

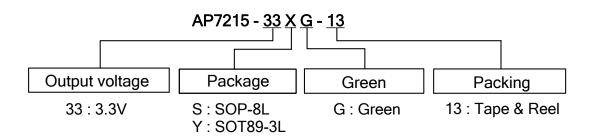
600mA CMOS LDO

Features

- Very Low Dropout Voltage
- Low Current Consumption: Typ. 50μA
- Output Voltage: 3.3V
- Guaranteed 600mA Output
- Input Range up to 5.5V
- Current Limit Protection
- Stable with either electrolytic capacitor or low-ESR MLCC (multi-layer ceramic capacitor) Low Temperature Coefficient
- SOP-8L and SOT89-3L: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish / RoHS Compliant (Note 1)

General Description

The AP7215 low-dropout linear regulator operates from a 3.3V to 5.5V supply and delivers a guaranteed 600mA continuous load current


The high-accuracy output voltage is preset to an internally trimmed voltage. An active-low open-drain reset output remains asserted for at least 20ms (TYP) after input voltage rises above the reset threshold.

The space-saving SOP-8L and SOT89-3L package are suitable for "pocket" and hand-held applications.

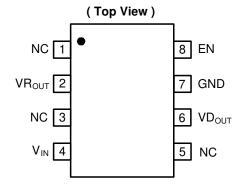
Applications

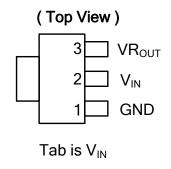
- HD/Blue-Ray DVD & MP3/4 Players
- Mobile Handsets and Smart Phones
- Digital Still Camera
- Hand-Held Computers

Ordering Information

	Device	Package	Packaging	13" Tape and Reel	
	Device	Code	(Note 2)	Quantity	Part Number Suffix
Pb,	AP7215-33SG-13	S	SOP-8L	2500/Tape & Reel	-13
PD,	AP7215-33YG-13	Y	SOT89-3L	2500/Tape & Reel	-13

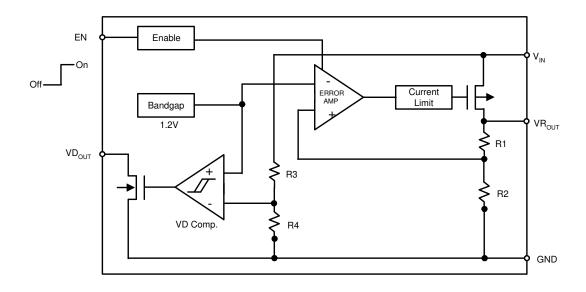
Notes: 1. EU Directive 2002/95/EC (RoHS). All applicable RoHS exemptions applied, see EU Directive 2002/95/EC Annex Notes.


 Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be on our website at http://www.diodes.com/datasheets/ap02001.pdf.


600mA CMOS LDO

Pin Assignments

(2) SOT89-3L



Pin Descriptions

Pin Name	Pin No.		Description	
PIII Naille	SOP-8L	SOT89-3L	Description	
NC	1, 3, 5	-	No Connection	
VR _{OUT}	2	3	Voltage Output	
V_{IN}	4	2	Supply Voltage	
VD _{OUT}	6	-	VD Output Voltage (Reset Output)	
GND	7	1	Ground	
EN	8	-	Enable (VR _{OUT} ON/OFF)	

Block Diagram

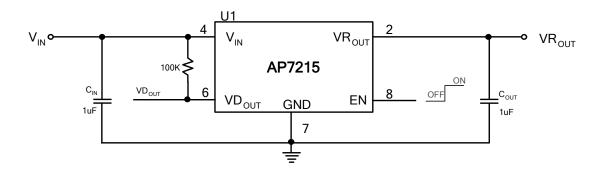
Absolute Maximum Ratings

Symbol	Parar	Parameter		Unit
ESD HBM	Human Body Model ES	Human Body Model ESD Protection		KV
ESD MM	Machine Model ESD Pr	Machine Model ESD Protection		V
V _{IN}	Input Voltage	Input Voltage		V
VR _{OUT}	Output Voltage	Output Voltage		V
$T_{J(MAX)}$	Maximum Junction Ten	Maximum Junction Temperature		ōC
D	Power Discipation	SOP-8L	1.2	W
r _D	P _D Power Dissipation		0.79	W

