

M0224SD-242MDBR1-1

Vacuum Fluorescent Display Module

RoHS Compliant

Newhaven Display International, Inc.

2511 Technology Drive, Suite 101 Elgin IL, 60124 Ph: 847-844-8795 Fax: 847-844-8796

www.newhavendisplay.com nhtech@newhavendisplay.com nhsales@newhavendisplay.com

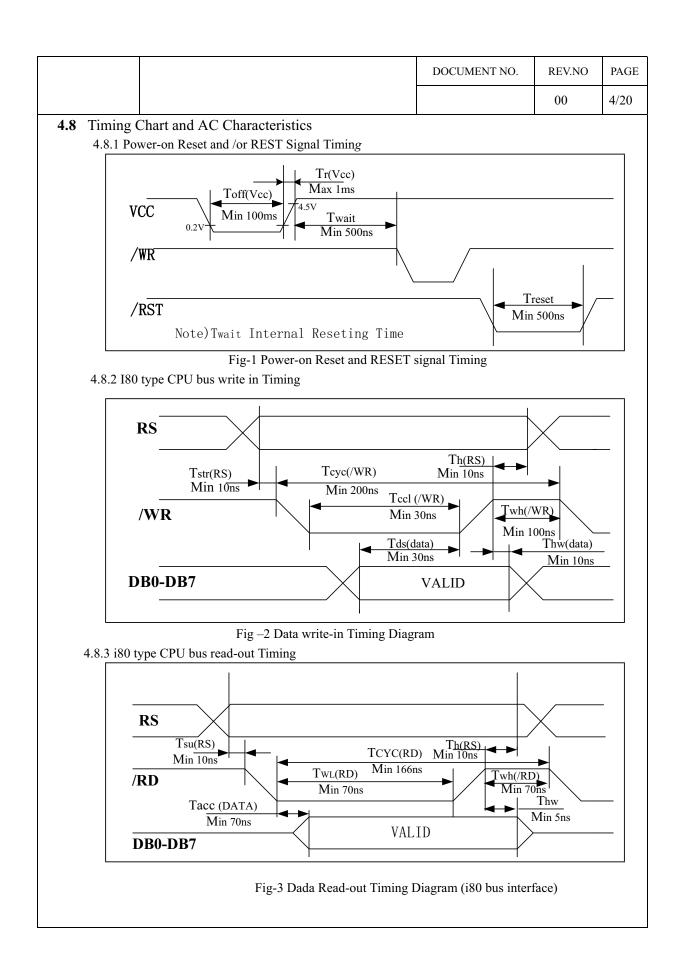
		DOCUMENT NO.	REV. NO.	PAGE
			00	2/20
1. SCOPE			-	
2. FEAT	URES			
2.1 LCD	compatible interface and mounting holes.			
	/FD module is capable to communicate some different	type of bus systems s	uch as i80 (In	ntel) or
	Aotorola), 8-bit or 4-bit parallel data.)			
-	ality of display and luminance. ct and light-weight unit by using new VFD technology	and flat nacked one of	hin controlle	r
-	ngle power supply.	and hat packed one-e		
	nce adjustment available by software (4 levels).			
2.6 8 user	lefinable fonts available (CG-RAM font).			
2.7 ASCI	and Japanese Katakana characters (CG-ROM font).			
3. GEN	RAL DESCRIPTIONS			
3.1 This s	ecification becomes effective after being approved by t	he purchaser.		
3.2 When	any conflict is found in the specification appropriate	action shall be taken	upon agreen	nent of

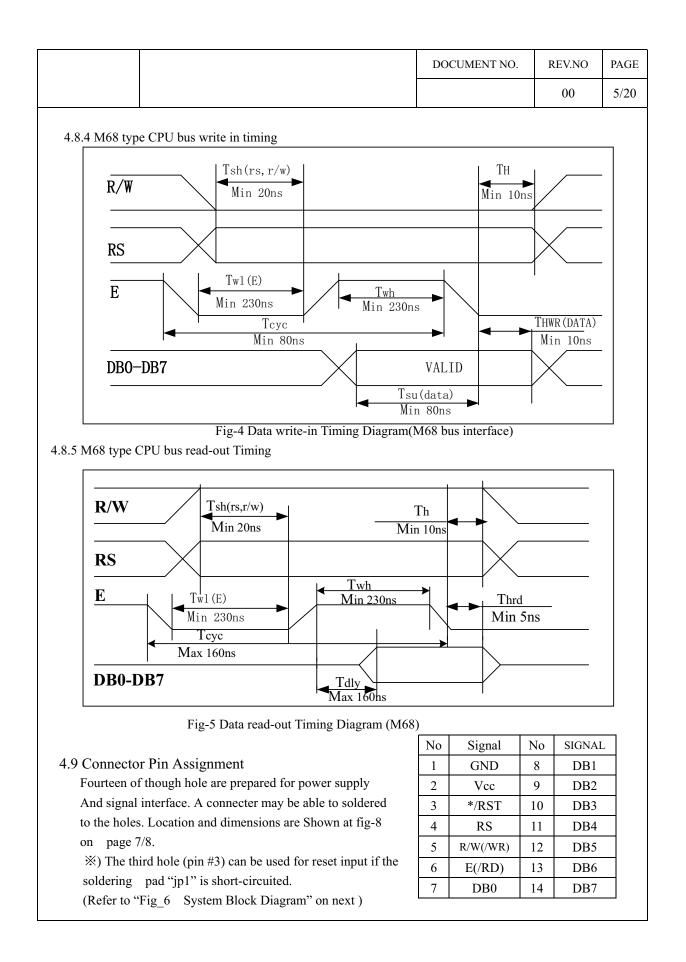
- both parties.
 The expected pagesgram convice parts should be extended by the systemer before the completion of
- 3.3 The expected necessary service parts should be arranged by the customer before the completion of production.

