# **ON Semiconductor**

# Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

# **Non-Inverting 3-State Buffer**

# **NLV68SZ126**

The NLV68SZ126 is 6-channel non-inverting 3-state buffer in a tiny footprint package.

#### **Features**

- Designed for 1.65 V to 5.5 V V<sub>CC</sub> Operation
- 3.4 ns t<sub>PD</sub> at 5 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 5.5 V
- I<sub>OFF</sub> Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in 2.5 mm x 3.5 mm QFN20 and TSSOP-20 WB Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

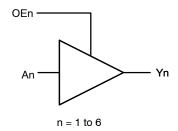



Figure 1. Logic Diagram

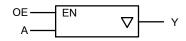



Figure 2. Channel Logic Symbol

#### **FUNCTION TABLE**

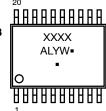
| Inp | Output |    |
|-----|--------|----|
| OEn | An     | Yn |
| L   | Х      | Z  |
| Н   | L      | L  |
| Н   | Н      | Н  |

X = Don't Care



#### ON Semiconductor®

www.onsemi.com

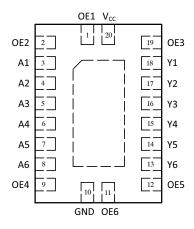

MARKING DIAGRAMS

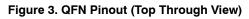


QFN20, 2.5X3.5, 0.4P CASE 485CB









XXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot Number
Y = Year
W = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 6 of this data sheet.





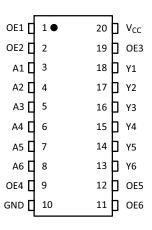



Figure 4. TSSOP Pinout (Top View)

#### **PIN ASSIGNMENT**

| Number | Name            | Туре   | Description             |
|--------|-----------------|--------|-------------------------|
| 1      | OE1             | Input  | Channel 1 Control Input |
| 2      | OE2             | Input  | Channel 2 Control Input |
| 3      | A1              | Input  | Channel 1 Data Input    |
| 4      | A2              | Input  | Channel 2 Data Input    |
| 5      | АЗ              | Input  | Channel 3 Data Input    |
| 6      | A4              | Input  | Channel 4 Data Input    |
| 7      | A5              | Input  | Channel 5 Data Input    |
| 8      | A6              | Input  | Channel 6 Data Input    |
| 9      | OE4             | Input  | Channel 4 Control Input |
| 10     | GND             | Power  | Ground                  |
| 11     | OE6             | Input  | Channel 6 Control Input |
| 12     | OE5             | Input  | Channel 5 Control Input |
| 13     | Y6              | Output | Channel 6 Data Output   |
| 14     | Y5              | Output | Channel 5 Data Output   |
| 15     | Y4              | Output | Channel 4 Data Output   |
| 16     | Y3              | Output | Channel 3 Data Ouput    |
| 17     | Y2              | Output | Channel 2 Data Output   |
| 18     | Y1              | Output | Channel 1 Data Output   |
| 19     | OE3             | Input  | Channel 3 Control Input |
| 20     | V <sub>CC</sub> | Power  | Positive Supply         |

#### **MAXIMUM RATINGS**

| Symbol                              | Parameter                                                                                                         | Value                                                         | Unit |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|
| V <sub>CC</sub>                     | DC Supply                                                                                                         | -0.5 to +6.5                                                  | V    |
| V <sub>IN</sub>                     | DC Input Voltage                                                                                                  | -0.5 to +6.5                                                  | V    |
| V <sub>OUT</sub>                    | DC Output Voltage Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V <sub>CC</sub> = 0 V) | -0.5 to V <sub>CC</sub> + 0.5<br>-0.5 to +6.5<br>-0.5 to +6.5 | V    |
| I <sub>IK</sub>                     | DC Input Diode Current, V <sub>IN</sub> < GND                                                                     | -50                                                           | mA   |
| I <sub>OK</sub>                     | DC Output Diode Current, V <sub>OUT</sub> < GND                                                                   | -50                                                           | mA   |
| I <sub>OUT</sub>                    | DC Output Source/Sink Current                                                                                     | ±50                                                           | mA   |
| I <sub>CC</sub> or I <sub>GND</sub> | DC Supply Current Per Supply Pin or Ground Pin                                                                    | ±100                                                          | mA   |
| T <sub>STG</sub>                    | Storage Temperature Range                                                                                         | -65 to +150                                                   | °C   |
| T <sub>L</sub>                      | Lead Temperature, 1 mm from Case for 10 Seconds                                                                   | 260                                                           | °C   |
| TJ                                  | Junction Temperature Under Bias                                                                                   | +150                                                          | °C   |
| MSL                                 | Moisture Sensitivity                                                                                              | Level 1                                                       |      |
| F <sub>R</sub>                      | Flammability Rating Oxygen Index: 28 to 34                                                                        | UL 94 V-0 @ 0.125 in                                          |      |
| V <sub>ESD</sub>                    | ESD Withstand Voltage (Note 2) Human Body Model Charged Device Model                                              | 2000<br>2000                                                  | V    |
| I <sub>LATCHUP</sub>                | Latchup Performance (Note 3)                                                                                      | ±100                                                          | mA   |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Applicable to devices with outputs that may be tri-stated.
   HBM tested to EIA/JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
- 3. Tested to EIA/JÉSD78 Class II.