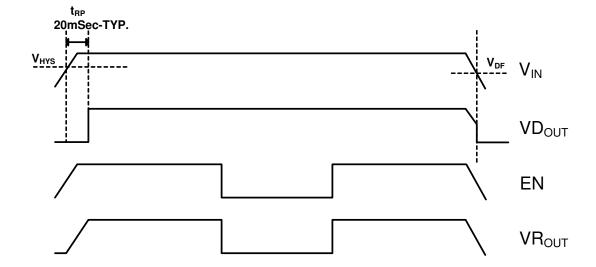
Recommended Operating Conditions

Symbol	Parameter	Min	Max	Unit
V_{IN}	Input Voltage	3.3	5.5	V
I _{OUT}	Output Current	0	600	mA
T_J	Operating Junction Temperature Range	-40	125	∘C
T _A	Operating Ambient Temperature	-40	85	∘C

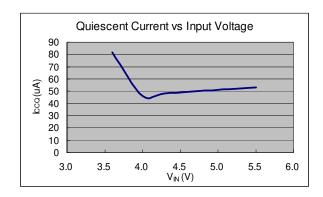
Electrical Characteristics

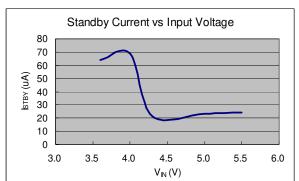

 $(T_A = 25^{\circ}C, C_{IN} = 1\mu F, C_{OUT} = 1\mu F, V_{IN} = 5.0V, V_{EN} = V_{IN}, unless otherwise noted)$

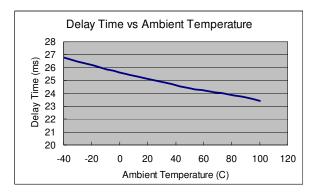
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit
I _{CCQ}	Quiescent Current	I _{OUT} = 0mA	-	50	80	μA
I _{STBY}	Standby Current	$V_{EN} = GND$ $V_{IN} = 5.0V$		15	30	μA
VR _{OUT}	Output Voltage Accuracy	$I_{OUT} = 30$ mA, $V_{IN} = 5$ V	3.234	3.300	3.366	V
$\Delta VR_{OUT}/\Delta T_A/VR_{OUT}$	VR _{OUT} Temperature Coefficient	$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}, I_{OUT} = 30\text{mA}$		±100		ppm /°C
V_{DO}	Dropout Voltage	I _{OUT} = 30mA		60	100	mV
• 00		I _{OUT} = 100mA		100	250	mV
І _{оит}	Maximum Output Current	$V_{IN} = 5.3V$	600			mA
I _{LIMIT}	Current Limit	$V_{IN} = 5.3V$		750		mA
I _{SHORT}	Short Circuit Current	$V_{IN} = 5.3V$		50		mA
$\Delta VR_{OUT}/\Delta V_{IN}/VR_{OU}$	Line Regulation	$4.3V \le V_{IN} \le 5.5V$, $I_{OUT} = 30mA$		0.01	±0.2	%/V
ΔVR_{OUT}	Load Regulation	$1\text{mA} \le I_{\text{OUT}} \le 100\text{mA}, V_{\text{IN}} = 5.3\text{V}$		15	50	mV
PSRR	Power Supply Rejection	$V_{IN} = 4.3V + 0.5Vp-pAC, I_{OUT} = 50mA$ F= 1KHz		55		dB
V_{EH}	EN Input Threshold	Output ON	1.6			V
V _{EL}	•	Output OFF			0.25	V
I _{EN}	Enable Pin Current		-0.1		0.1	μΑ
V_{DF}	V _{IN} Detection Voltage	Detect VD _{OUT} fall	3.83	3.91	3.98	V
V _{HYS}	V _{DF} Hysteresis Range		V _{DF} x1.02	V _{DF} x1.05	V _{DF} x1.08	V
IVD _{OUT}	VD _{OUT} Sink Current	$VD_{OUT} = 0.5V, V_{IN} = 2.0V$		20		mA
		$VD_{OUT} = 0.5V, V_{IN} = 3.0V$		30	•	
t _{RP}	VD _{OUT} Delay Time		10	20	40	ms
θ_{JA}	Thermal Resistance	SOP-8L (Note 3)		124		ºC/W
UJA	Junction-to-Ambient	SOT89-3L (Note 3)		173		J/ VV
θ_{JC}	Thermal Resistance	SOP-8L (Note 3)		25		ºC/W
9 J0	Junction-to-Case	SOT89-3L (Note 3)		42		0, **