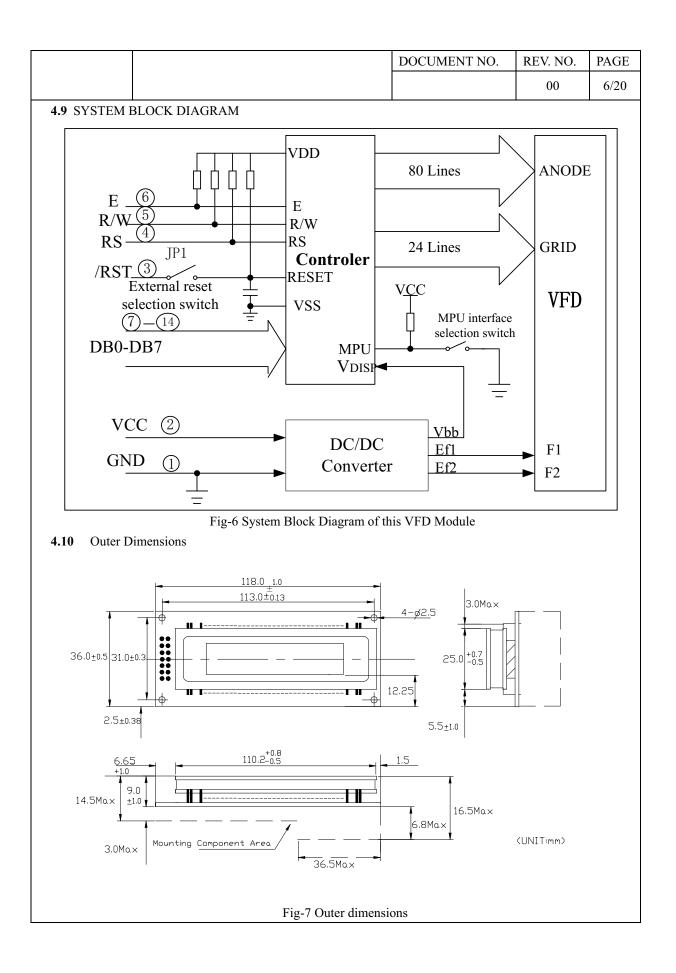
4. PRODUCT SPECIFICATIONS

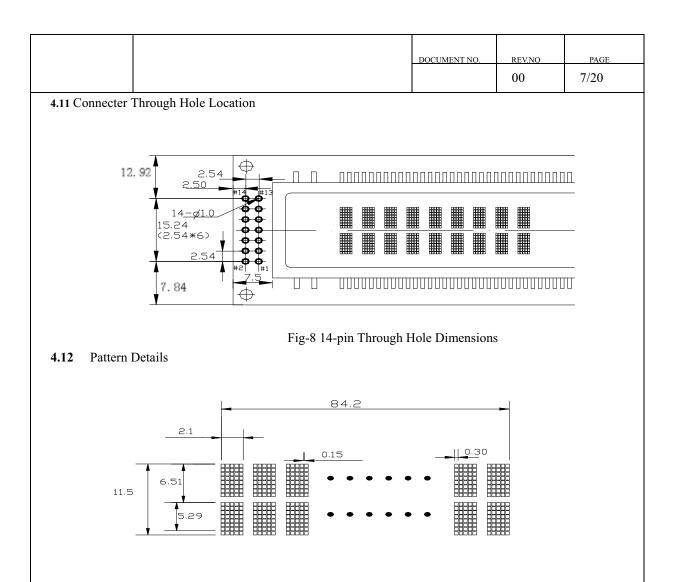
4.1 Type

Table-1


Туре	242MDB1-1
Digit Format	5×8 Dot Matrix


4.2 Outer Dimensions, Weight (See Fig-7 on Page 6/18 for details)


			Table-2
	Parameter	Specification	Unit
Outer	Width	118.0±1.0	mm
Outer	Height	36.0 ± 1.0	mm
Dimensions	Thickness	16.5 Max	mm
	Weight	Typical 50	g


					DO	CUMENT	NO.	REV. NO	PA
								00	3/
4.3	Specification of the Display	/ Pane	el (See Fig-9	on Page 7/1	8 for	details)		Tabl	e-3
	Parameter		Symbol		Speci	fication		Unit	
	Display size		W*h	84.20)*11.5	0		mm	
	Number of digit		W*H	24 di	gits*2	line			
	Character Size (excluding curs	sor)	W*H	2.10*	5.29			mm	
	Character Pitch		W*H	3.3(h)/6.15	(v)		mm	
	Dot Size		W*H	0.30*	0.53			mm	
	Display color		W*H	Blue-	Greer	n (peak	505 nm)		
1.4 E	Environment Conditions							Tab	le-4
	Parameter		Symbol	Min		М	ax	Unit	
	Operating temperature		Topr	-40		+8	85	°C	
	Storage temperature		Tstg	-50		+9	95	°C	
	Humidity(operating)		Topr	0		8	35	°C	
	Humidity(non-operating)		Hstg	0		ç	90	°C	
	Vibration(5-55hz)		-	-		Z	ł	°C	
	shock		-	-		Z	10	°C	
1.5 A	Absolute Maximum Ratings							Tab	le-5
	parameter		Symbol	Min		N	lax	Unit	
	Supply voltage		Vic	-0.5		6	5.0	Vdc	
	Input signal voltage		Vis	-0.5		Vcc	+0.5	Vdc	
1.6 F	Recommend Operating Con	ditio	ns					Tabl	e-6
	Parameter		Symbol	Min	-	Тур.	Max	. Unit	
	Supply voltage		Vcc	4.5		5.0	5.5	Vdc	
	Input signal voltage		Vis	0		-	Vcc	Vdc	
	Operating temperature		Topr	-20		+50	+70	°C	
I.7 C	DC Characteristics (Ta=+25 °C)	Vcc=-	+5.0Vdc)	_				Tabl	e-7
	Parameter		Symbol	Min.	Typ).	Max	Unit	
	Supply current 💥)		Icc	-	150)	165.0	mA	
	Logical input voltage	Н	Vih	0.7 <vcc< td=""><td></td><td></td><td> </td><td></td><td></td></vcc<>					
		L	vil	-			ļ		
	"H" level input current	Vcc	Iih	20					
	Luminance		L	100	200		_	Ft-1	
	Daminunee			(340)	(68	30)		cd/m^2	

%) Icc shows the current when all dots are turneon. The surge current can be approx.3 times the specified supply current at poweron. However, the exact peak surge current amplitude and duration are dependent on the charactetics of the host power supply.

5.FUNCTION DESCRIPTIONS

5.1 Registers in VFD Controller

The VFD controller has two 8-bit registers, an instruction register (IR) and a data register (DR). IR stores instruction codes, such as display clear and cursor shift, and address information for DD-RAM and CG-RAM The IR can only be written from the host MPU.DR temporarily stores data to be written into DD-RAM or CG-RAM and temporarily stores data to be read from DD-RAM or CG-RAM. Data written into the DR from the MPU is automatically written into DD-RAM or CG-RAM by an internal operation. The DR is also used for data storage when reading data from DD-RAM or CG-RAM. When address information is written into the IR, data is read and then stored into the DR from DD-RAM or CG-RAM by internal operation. Data transfer between MPU is then completed when the MPU reads the DR. After the read, data in DD-RAM or CG-RAM at the next address is send to the DR for the next read from the MPU. By the register selector (RS) signal. These two registers can be selected (See Table-8).

