Ids= 0.7 x Idss

Freq.	S	11	S	21	S	12	\$22		K	GMAX
GHz	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)	dB	Ang (°)		dB
1	-0.390	-59.911	22.734	144.444	-31.862	57.690	-4.544	-25.184	0.087	27.298
2	-0.762	-99.807	20.298	120.694	-28.498	37.989	-6.147	-40.126	0.135	24.398
3	-1.024	-123.262	17.856	105.447	-27.272	26.678	-7.331	-49.072	0.206	22.564
4	-1.112	-138.382	15.844	94.348	-26.856	19.448	-8.061	-55.741	0.266	21.350
5	-1.223	-148.957	14.128	85.818	-26.834	14.436	-8.270	-60.932	0.351	20.481
6	-1.247	-156.433	12.871	79.401	-26.631	11.775	-8.343	-62.561	0.408	19.751
7	-1.327	-163.022	11.651	72.422	-26.479	8.639	-8.311	-67.714	0.490	19.065
8	-1.152	-167.888	10.528	65.941	-26.710	5.733	-8.146	-74.597	0.474	18.619
9	-1.239	-173.045	9.464	59.899	-26.884	5.584	-8.250	-81.294	0.595	18.174
10	-1.172	-178.241	8.456	54.057	-27.081	2.444	-7.898	-86.878	0.629	17.769
11	-1.256	177.316	7.504	48.646	-27.125	1.842	-7.865	-91.669	0.771	17.315
12	-1.223	174.171	6.761	43.499	-27.490	1.241	-7.442	-97.159	0.828	17.126
13	-1.227	170.860	5.971	38.361	-27.797	0.097	-7.108	-102.609	0.931	16.884
14	-1.273	168.002	5.223	33.721	-27.958	1.263	-6.844	-108.607	1.060	15.095
15	-1.253	165.355	4.597	29.617	-28.433	2.102	-6.514	-113.117	1.163	14.068
16	-1.191	162.736	3.799	23.341	-28.611	3.110	-6.175	-117.598	1.206	13.464
17	-1.122	160.699	3.227	18.889	-28.530	4.625	-5.904	-122.296	1.155	13.492
18	-1.144	158.118	2.687	14.069	-28.817	5.616	-5.520	-126.821	1.258	12.698
19	-1.141	155.746	2.002	10.313	-29.172	8.971	-5.285	-131.188	1.403	11.807
20	-1.090	154.379	1.471	5.545	-29.166	11.016	-4.984	-135.947	1.361	11.730
21	-1.076	152.593	0.894	1.684	-29.076	14.604	-4.702	-140.580	1.368	11.364
22	-1.090	151.191	0.235	-2.218	-29.203	17.357	-4.432	-143.984	1.486	10.595
23	-1.046	149.091	-0.285	-6.346	-29.003	20.742	-4.188	-148.368	1.415	10.528
24	-1.107	147.083	-0.814	-10.005	-27.856	22.424	-3.971	-151.809	1.315	10.160
25	-1.031	146.378	-1.327	-14.109	-28.102	22.975	-3.721	-155.381	1.267	10.283
26	-1.033	144.630	-1.879	-17.297	-27.717	25.019	-3.535	-158.479	1.246	9.932
27	-1.069	143.710	-2.428	-20.881	-27.097	27.762	-3.260	-162.381	1.193	9.681
28	-0.933	142.159	-2.888	-24.105	-26.834	29.222	-3.088	-165.394	0.968	11.973
29	-0.955	140.332	-3.321	-27.723	-26.590	28.173	-2.924	-168.123	0.965	11.635
30	-0.952	139.172	-3.779	-31.184	-26.442	28.868	-2.763	-171.477	0.953	11.331
		-								

ORDERING INFORMATION:

When placing order or inquiring, please specify wafer number, if known. All dice are Visual Level 3 (military grade visual screening). For details of Safe Handling Procedure please see supplementary information in available PDF on our website <u>www.mwtinc.com</u>

Available Packaging:

70 Package - MwT-PH8F70 71 Package - MwT-PH8F71 73 Package - MwT-PH8F73