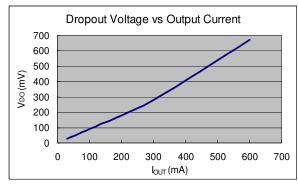

Notes: 3. Test conditions for SOP-8L, SOT89-3L: Device mounted on FR-4 substrate, single sided PC board, 2oz copper, with minimum recommended pad layout.

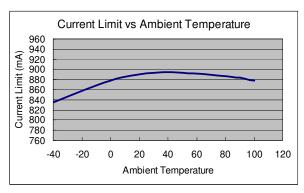
Typical Application

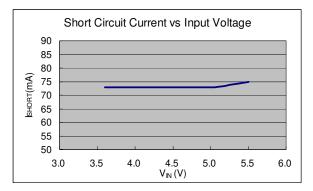

Timing Diagram

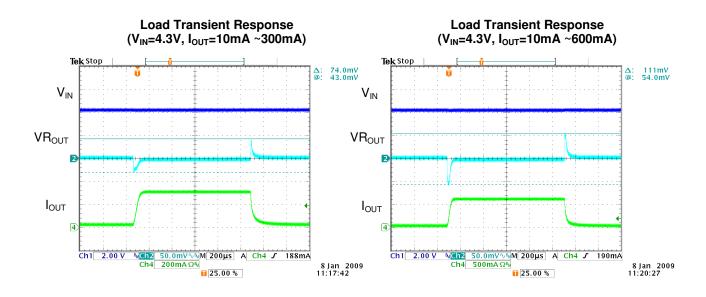


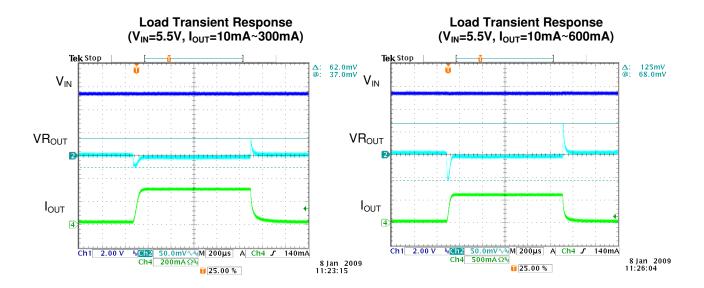





Typical Performance Characteristics







Typical Performance Characteristics (Continued)

Application Note

Input Capacitor

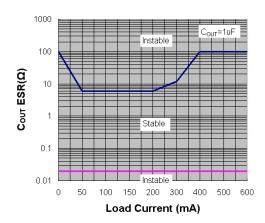
A $1\mu F$ ceramic capacitor is recommended to connect between V_{IN} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. A lower ESR (Equivalent Series Resistance) capacitor allows the use of less capacitance, while higher ESR type requires more capacitance. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND.