					DOCUMENT NO.	REV.NO	PAGE
						00	8/20
Table-8	Register	Selection	on			I	
RS	M68	i8	0	0.	- anotion		
КS	R/W	/RD	/WR	U,	peration		
0	0	1	0	IR write as an internal operation	n (display clear, ect.)		
0	1	0	1	Read busy flag (DB7) and addr	ess counter (DB0 to D	B6)	
1	0	1	0	DR write as an internal operation	on (DR to DD-RAM or	CG-RAM)	
1	1	0	1	DR read as an internal operation	n (DD-RAM or CG-R	AM to DR)	

5.1.1 Busy Flag (BF)

When the busy flag is 1, the controller is in the internal operation mode, and the next instruction will not be accepted. When RS = 0 and R/W=1 (Table-8), the busy flag is output to DB7.

The next instruction must be written after ensuring that the busy flag is 0.

5.1.2 Address Counter (ACC)

The address counter (ACC) assigns addresses to both DD-RAM and CG-RAM. When an address of an instruction is written into the IR, the address information is sent from the IR to the ACC. Selection of either DD-RAM or CG-RAM is also determined concurrently by the instruction. After writing into (reading from) DD-RAM or CG-RAM, the ACC is automatically incremented by 1 (decremented by 1). The ACC contents are then output to Db0 to Db6 when RS =0 and R/W=1 (See Table-8).

5.1.3 Display Data RAM (DD-RAM)

Display data RAM (DD-RAM) stores display data represented in 8-bit character codes.

The area in DD-RAM that is not used for display can be used as general data RAM.

See Table-9 for the relationships between DD-RAM addresses and positions on the VFD

Table-9 Relation between Digit Position and DD-RAM data

	Left End	2 nd Column	3 rd column	 15 th Column	Right End
1 st Row	00H	01H	02H	 0EH	0FH
2 nd Row	40H	41H	42H	4EH	4FH

5.1.4 Character Generator ROM (CG-ROM)

The character generator ROM (CG-ROM) generates character patterns of 5x8 dots from 8-bit character codes (table-10). It can generate 240 kinds of 5x8 dot character patterns.

The character fonts are shown on the following page. The character codes 00H to 0FH are allocated to the CG-RAM.

5.1.5 Character Generator RAM (CG-RAM)

In the character generator RAM (CG-RAM), the user can rewrite character patterns by program. For 5×8 dots and cursor, eight character patterns can be written. Write into DD-RAM the character codes at the

addresses shown as the left column of Table-10 to show

the character patterns stored in CG-RAM.

See Table-11 for the relationship between CG-RAM

addresses and data and display patterns and refer to

Fig-10 for dot assignment of VFD.

Areas that are not used for display can be used as general data RAM

2	3	4	5
7	8	9	10
12	13	14	15
17	18	19	20
22	23	24	25
27	28	29	30
32	33	34	35
37	38	39	40
	7 12 17 22 27 32	7 8 12 13 17 18 22 23 27 28 32 33	7 8 9 12 13 14 17 18 19 22 23 24 27 28 29 32 33 34

																	00
	-in Fo	nt T		(PT6)	214.0	001 E	nglis	h/la									
MSB	- m FC	1	2	3	4	5	inglis 4	7	a	se)	A	8	e	b	E	F	
0				<u>ات</u>						H							
1																	
z																	
			#														
3																	
4																	
9																	
6			8														
7																T	
•			Ľ														
9																	
*																	
в																	
c																	
D																	
ę										ł							
,																	

																	DO	CUM	ENT N	NO.	RI	EV.NO	PAG
																	00	10/2					
Ta	able							veen CG-RAM address, Character Codes (DD-RAM) AND 5*8 (wh										(whi	it Cursor)			
						er Pa	atter	<u> </u>			<i>.</i>												
				er Co				C	CG-R	AM .	ADD	RES	S				haract						
P		` 	1	M DA	<i>,</i>		D							D	D	,	CG-R		,	D	D		
D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	A 5	A 4	A 3	A 2	A 1	A 0	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0		
/	0	5	4	5	2	1	0	5	4	3	2	0	0	/ ×	0 ×	×	4	2	3	4	5		
											0	0	1	×	X	×	6	7	8	9	10		
											0	1	0	X	X	X	11	12	13	14	15	Chara	
								<u>^</u>			0	1	1	×	×	×	16	17	18	19	20	Patter	n(0)
0	0	0	0	×	0	0	0	0	0	0	1	0	0	\times	×	×	21	22	23	24	25		
											1	0	1	\times	×	×	26	27	28	29	30		
											1	1	0	\times	×	×	31	32	33	34	35		
											1	1	1	\times	X	Х	36	Х	Х	X	Х	Curs	sor
											0	0	0	\times	\times	×	1	2	3	4	5		
											0	0	1	\times	×	×	6	7	8	9	10		
											0	1	0	\times	\times	×	11	12	13	14	15	Chara	cter
0	0	0	0	×	0	0	1	0	0	1	0	1	1	\times	×	×	16	17	18	19	20	Pattern	
											1	0	0	X	×	×	21	22	23	24	25		
											1	0	1	X	X	X	26	27	28	29	30		
											1	1	0	×	X	×	31	32 ×	33	34	35	Com	
											1	1	1	~	Х	~	36	X	Х	×	×	Curs	sor
											0	0	0	\sim	\sim	X	1	2	3	4	5		
											0	0	0	\times	×	×	6	2	3	4	5 10		
											0	0	1		~		0	/	0	2	10		
																						Chara	
0	0	0	0	Х	1	1	1	1	1	1												Patter	n(7)
																						Curs	or

2. CG-RAM address bits 0 to 2 designate the character the patter line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line If bit 4of the 8th line data is 1.1 bit will light up the cursor regardless of the cursor presence

3. Character pattern row positions correspond to CG-RAM data bits 0 to 4 (bit 4 being at the left)

4. As show Table-11 CG-RAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the display example above can be selected by either character code 00H or 08H

5. 1 for CG-ram data corresponds display selection and 0 to non-selection."×" Indicates non-effect.