#### RECOMMENDED OPERATING CONDITIONS

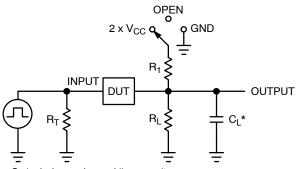
| Symbol                          | Parameter                                                                                                                                                                         | Min              | Max                           | Unit |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|------|
| V <sub>CC</sub>                 | Positive DC Supply Voltage                                                                                                                                                        | 1.65             | 5.5                           | V    |
| V <sub>IN</sub>                 | Digital Input Voltage                                                                                                                                                             | 0                | 5.5                           | V    |
| V <sub>OUT</sub>                | Output Voltage Active Mode (High or Low State) Tri-State Mode (Note 4) Power Down Mode (V <sub>CC</sub> = 0 V)                                                                    | 0<br>0<br>0      | V <sub>CC</sub><br>5.5<br>5.5 | V    |
| T <sub>A</sub>                  | Operating Free-Air Temperature                                                                                                                                                    | -55              | +125                          | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Transition Rise or Fall Rate $\begin{array}{c} V_{CC}=1.65\ V\ to\ 1.95\ V\\ V_{CC}=2.3\ V\ to\ 2.7\ V\\ V_{CC}=3.0\ V\ to\ 3.6\ V\\ V_{CC}=4.5\ V\ to\ 5.5\ V \end{array}$ | 0<br>0<br>0<br>0 | 20<br>20<br>10<br>5           | nS/V |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Applicable to devices with outputs that may be tri-stated.