Suggested Input Capacitance

ı	Vendor	(Capacitance	Туре	Series
	TAIYO YUDEN	7	lμF	Ceramic	LMK212B

Output Capacitor

The output capacitor is required to stabilize and help the transient response of the LDO. The AP7215 is designed to have excellent transient response for most applications with a small amount of output capacitance. The AP7215 is stable with any small ceramic output capacitors of $1.0\mu F$ or higher value, and the temperature coefficients of X7R or X5R type. Additional capacitance helps to reduce undershoot and overshoot during transient. For PCB layout, the output capacitor must be placed as close as possible to VR_OUT and GND pins, and keep the leads as short as possible.


Suggested Output Capacitance

Vendor	Capacitance	Туре	Series
TAIYO YUDEN	1μF	Ceramic	LMK212B

Suggested Resistance

Vendor	Capacitance	Туре
YAGEO	SMD	FR-SK

Region of Stable Cout ESR vs. Load Current

ENABLE/SHUTDOWN Operation

The AP7215 is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to $V_{\rm IN}$ pin to keep the regulator output on at all time. To ensure proper operation, the signal source used to drive the EN pin must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under $V_{\rm EH}$ and $V_{\rm EL}$.

	VR _{OUT}	VD _{OUT}
EN=0	0V	Φ
EN=1	3.3V	Φ

Current Limit Protection

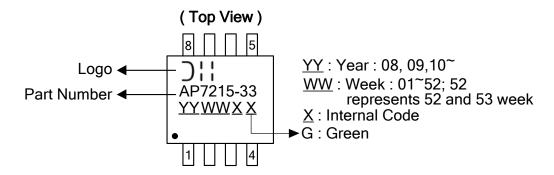
When output current at VR_{OUT} pin is higher than current limit threshold, the current limit protection will be triggered and clamp the output current to approximately 750mA to prevent over-current and protect the regulator from damage due to overheating.

Short circuit protection

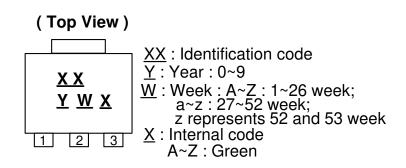
When VR_{OUT} pin is shorted to GND or VR_{OUT} voltage is less than 200mV, short circuit protection will be triggered and clamp the output current to approximately 50mA.

VD_{OUT} (reset output)

---Open-Drain Active-Low reset output---


In general, VD_{OUT} is pulled up by a resistor (100K Ω) to V_{IN}. The AP7215 microprocessor (μ P) supervisory circuitry asserts a guaranteed logic-low reset during power-up and power-down. Reset is asserted when V_{IN} is below the reset threshold and remain asserted for at least t_{RP} after V_{IN} rises above the reset threshold.

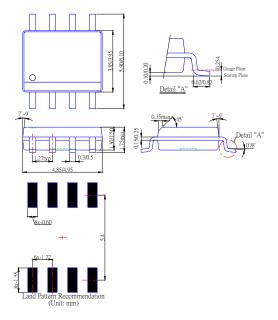
As long as V_{IN} is lower than the reset threshold, VD_{OUT} remains at logic "0". When V_{IN} becomes higher than $V_{\text{HYS}},$ a logic "1" is asserted after a 20ms time delay defined by t_{RP}



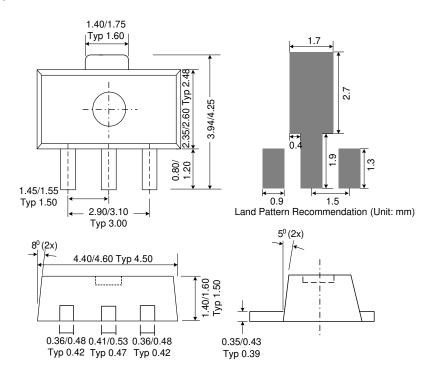
Marking Information

(1) SOP-8L

(2) SOT89-3L



Device	Package type	Identification Code
AP7215Y	SOT89-3L	N8



Package Information (All Dimensions in mm)

(1) Package Type: SOP-8L

(2) Package Type: SOT89-3L

600mA CMOS LDO

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.