DOCUMENT NO.	REV.NO	PAGE
	00	11/20

5.2 Interfacing to the MPU

This VFD module can interface in either two 4-bir operations or one 8-bit operation, thus allowing interfacing with 4-bit or 8-bit MPUs.

※ For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. When to use 4-bit parallel data transfer, DB0 to DB3 keep "H" or "L". The data transfer between the VFD module and the MPU is completed after the 4-bit data has been transferred before the four low order bits (for 8-bit operation. DB0 to DB3).

The busy flag (BF) are performed before transferring the higher 4 bits. BF checks are not required before transferring the lower 4 bits.

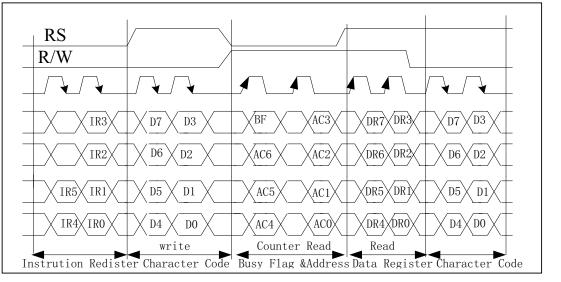


Fig 4-biti transfer Example (M68)

%For 8-bit interface data, all eight bus lines (DB0 to DB7) are used.

5.3 Reset Function

5.3.1 Power-on reset

An internal reset circuit automatically initializes the module when the power is turn on. The following instructions are executed during the initialization.

- Display clear Fill the DD-RAM with 20H (Space Code)
- Set the address counter to 00H Set the address counter (ACC) to point DD-RAM.

		DOCUMENT NO.	REV.NO	PAGE
			00	12/20
3)	Display on/off control:			•
	D=0; Display off			
	B=0; Blinking off			
	C=0; Cursor off			
4)	Entry mode set:			
	L/D=1; Increment by 1			
	S=0; No shift			
5)	Function set			
	IF=1; 8-bit interface data			
	BR0=BR1=0; Brightness=100%			
	N=1; 2-line display			
6)	CPU interface type			
	When JP0=Open; M68 type (Factory Setting)			
	When JP0=Short; i80 type			
5.3	.2 External			

In order to use this function, a user must connect the soldering pad "JP1". When the soldering pad "JP1" is open-circuited, this function is not valid and when it is short-circuited, the third hole (pin #3) is used for external reset input. If low level signal longer than 500ns is input into the hole, reset function being same as power on reset is executed.

5.4 Soldering Land Function

Some soldering lands are prepared on the rear side of PCB, to set operating mode of the display module. A soldering iron is required to short soldering lands.

JP0	JP1	FUNCTION	
Open	\times	M68 type	MDU type Selection
Short	×	I80 type	MPU type Selection
\times	Open	Pin #3:No connection	External Reset Section
×	Short	Pin #3: /Reset signal input (Low Active)	External Reset Section
Open	Open	Setting at Factory	

Table-12 Soldering Land OPEN/SHORT Combination Table

 \times :Don't care

	DOCUMENT NO.	REV.NO	PAGE
		00	13/20

6. INSTRUCTIONS

6.1 Outline

Only the instruction register (IR) and data register (DR) of the VFD controller can be controlled by the user's MPU. Before starting the internal operation of the controller, control information is temporarily stored into these registers to allow interfacing with various MPUs, which operate at different speeds, or various peripheral control devices. The internal operation of the controller is determined by signals sent from the MPU. These signals, which include register selection signal (RS), read/write signal (R/W), and the data bus (DB0 to DB7), make up the controller instructions (See Table-13). There are four categories of instructions that:

- designate controller functions, such as display format, data length, ect.
- Set internal RAM addresses
- Perform data transfer with internal RAM
- Perform miscellaneous functions

Normally instructions that perform data transfer with interval RAM are used the most.

However, auto-increment by 1 (or auto-decrement by 1) of internal RAM addresses after each data write can lighten the program load of the MPU. Since the display shift instruction can perform concurrently with display data write, the user can minimize system development time with maximum programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy flag/address read instruction can be executed. Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0 before sending another instruction from the MPU.

Note: Be sure the controller is not in the busy state (BF=0) before sending an instruction from the MPU to the nodule. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself.
 Refer to Table-13 for the list of each instruction execution time.

								D	OCUMI	ENT NO	. REV.NO	PAG	
	~										00	14/2	
able –13 Instruction	Set				C(DDE							
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Descriptio	m	
Display clear	0	0	0	0	0	0	0	0	0	1	Clear all display and sets DD-ram address 0 in address counter		
Cursor Home	0	0	0	0	0	0	0		1	×	SetsDIaddress0inAlsoreturnsdisplaybeingtotheopositionDD	DRAM ACC the shiftee rigina	
Entry Mode set	0	0	0	0	0	0	0	1	I/D	S	Sets the direction specifies c shift. operations are WR/RD data	curson and lisplay These during	
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Sets all c ON/OFF(D),cu ON/OFF(C),cu blink of cha position(B)	irsor	
Cursor or display Shift	0	0	0	0	0	1	S/C	R/L	×	×	Shifts displa cursor, k DD-RAM cont	eeping	
Function set	0	0	0	0	1	IF	N	×	BR1	BR0	Sets data lengt number of c lines (N), brightness (BR1, BR0)		
CGRAM address Setting	0	0	0	1			AC	CG			Sets the CG address.		
DDRAM Address setting	0	0	1				ADD				Sets the DD address.		
Busy flag & address setting	0	1	BF	ACC							Read busy flag (BF) and address counter (ACC).		

				DOCUMENT NO.	REV.NO	PAGE
					00	15/20
Data write to CG or DDRAM	1	0	Data writing	Writes data into Co DD-RAM	G-RAM or	
Data Read from CG or DDRAM	1	1	Data reading	Read data from CO DD-RAM	G-RAM or	
*NOTE	I/D=0 S=1: S/C= S/C= R/L= IF=1: IF=0: N=1: N=0: BR1, BF=1 BF=0	Displa Curson 1: Disp 0: Cur 1: Shift 2: Shift 3: 8bits 4: 4bits 2: Line 1: Line BR0=	rement y shift enabled t shift enabled blay shift sor move it to the right it to the left es display 00: 100% 01: 75% 10: 50% 11: 25% (Internally operating). tusy (Instruction acceptable)	[Abbreviation] DD-RAM: Display Da CG-RAM: Character RAM ACG: CG-RAM Addr ADD: DD-RAM Addr ACC: Address Counte	Generater ess ress	
6.2 Instruction 6.2.1 Display		ripti	on			
DB7 I 0 RS=0, R/V This instruction (1) Fills all loca (2) Clears the co (3) Sets the disp (4) Sets the add (5) If the cursor	DB6 D 0 0 V=0 s tions in ontents lay for ress co ress co s disp	0 the di of the zero ci unter(<i>A</i> layed,	DB4DB3DB2DB1DB0000001splay data RAM (DD-RAM) wi address counter (ACC) to 00H. haracter shift (returns original p ACC) to point to the DD-RAM. moves the cursor to the left mo ACC) to increment on the each	th 20H (Blank-character) osition). st character in the top lin	e (upper line)	ı.