#### DC ELECTRICAL CHARACTERISTICS

|                  |                                   |                                                                                                                                                                                                                                                                      |                                                        |                                                                  | T <sub>A</sub> = 25°C                            |                                          | T <sub>A</sub> = -55°C                                           | to +125°C                                |          |
|------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------------------------------|------------------------------------------|----------|
| Symbol           | Parameter                         | Conditions                                                                                                                                                                                                                                                           | V <sub>CC</sub> (V)                                    | Min                                                              | Тур                                              | Max                                      | Min                                                              | Max                                      | Unit     |
| V <sub>IH</sub>  | High-Level Input                  |                                                                                                                                                                                                                                                                      | 1.65 to 1.95                                           | $0.65 \times V_{CC}$                                             | -                                                | -                                        | $0.65 \times V_{CC}$                                             | -                                        | V        |
|                  | Voltage                           |                                                                                                                                                                                                                                                                      | 2.3 to 5.5                                             | $0.70 \times V_{CC}$                                             | -                                                | -                                        | -                                                                | -                                        |          |
| V <sub>IL</sub>  | Low-Level Input                   |                                                                                                                                                                                                                                                                      | 1.65 to 1.95                                           | -                                                                | -                                                | $0.35 \times V_{CC}$                     | -                                                                | $0.35 \times V_{CC}$                     | V        |
|                  | Voltage                           |                                                                                                                                                                                                                                                                      | 2.3 to 5.5                                             | -                                                                | -                                                | $0.30 \times V_{CC}$                     | -                                                                | $0.30 \times V_{CC}$                     |          |
| V <sub>OH</sub>  | High-Level<br>Output Voltage      | $\begin{split} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ I_{OH} &= -100  \mu\text{A} \\ I_{OH} &= -4 \text{ mA} \\ I_{OH} &= -8 \text{ mA} \\ I_{OH} &= -12 \text{ mA} \\ I_{OH} &= -16 \text{ mA} \\ I_{OH} &= -24 \text{ mA} \\ I_{OH} &= -32 \text{ mA} \end{split}$ | 1.65 to 5.5<br>1.65<br>2.3<br>2.7<br>3.0<br>3.0<br>4.5 | V <sub>CC</sub> - 0.1<br>1.29<br>1.9<br>2.2<br>2.4<br>2.3<br>3.8 | V <sub>CC</sub> 1.4 2.1 2.4 2.7 2.5 4.0          | -<br>-<br>-<br>-<br>-                    | V <sub>CC</sub> - 0.1<br>1.29<br>1.9<br>2.2<br>2.4<br>2.3<br>3.8 | -<br>-<br>-<br>-<br>-<br>-               | V        |
| V <sub>OL</sub>  | Low-Level<br>Output Voltage       | $\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OL} = 100  \mu\text{A} \\ I_{OL} = 4 \text{ mA} \\ I_{OL} = 8 \text{ mA} \\ I_{OL} = 12 \text{ mA} \\ I_{OL} = 16 \text{ mA} \\ I_{OL} = 24 \text{ mA} \\ I_{OL} = 32 \text{ mA} \end{array}$             | 1.65 to 5.5<br>1.65<br>2.3<br>2.7<br>3.0<br>3.0<br>4.5 | -<br>-<br>-<br>-<br>-                                            | -<br>0.08<br>0.2<br>0.22<br>0.28<br>0.38<br>0.42 | 0.1<br>0.24<br>0.3<br>0.4<br>0.4<br>0.55 | -<br>-<br>-<br>-<br>-                                            | 0.1<br>0.24<br>0.3<br>0.4<br>0.4<br>0.55 | <b>V</b> |
| I <sub>IN</sub>  | Input Leakage<br>Current          | V <sub>IN</sub> = 5.5 V or GND                                                                                                                                                                                                                                       | 1.65 to 5.5                                            | -                                                                | -                                                | ±1.0                                     | -                                                                | ±10.0                                    | μΑ       |
| l <sub>OZ</sub>  | 3-State Output<br>Leakage Current | V <sub>OUT</sub> = 0 V to 5.5 V                                                                                                                                                                                                                                      | 1.65 to 5.5                                            | -                                                                | -                                                | ±1.0                                     | -                                                                | ±10.0                                    | μΑ       |
| I <sub>OFF</sub> | Power Off<br>Leakage Current      | V <sub>IN</sub> = 5.5 V or<br>V <sub>OUT</sub> = 5.5 V                                                                                                                                                                                                               | 0                                                      | -                                                                | -                                                | 1.0                                      | -                                                                | 10                                       | μΑ       |
| I <sub>CC</sub>  | Quiescent Supply<br>Current       | V <sub>IN</sub> = V <sub>CC</sub> or GND                                                                                                                                                                                                                             | 5.5                                                    | -                                                                | -                                                | 5.0                                      | -                                                                | 50                                       | μΑ       |


#### **AC ELECTRICAL CHARACTERISTICS**

|                                     |                                       |                                   |                     |     | T <sub>A</sub> = 25°C |      | T <sub>A</sub> = -55°C | to +125°C |      |
|-------------------------------------|---------------------------------------|-----------------------------------|---------------------|-----|-----------------------|------|------------------------|-----------|------|
| Symbol                              | Parameter                             | Conditions                        | V <sub>CC</sub> (V) | Min | Тур                   | Max  | Min                    | Max       | Unit |
| t <sub>PLH</sub> , t <sub>PHL</sub> | Propagation                           | $R_L = 1 M\Omega$ , $C_L = 15 pF$ | 1.65 to 1.95        | -   | 13.0                  | 21.0 | -                      | 22.0      | ns   |
|                                     | Delay,<br>A to Y                      | $R_L = 1 M\Omega$ , $C_L = 15 pF$ | 2.3 to 2.7          | -   | 6.9                   | 10   | -                      | 11.0      | ]    |
|                                     | (Figures 5 and 6)                     | $R_L = 1 M\Omega$ , $C_L = 15 pF$ | 3.0 to 3.6          | -   | 4.8                   | 6.5  | -                      | 7.5       | ]    |
|                                     |                                       | $R_L = 500 \Omega, C_L = 50 pF$   |                     | -   | 5.3                   | 7.0  | -                      | 8.0       | ]    |
|                                     |                                       | $R_L = 1 M\Omega$ , $C_L = 15 pF$ | 4.5 to 5.5          | -   | 3.4                   | 4.5  | -                      | 4.8       | ]    |
|                                     |                                       | $R_L = 500 \Omega, C_L = 50 pF$   |                     | -   | 3.8                   | 5.0  | -                      | 5.3       | ]    |
| $t_{PZH},t_{PZL}$                   | Output Enable Time,                   |                                   | 1.65 to 1.95        | -   | 12.4                  | 23.0 | -                      | 24.0      | ns   |
|                                     | OE to Y<br>(Figures 5 and 6)          |                                   | 2.3 to 2.7          | -   | 6.7                   | 10.5 | -                      | 12.0      | ]    |
|                                     |                                       |                                   | 3.0 to 3.6          | -   | 4.6                   | 7.0  | -                      | 8.5       |      |
|                                     |                                       |                                   | 4.5 to 5.5          | -   | 3.3                   | 5.5  | -                      | 5.8       | ]    |
| $t_{PHZ},t_{PLZ}$                   | Output Disable                        |                                   | 1.65 to 1.95        | -   | 9.0                   | 14.5 | -                      | 15.0      | ns   |
|                                     | Time,<br>OE to Y<br>(Figures 5 and 6) |                                   | 2.3 to 2.7          | -   | 5.2                   | 8.0  | -                      | 8.5       | ]    |
|                                     |                                       |                                   | 3.0 to 3.6          | -   | 4.2                   | 7.0  | -                      | 7.5       |      |
|                                     |                                       |                                   | 4.5 to 5.5          | -   | 2.8                   | 5.5  | -                      | 6.0       |      |