									D	OCUMENT	'NO.	REV.NO	PAG
												00	16/2
6.2.2 Cur	sor Ho	ome											
	DB7	DB6 I	DB5	DB4	DB3 I	DB2 D	B1 DI	30					
	0	0	0	0	0	0	$1 \rightarrow$	<					
	R	S=0, R/	/W=0						02H	to 03H	X · Dor	i't care	
This inst		<i></i>							0211		. Doi	i t curc	
(1) Clea			s of th	ne addr	ess cou	unter (A	ACC) to	00H.					
(2) Sets													
(3) Sets					· •				osition).				
(4) If th	e curso	r is disj	played	d, mov	es the l	left mo	st chara	cter in	the top	line (uppe	r line).		
6.2.3 Entr	ry Mo	de Set											
	DB7	DB6 I	DB5	DB4	DB3	DB2	DB1	DB0					
	0	0	0	0	0	1	I/D	S					
	RS	=0, R/	W=0							04H to ()7H		
			•		hich the	e conte	nts of t	he add	ress cou	inter (ACC) are n	noumed and	er eve
access to I/D=1: T	DD-R	AM or	CG-I	RAM.				he addi	ress cou	inter (ACC) are n	nounied and	er eve
I/D=1: T	o DD-R The addi	AM or ress co	CG-I unter	RAM. (ACC)	is incr	emente	ed.	he addi	ress cou	inter (ACC	.) are n	noumed and	er eve
I/D=1: T I/D=0: T	DD-R The add The add	AM or ress con ress con	CG-I unter unter	RAM. (ACC) (ACC)) is incr) is dec	remente rement	ed. ed.			,			er eve
I/D=1: T I/D=0: T The S bit	DD-R The add The add t enable	AM or ress con ress con e displa	CG-I unter unter ay shif	RAM. (ACC) (ACC) ft, inste) is incr) is dec	remente rement	ed. ed.			inter (ACC			er eve
I/D=1: T I/D=0: T The S bit S=1:	DD-R The add The add	AM or ress con ress con e displa y shift	CG-I unter unter ay shif enable	RAM. (ACC) (ACC) ft, inste ed.) is incr) is dec	remente rement	ed. ed.			,			er eve
I/D=1: T I/D=0: T The S bin S=1: S=0:	DDD-R The add The add t enable Display Cursor	AM or ress con ress con e displa y shift e	CG-I unter unter ay shif enable	RAM. (ACC) (ACC) ft, inste ed. d.) is incr) is dec: ead of c	remente rement cursor s	ed. ed. shift , a	fter eac	h write	,	the DD		er eve
I/D=1: T I/D=0: T The S bin S=1: S=0: The direct	DD-R The addr The addr t enable Display Cursor ction in	AM or ress con ress con e displa y shift e shift e n which	CG-I unter unter ay shift enable nable	RAM. (ACC) (ACC) ft, inste ed. d. lisplay) is incr) is dec: ead of c is shift	remente remente cursor s ted is o	ed. ed. shift , a pposite	fter eac	h write se to tha	or read to t of the cu	the DD		
I/D=1: T I/D=0: T The S bin S=1: S=0: The direct For exar	DDD-R The add The add The add t enable Display Cursor ction in nple, if	AM or ress con ress con e displa y shift e shift e n which f S=0 a	CG-H unter unter ay shift enable nable the d	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t) is incr) is dect ead of c is shift he curr	remente remente cursor s ced is o sor wo	ed. ed. shift , a pposite uld shi	fter eac in sens ft one of	h write se to tha characte	or read to t of the cu	the DD rsor. ight afte	-RAM.	vrites
I/D=1: T I/D=0: T The S bin S=1: S=0: The direct For exar	DDD-R The add The add The add t enable Display Cursor ction in nple, if	AM or ress con e displa y shift e shift e n which f S=0 a	CG-H unter ay shift enable a the d and I/ f S=1 a	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/I) is incr) is dect ead of c is shift he curr	remente remente cursor s ced is o sor wo	ed. ed. shift , a pposite uld shi	fter eac in sens ft one of	h write se to tha characte	or read to t of the cu	the DD rsor. ight afte	-RAM. er a MPU v	vrites
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAM maintain	DDD-R The add The add The add t enable Display Cursor ction in mple, if M. How t its pos sor will	AM or ress con ress con e displa y shift e shift e which f S=0 a vever if sition of all alrea	CG-H unter ay shift enable a the d and I/ f S=1 a n pane ady b	RAM. (ACC) (ACC) ed. d. lisplay D=1, t and I/E el. e shiff) is incr) is dec: ead of c is shift he cur D=1, th ted in	remente rement cursor s ted is o sor wo e displa the di	ed. ed. shift, a pposite uld shi ay woul rection	fter eac in sens ft one o ld shift selecto	h write se to tha characte one cha ed by	or read to t of the cu or to the ri racter to the I/D during	the DD rsor. ight afte he left a g reads	-RAM. er a MPU v nd the curso of the DI	vrites or wou
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAN maintain The curr irrespect	DDD-R The add The add The add t enable Display Cursor ction in mple, if M. How t its pos sor will ive of t	AM or ress con e displa y shift e which f S=0 a vever if sition of ll alrea the valu	CG-H unter unter ay shift enable anable the d and I/ f S=1 a n pane ady b ue of S	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/I el. e shift S. Simi) is incr) is dec: ead of c is shift he cur D=1, th ted in larly re	remente remente cursor s ced is o sor wo e displa the di eading s	ed. ed. shift, a pposite uld shi ay woul rection	fter eac in sens ft one o ld shift selecto	h write se to tha characte one cha ed by	or read to t of the cu r to the ri racter to th	the DD rsor. ight afte he left a g reads	-RAM. er a MPU v nd the curso of the DI	vrites or wou
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exan DD-RAM maintain The curr irrespect Also bot	DDD-R The add The add The add The add Display Cursor ction in mple, if M. How tits pos sor will ive of t h lines	AM or ress con ress con e displa y shift e shift e n which f S=0 a vever if sition or all alrea the valu are shift	CG-I unter ay shift enable in the d and I/ f S=1 in pane ady b ie of S fted si	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/E el. e shift S. Simi imultar) is incr) is dec: ead of c is shift he cur D=1, th ted in larly re neously	remente remente cursor s red is o sor wo e displa the di eading a 7.	ed. ed. shift, a pposite uld shi ay woul rection and wri	fter eac in sens ft one o d shift selecto ting the	h write se to tha characte one cha ed by e CG-R.	or read to t of the cu or to the ri racter to the I/D during	the DD rsor. ight afte he left a g reads	-RAM. er a MPU v nd the curso of the DI	vrites or wou
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exan DD-RAM maintain The curr irrespect Also bot	DDD-R The add The add The add t enable Display Cursor ction in mple, if M. How t its pos sor will ive of t	AM or ress con ress con e displa y shift e shift e n which f S=0 a vever if sition or all alrea the valu are shift	CG-I unter ay shift enable in the d and I/ f S=1 in pane ady b ie of S fted si	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/E el. e shift S. Simi imultar) is incr) is dec: ead of c is shift he cur D=1, th ted in larly re neously	remente remente cursor s red is o sor wo e displa the di eading a 7.	ed. ed. shift, a pposite uld shi ay woul rection and wri	fter eac in sens ft one o d shift selecto ting the	h write se to tha characte one cha ed by e CG-R.	or read to t of the cu or to the ri racter to the I/D during	the DD rsor. ight afte he left a g reads	-RAM. er a MPU v nd the curso of the DI	vrites or wou
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exan DD-RAM maintain The curr irrespect Also bot	DDD-R The add The add The add The add Display Cursor ction in mple, if M. How tits pos sor will ive of t h lines	AM or ress con ress con e displa y shift e shift e n which f S=0 a vever if sition or all alrea the valu are shift	CG-I unter unter ay shift enable and l/ f S=1 and I/ f S=1 and pane ady b ue of S fted si	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar d Disp) is incr) is dec: ead of c is shift the cur D=1, the larly re neously lay shift	remente remente cursor s red is o sor wo e displa the di eading a 7.	ed. ed. shift, a pposite uld shi ay woul rection and wri e "Entr	fter eac in sens ft one o d shift selecto ting the	h write be to tha characte one cha ed by e CG-R. e Set"	or read to t of the cu or to the ri racter to the I/D during	the DD rsor. ight afte he left a g reads s shift t	-RAM. er a MPU v nd the curso of the DI he cursor.	vrites or wou
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAN maintain The curs irrespect Also bot Table- I/D	DDD-R The addr The addr The addr t enable Display Cursor ction in mple, if M. How t its pos sor will ive of t h lines -14 Cur S	AM or ress con e displa y shift of shift e n which f S=0 a vever if sition of ll alrea the valu are shift sor mo	CG-I unter unter ay shift enable anable and I/ f S=1 a and J/ f S=1 a and ady b ue of S fited si ove and	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar d Disp fter wri) is incr) is dec: ead of c is shift he cur D=1, th larly re neously lay shift iting D	rementer rementer cursor s ced is o sor wo e displa the di eading a y. ft by th D-RAM	ed. ed. shift, a pposite uld shi ay woul rection and wri e "Entr	fter eac in sens ft one o d shift selecto ting the y Mode	h write ee to tha characte one cha ed by e CG-R. e Set" A	or read to t of the cu or to the ri racter to the I/D during AM alway	the DD rsor. ight afte he left a g reads s shift t g DD-R	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data	vrites or wou
I/D=1: T I/D=0: T The S bir S=1: S=0: The direct For exar DD-RAM maintain The curr irrespect Also bot Table-	DDD-R The add The add The add The add Display Cursor ction in mple, if M. How tits pos sor will tive of t h lines -14 Cur	AM or ress con e displa y shift of shift e n which f S=0 a vever if sition of ll alrea the valu are shift sor mo	CG-I unter ay shift enabled in abled in abled and I/ f S=1 a n pand ady b is of S fited sin ve and Af	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar d Disp fter wri) is incr) is dec: ead of c is shift he cur D=1, th larly re neously lay shift iting D	rementer rementer cursor s ced is o sor wo e displa the di eading a y. ft by th D-RAM	ed. ed. shift, a pposite uld shi ay woul rection and wri a "Entr I data	fter eac in sens ft one o d shift selecto ting the y Mode	h write ee to tha characte one cha ed by e CG-R. e Set" A	or read to t of the cu or to the ri racter to the I/D during AM alway fter reading	the DD rsor. ight afte he left a g reads s shift t g DD-R	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data	vrites or wou
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAM maintain The curr irrespect Also bot Table- I/D 0	DDD-R The add The add The add The add Display Cursor ction in mple, if M. How to its pos sor will two of t h lines -14 Cur S 0	AM or ress con- ress con- e displa y shift e shift e n which f S=0 a vever if sition or Il alrea the value are shift resor mo- left.	CG-I unter ay shift enable anable anable anable frady b and $I/2$ f S=1 a and $I/2$ f S=1 a and g b a constant fted size ove and Af	RAM. (ACC) (ACC) (ACC) ft, inste- ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar <u>d Disp</u> fter wri- or mo) is incr) is dec: ead of c is shift he cur D=1, the ted in larly re neously lay shift iting D ves or	remente remente cursor s red is o sor wo e displa the di eading : 7. <u>ft by th</u> D-RAN ne char	ed. ed. shift, a pposite uld shi ay woul rection and wri a "Entr I data	fter each in sens ft one of d shift selector ting the y Mode	h write ee to tha characte one cha ed by e CG-R. e Set'' A The cu to the	or read to t of the cu r to the ri racter to the I/D during AM alway fter reading rsor move eft.	the DD rsor. ight afte he left a g reads s shift t g DD-R es one cl	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data	vrites or wou D-RAN
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAN maintain The curs irrespect Also bot Table- I/D	DDD-R The addr The addr The addr t enable Display Cursor ction in mple, if M. How t its pos sor will ive of t h lines -14 Cur S	AM or ress con- ress con- e displa y shift e shift e n which f S=0 a vever if sition or Il alrea the value are shift resor mo- left.	CG-I unter ay shift enabled inabled inabled and I/ f S=1 a n pand ady b ie of S fited si ove and Af e curs	RAM. (ACC) (ACC) (ACC) ft, inste- ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar <u>d Disp</u> fter wri- or mo) is incr) is dec: ead of c is shift he cur D=1, the ted in larly re neously lay shift iting D ves or	remente remente cursor s red is o sor wo e displa the di eading : 7. <u>ft by th</u> D-RAN ne char	ed. ed. shift, a pposite uld shi ay woul rection and wri <u>e "Entr</u> <u>A data</u> racter t	fter each in sens ft one of d shift selector ting the y Mode	h write ee to tha characte one cha ed by e CG-R. e Set'' A The cu to the	or read to t of the cu or to the ri racter to the I/D during AM alway fter reading rsor move left.	the DD rsor. ight afte he left a g reads s shift t g DD-R es one cl	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data haracter	vrites or wou D-RAN
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAM maintain The curr irrespect Also bot Table- I/D 0 1	DD-R The add The add The add The add Display Cursor ction in mple, if M. How to its pos sor will two of t h lines -14 Cur S 0 0	AM or ress con ress con e displa y shift e shift e n which f S=0 a vever if sition of ll alrea the valu are shift sor mo The left. The righ	CG-I unter ay shift enabled and l/ f S=1 a ady b if con so fited so ove and Aff cours cours cours at.	RAM. (ACC) (ACC) (ACC) ft, inste- ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultan d Displ ter wri- or mo) is incr) is dec: ead of c is shift he cur D=1, the ted in larly re neously lay shift iting D wes or	remente rement cursor s red is o sor wo e displa the di eading a 7. ft by th D-RAM ne chan	ed. ed. shift, a pposite uld shi ay woul rection and wri <u>e "Entr</u> <u>A data</u> racter t	fter each in sens ft one of d shift selector ting the y Mode o the o the	h write se to tha characte one cha ed by e CG-R. e Set" A The cu to the The cu the rig	or read to t of the cu r to the ri racter to the I/D during AM alway fter reading rsor move left. ursor move ht.	the DD rsor. ight afte he left a g reads s shift t g DD-R s one cl ves one	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data haracter	vrites or wou D-RAN
I/D=1: T I/D=0: T The S bin S=1: S=0: The direct For exar DD-RAM maintain The curr irrespect Also bot Table- I/D 0	DDD-R The add The add The add The add Display Cursor ction in mple, if M. How to its pos sor will two of t h lines -14 Cur S 0	AM or ress con ress con e displa y shift e shift e n which f S=0 a vever if sition of a larea the valu are shift sor mo The left. The righ	CG-I unter unter ay shift enable and l/ f S=1 a n pand ady b ie of S fted si ove and Af c curs e curs at.	RAM. (ACC) (ACC) ft, inste ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar <u>d Disp</u> ter wri or mo or mo) is incr) is dec: ead of c is shift he cur D=1, the ted in larly re neously lay shift iting D wes or	remente rement cursor s red is o sor wo e displa the di eading a v. ft by th D-RAN ne char ne char	ed. ed. shift, a pposite uld shi ay woul rection and wri and wri a cter t racter t	fter each in sens ft one of d shift selector ting the y Mode o the o the	h write se to tha characte one cha ed by e CG-R. e Set" A The cu to the The cu the rig	or read to t of the cu r to the ri racter to th I/D during AM alway fter readin rsor move left. ursor move ht. ursor mov	the DD rsor. ight afte he left a g reads s shift t g DD-R s one cl ves one	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data haracter	vrites or wou D-RAN
I/D=1: T I/D=0: T The S bit S=1: S=0: The direct For exar DD-RAM maintain The curr irrespect Also bot Table- I/D 0 1	DD-R The add The add The add The add Display Cursor ction in mple, if M. How to its pos sor will two of t h lines -14 Cur S 0 0	AM or ress con e displa y shift e shift e n which f S=0 a vever if sition or ll alrea the valu are shift sor mo In the left. The righ The righ	CG-I unter ay shift enable and l/ S=1 and l/ S=1 and l/ S=1 and manual and l/ S=1 and manual field si and	RAM. (ACC) (ACC) (ACC) ft, inste- ed. d. lisplay D=1, t and I/I el. e shift S. Simi imultar d Disp tter wri- or mo or mo lay shi nout cu ay shift) is incr) is dec: ead of c is shift he cur D=1, th ted in larly re neously lay shift iting D wes or wes or ifts or	remente remente cursor s red is o sor wo e displa the di eading : /. ft by th D-RAN he chan he chan he chan he chan he chan charac	ed. ed. shift, a pposite uld shi ay woul rection and wri and wri a cter t racter t	fter each in sens ft one of d shift selector ting the y Mode o the o the o the	h write se to tha characte one cha ed by e CG-R. e Set'' A The cu to the The cu the rig The c the lef	or read to t of the cu r to the ri racter to th I/D during AM alway fter readin rsor move left. ursor move ht. ursor mov	the DD rsor. ight afte he left a g reads s shift t g DD-R s one cl /es one	-RAM. er a MPU v nd the curso of the DI he cursor. RAM data haracter	vrites or wou D-RAN

									DOCUMENT NO.	REV.NO	PAGE
										00	17/2
6.2.4 Dis	play O	N/OF	'F								
	DB7 I	DB6 I	DB5	DB4	DB3	DB2	DB1	DB0			
	0	0	0	0	1	D	С	В			
	RS	=0, R/	W=0						08H to 0FH		
									X: Don't care		
This instru	ction co	ntrols	variou	ıs featı	ires of	the disp	olay.				
D=1:	Display	v on,		D=0:	Displa	y off.					
C=1:	Cursor	on		C=0:	Curson	r off.					
	Blinkin	-			blinkin	-					
-		-		-					display of a character.		
The curso			-	•	about	1.0 Hz	and D	UTY 50	%)		
6.2.5 Cu					DDA	DDA	DD1	DDA			
	DB7	DB6	DB5	DB4		DB2	DB1	DB0			
	0	0	0	1	S/C	R/L	0	0			
	RS	=0, R/	W=0						10H to 1FH		
									\times : Don't care		
			the di	splay a	and/or	moves	the cur	sor on c	haracter to the left or r	ight, without	readin
or writi	-										
						or or mo	ovemei	nt of bot	h the cursor and the dis	play.	
	Shift bot Shift cur			aispia	ly						
			•	or rig	ht ward	l move	nent of	f the dis	play and/or cursor.		
R/L=1:				-	iit wurc	1110 / 01	nent of	t the disj	pluy und of oursol.		
R/L=0:				-							
Table-1	5 Cursor	/Displ	ay shi	ft							
S/C	R/L	Cur	rsor shi	ift					Display shift		
0	0	Mo	ve one	e chara	cter to	the left			No shift		
0	1	Mo	ve one	chara	cter to	the rigl	nt		No shift		
	0	Shi	0	aharaa	ter to t	he left y	with di	Shift one character	to the left		
1	0	SIII	It one	charac			with ai	spiay	Shift one character		