#### **CAPACITIVE CHARACTERISTICS**

| Symbol           | Parameter                     | Test Conditions                                      | Typical (T <sub>A</sub> = 25°C) | Unit |
|------------------|-------------------------------|------------------------------------------------------|---------------------------------|------|
| C <sub>IN</sub>  | Input Capacitance             | $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$         | 2.5                             | pF   |
| C <sub>OUT</sub> | Output Capacitance            | $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$         | 2.5                             | pF   |
| C <sub>PD</sub>  | Power Dissipation Capacitance | 10 MHz, $V_{CC}$ = 3.3 V, $V_{IN}$ = 0 V or $V_{CC}$ | 9                               | pF   |
|                  | (Note 5)                      | 10 MHz, $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$ | 11                              |      |

<sup>5.</sup>  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation  $I_{CC(OPR)} = C_{PD} \times V_{CC} \times f_{in} + I_{CC}$ .  $C_{PD}$  is used to determine the no–load dynamic power consumption:  $P_D = C_{PD} \times V_{CC}^2 \times f_{in} + I_{CC} \times V_{CC}$ .



| Test                               | Switch<br>Position | C <sub>L</sub> (pF) | $R_L\left(\Omega ight)$ | $R_1\left(\Omega\right)$ |
|------------------------------------|--------------------|---------------------|-------------------------|--------------------------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open               | See AC              | Characteristi           | cs Table                 |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | $2 \times V_{CC}$  | 50                  | 500                     | 500                      |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND                | 50                  | 500                     | 500                      |

 $C_L$  includes probe and jig capacitance  $R_T$  is  $Z_{OUT}$  of pulse generator (typically 50  $\Omega)$ 

f = 1 MHz

Figure 5. Test Circuit

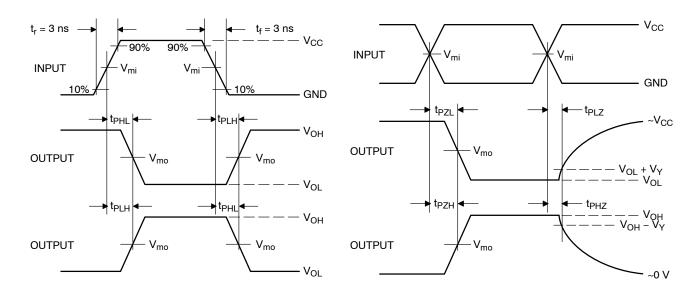
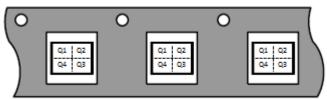



Figure 6. Switching Waveforms

| V <sub>CC</sub> (V) | V <sub>mi</sub> (V) | V <sub>mo</sub> (V) | V <sub>Y</sub> (V) |
|---------------------|---------------------|---------------------|--------------------|
| 1.65 to 1.95        | V <sub>CC</sub> /2  | V <sub>CC</sub> /2  | 0.15               |
| 2.3 to 2.7          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2  | 0.15               |
| 3.0 to 3.6          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2  | 0.3                |
| 4.5 to 5.5          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2  | 0.3                |