									DOCUMENT NO.	REV.NO	PAGI
										00	18/2
6.2.6.Fu	nction	Set									
		DB6	1	1	DB3	DB2	DB1	DB0	Ţ		
	0	0	1	IF	Ν	×	BR1	BR2			
	R	S=0, R	/W=0						20H to 3FH		
									X: Don't care)	
This ins	truction	n sets v	width	of data	a bus li	ne.(wh	en to us	se paral	lel interface. IM=1). Th	ne number of	displa
line and	bright	ness co	ontrol.								
This ins	truction	n initia	lizes tl	ne syst	em, and	l must	be the f	irst inst	ruction executed after p	ower-on.	
The IF b	it sele	cts bety	ween a	n 8-bit	t or 4-b	it bus v	vidth in	terface.			
					ng DB'						
					ng DB'						
The N b											
			-	•	-		tput A1				
			-		-		-		. A41 to A80 fixed Low		
BR1, BI	X0 flag	is con		-			o modu	-	se width of Anode output	ut as follows.	
			BR1		BRO)		Bright			
			0		0			100			
			0		1				5%		
			1		0)%		
6.2.7 S	at CC		ا ملمار	1	1			25	5%		
0.2.7 5		J-KAN 7 DB6			DB3	DB2	DB1	DB0			
	0	1		DD4	AC		DDI	DB0	l		
	0	1			AC	U					
	R	S=0, R	/W=0						40H to 7FH		
									X: Don't car€)	
This instr	uction										
(1) Load								<i>,</i>			
(2) Sets											
									nts of the address cou		
	•			•			-		nined by the "Entry Mo		
									essing CG-RAM, is 6-bi	t, so the cour	iter wi
-					ore tha	n 64 by	tes of c	lata are	written to CG-RAM		
6.2.8 S					DD2	001	וחח				
		7 DB6	DB3	DB4	DB3	DB2	DB1	DB0	Ţ		
	1				ADI)					
	R	S=0, R	/W=0						80H to A7H (1	-Line)	
									C0H to E7h (2	2-line)	
									X: Don't car€)	

DOCUMENT NO.	REV.NO	PAGE
	00	19/20

This instruction

(1) Loads a new 7-bit address into the address counter (ACC).

(2) Sets the address counter (ACC) to point to the DD-RAM.

Once the "Set DD-RAM Address" instruction has been executed, the contents of the address counter (ACC) will be automatically modified after each access of DD-RAM, as selected by the "Entry Mode Set" instruction.

Table-16 Valid DD-RAM address Ranges

	Number of Character	Address Range
1 st line	40	00H to 27H
2 nd line	40	40H to 67H

6.2.9 Read Busy Flag and Address

DB7	DB6 DB5	DB4	DB3	DB2	DB1	DB0
BF			ACC	C		

RS=0, R/W=1

Read busy flag and address reads the flag (BF) indicating that the system is now internally operating on a previously received instruction. If BF is 1, the internal operation is in progress.

BF=1: busy state

BF=0: ready for next instruction, command receivable.

The next instruction will not be accepted until BF is reset to 0.Check the BF status before the next write operation. At the same time, the value of the address counter (ACC) in binary AAAAAAA is read out. This address counter (ACC) is used by both CG-RAM and DD-RAM address and its value is determined by the previous instruction. The address counter are the same as for instructions set CG-RAM address and set DD-RAM address.

6.2.10 Write Data to CG or DD-RAM

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			_				

Data Read

RS=1, R/W=1

This instruction writes 8-bit binary data (DB7 to DB0) from CG-RAM or DD-RAM.

The previous designation determines whether CG-RAM or DD-RAM is to be read.

Before entering this read instruction, either CG-RAM or DD-RAM address set instruction must be executed. If not executed, the first read data will be invalid. When serially executing read instructions, the next address data is normally read from the second read. The address set instructions need not be executed just before this read instruction when shifting the cursor shift instruction (when reading out DD-RAM). The operation of the cursor shift instruction is the same as the set DD-RAM address instruction.

After a read, the entry mode automatically increases or decreases the address by 1.

DOCUMENT NO.	REV.NO	PAGE	
	00	20/20	

Note: The address counter (ACC) is automatically incremented or decremented by 1 after the write instructions to CG-RAM or DD-RAM are executed. The RAM data selected by the ACC cannot be read out at this time even if read instructions are executed. Therefore, to correctly read data, execute either the address set instruction or cursor shift instruction (only with DD-RAM), then just before reading the desired data, execute the read instruction from the second time the read instruction is sent.

7. 0PERATING RECOMMENDATIONS

- 7.1 Avoid applying excessive shock or vibration beyond the specification for the VFD module.
- 7.2 Since VFDs are made of glass material, careful handling is required.i.e. Direct impact with hard material to the glass surface (especially exhaust tip) may crack the glass.
- 7.3 When mounting the VFD module to your system, leave a slight gap between the VFD glass and your front panel. The module should be mounted without stress to avoid flexing of the PCB.
- 7.4 Avoid plugging or unplugging the interface connection with the power on, otherwise it may cause the severe damage to input circuitry.
- 7.5 Slow starting power supply may cause non-operation because one chip Mico won't be reset.
- 7.6 Exceeding any of maximum ratings may cause the permanent damage.
- 7.7 Since the VFD modules contain high voltage source, careful handing is required during powered on.
- 7.8 When the power is turned off, the capacitor dose not discharge immediately. The high voltage applied to the VFD must not contact to the ICs. And the short-circuit of mounted components on PCB within 30 times the specified current consumption when the power is turned on.
- 7.9 The power supply must be capable of providing at least 3 times the rated current, because the surge current can be more than 3 times the specified current consumption when the power is turned on.
- 7.10 Avoid using the module where excessive noise interference is expected. Noise may affects the Interface signal and causes improper operation. And it is important to keep the length of the interface cable less than 50cm.
- 7.11 Since all VFD modules contain C-MOS ICs, anti-static handing procedures are always required.