#### **ORDERING INFORMATION**

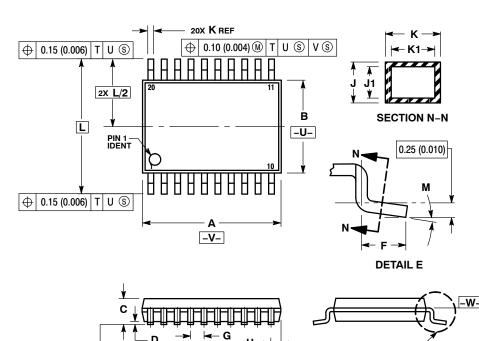

| Device                                        | Package                | Marking | Pin 1 Orientation<br>(See below) | Shipping <sup>†</sup> |
|-----------------------------------------------|------------------------|---------|----------------------------------|-----------------------|
| NLV68SZ126MN2TWG                              | QFN20, 2.5 x 3.5, 0.4P | Z126    | Q1                               | 3000 / Tape & Reel    |
| NLV68SZ126DTR2G<br>(Contact ON Semiconductor) | TSSOP-20               | TBD     | Q1                               | 2500 / Tape & Reel    |

<sup>†</sup>For complete information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## Pin 1 Orientation in Tape and Reel

#### Direction of Feed






<sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

#### **PACKAGE DIMENSIONS**

#### TSSOP-20 WB CASE 948E ISSUE D

**DETAIL E** 

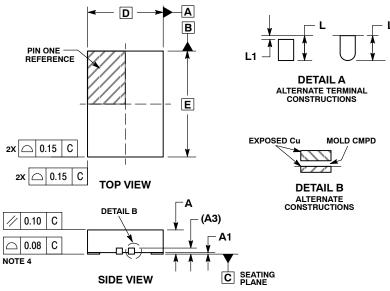


- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- FLASH, PROTRUSIONS OR GATE BURRS.
  MOLD FLASH OR GATE BURRS SHALL NOT
  EXCEED 0.15 (0.006) PER SIDE.

  4. DIMENSION B DOES NOT INCLUDE
  INTERLEAD FLASH OR PROTRUSION.
  INTERLEAD FLASH OR PROTRUSION
  SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
  DIMENSION K DOES NOT INCLUDE
  DAMBAR PROTRUSION. ALLOWABLE
  DAMBAR PROTRUSION. SHALL BE 0.08
  (0.003) TOTAL IN EXCESS OF THE K
- (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

  6. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

  7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-.


|     | MILLIN   | IETERS | INC       | HES   |
|-----|----------|--------|-----------|-------|
| DIM | MIN      | MAX    | MIN       | MAX   |
| Α   | 6.40     | 6.60   | 0.252     | 0.260 |
| В   | 4.30     | 4.50   | 0.169     | 0.177 |
| С   |          | 1.20   |           | 0.047 |
| D   | 0.05     | 0.15   | 0.002     | 0.006 |
| F   | 0.50     | 0.75   | 0.020     | 0.030 |
| G   | 0.65     | BSC    | 0.026 BSC |       |
| Н   | 0.27     | 0.37   | 0.011     | 0.015 |
| J   | 0.09     | 0.20   | 0.004     | 0.008 |
| J1  | 0.09     | 0.16   | 0.004     | 0.006 |
| K   | 0.19     | 0.30   | 0.007     | 0.012 |
| K1  | 0.19     | 0.25   | 0.007     | 0.010 |
| L   | 6.40 BSC |        | 0.252     | BSC   |
| M   | 0°       | 8°     | 0°        | 8°    |

# **SOLDERING FOOTPRINT** - 7.06 0.65 **PITCH** 16X 0.36 16X 1.26 DIMENSIONS: MILLIMETERS

☐ 0.100 (0.004) -T- SEATING PLANE

#### **PACKAGE DIMENSIONS**

#### QFN20, 2.5x3.5, 0.4P CASE 485CB ISSUE O



0.10 C A B

**E2** 

⊕ 0.10 C A B

20X **b** 

Ф

0.10 C A B

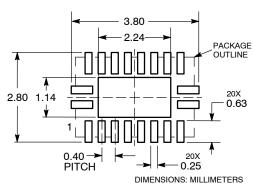
С 0.05

NOTE 3

D2

**BOTTOM VIEW** 

20X L


DETAIL A

e/2

- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.
  3. DIMENSIONS & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.
  4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

|     | MILLIMETERS |      |  |
|-----|-------------|------|--|
| DIM | MIN         | MAX  |  |
| Α   | 0.80        | 1.00 |  |
| A1  | 0.00        | 0.05 |  |
| A3  | 0.20        | REF  |  |
| b   | 0.15        | 0.25 |  |
| D   | 2.50        | BSC  |  |
| D2  | 0.90        | 1.10 |  |
| Е   | 3.50        | BSC  |  |
| E2  | 2.00        | 2.20 |  |
| e   | 0.40        | BSC  |  |
| L   | 0.35        | 0.45 |  |
| L1  |             | 0.15 |  |

# **SOLDERING FOOTPRINT\***



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

ON Semiconductor Website: www.onsemi.com

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative