

Technical documentation

Support & training

TMUXHS221

SLASF52A - AUGUST 2022 - REVISED NOVEMBER 2022

TMUXHS221 USB 2.0 480 Mbps 2:1/1:2 Multiplexer/Demultiplexer Switch

1 Features

Texas

INSTRUMENTS

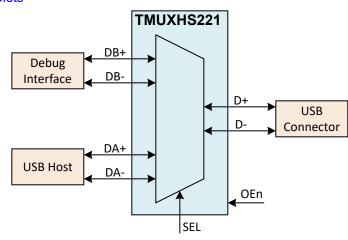
- Compatible to USB 2.0 and eUSB2 LS, FS, and HS physical layers
- Analog switch that can support most CMOS or differential signals up to 3.3 V and 3 Gbps
- Data pins are 5 V tolerant
- Low RON of 3 Ω at V_{I/O} = 0.2 V
- High –3 dB BW of 3.3 GHz
- Excellent for USB 2.0 or eUSB2 HS signals at 240 MHz:
 - Insertion loss = -0.4 dB
 - Return loss = –22 dB
 - Off isolation / cross talk = -32 dB
- Minimal vertical and horizontal USB 2.0 HS eye attenuation
- 3.3 V supply voltage
- 1.8 or 3.3 V control logic inputs
- Extended industrial temperature range of –40 to 125°C
- Small 10-pin 1.4 mm × 1.8 mm, UQFN package
- Pin-to-pin and BoM-to-BoM with multiple sources

2 Applications

- PC and notebooks
- Gaming, TV, home theater, and entertainment
- · Data center and enterprise computing
- Medical applications
- Test and measurements
- Factory automation and control
- Mobile Phones and tablets

3 Description

The TMUXHS221 is a high-speed bidirectional 2:1/1:2 multiplexer/demultiplexer optimized for USB 2.0 and eUSB2 LS, FS, and HS signaling. The TMUXHS221 is an analog passive switch that works for many high-speed interfaces for data rates up to 3 Gbps. The TMUXHS221 supports either differential or single ended CMOS signaling with a voltage range of -0.3 to 3.6 V.


The excellent high speed performance of the TMUXHS221 results in minimal attenuation to the USB 2.0 or eUSB2 HS signal eye diagrams with very low channel ON resistance, high bandwidth, low reflection, and low added jitter. The device is optimized for excellent high frequency response so that passing USB 2.0 HS electrical compliance becomes easier. The datapaths of the device are also matched for best intra-pair skew performance.

The TMUXHS221 has an extended temperature range that suits many rugged applications including industrial and high reliability use cases.

Package Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TMUXHS221	NKG (UQFN, 10)	1.40 mm × 1.80 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Application Use Case

Table of Contents

1 Features	1
2 Applications	1
3 Description	
4 Revision History	
5 Pin Configuration and Functions	3
6 Specifications	
6.1 Absolute Maximum Ratings	
6.2 ESD Ratings	
6.3 Recommended Operating Conditions	
6.4 Thermal Information	
6.5 Electrical Characteristics	5
6.6 High-Speed Performance Parameters	5
6.7 Switching Characteristics	
6.8 Typical Characteristics – S-Parameters	6
6.9 Typical Characteristics – Eye Diagrams	. 7
6.10 Typical Characteristics – R _{ON}	
7 Detailed Description	
7.1 Overview	
7.2 Functional Block Diagram	
-	

7.3 Feature Description	9
7.4 Device Functional Modes	
8 Application and Implementation	. 10
8.1 Application Information	. 10
8.2 Typical Applications	
8.3 Systems Examples	. 12
9 Power Supply Recommendations	14
10 Layout	
10.1 Layout Guidelines	
10.2 Layout Example	. 14
11 Device and Documentation Support	
11.1 Related Documentation	15
11.2 Receiving Notification of Documentation Updates.	. 15
11.3 Support Resources	
11.4 Trademarks	. 15
11.5 Electrostatic Discharge Caution	. 15
11.6 Glossary	
12 Mechanical, Packaging, and Orderable	
Information	. 15

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	nanges from Revision * (August 2022) to Revision A (November 2022)	Page
•	Changed the status of the data sheet from: Advanced Information to: Production Data	1

5 Pin Configuration and Functions

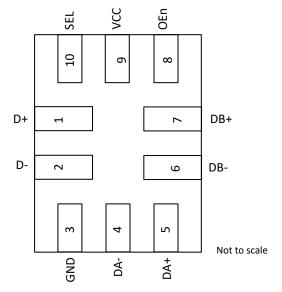


Figure 5-1. TMUXHS221 NKG Package, 10-Pin UQFN (Top View)

Table 5-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION	
NAME	NO.		DESCRIPTION	
D+	1	I/O	Data signals Common Port, positive	
D-	2	I/O	Data signals Common Port, negative	
DA+	5	I/O	Data signals Port A, positive	
DA-	4	I/O	Data signals Port A, negative	
DB+	7	I/O	Data signals Port B, positive	
DB-	6	I/O	Data signals Port B, negative	
SEL	10	IN	Switch control configuration signal as provided in Table 7.1	
OEn	8	IN	Switch control configuration signal as provided in Table 7-1.	
VCC	9	Р	3.3 V power supply	
GND	3	G	Ground	

(1) IN = input, I/O = input or output, P = power, G = ground

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC-ABSMAX}	Supply voltage		-0.5	4.0	V
V _{I/O-ABSMAX}	Voltage	Data pins	-0.5	5.5	V
V _{IN-ABSMAX}	Voltage	Control pins	-0.5	4.0	V
I _{I/O-ABSMAX}	ON-state switch current	Data pins		100	mA
T _{J-ABSMAX}	Junction temperature		-40	125	°C
T _{STG}	Storage temperature		-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±5000	V
V _{ESD}	Electrostatic discharge	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	TYP	MAX	UNIT
vcc	Supply voltage	DC plus AC power should not exceed these limits	3.0	3.3	3.6	V
VCC _{RAMP}	Supply voltage ramp time		0.1		100	ms
V _{I/O}	Voltage range for data signals ($V_{I/O}$)	D, DA, DB	-0.3		3.6	V
T _A	Operating free-air/ambient temperature		-40		125	°C
Tj	Device junction temperature		-40		125	°C

6.4 Thermal Information

		TMUXHS221	
	THERMAL METRIC ⁽¹⁾	NKG (UQFN)	UNIT
		10 PINS	
R _{θJA}	Junction-to-ambient thermal resistance - High K	225.9	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	93.5	°C/W
R _{θJB}	Junction-to-board thermal resistance	147.5	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	3.4	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	147.1	°C/W

(1) For more information about traditional and new thermalmetrics, see the Semiconductor and IC Package ThermalMetrics application report.

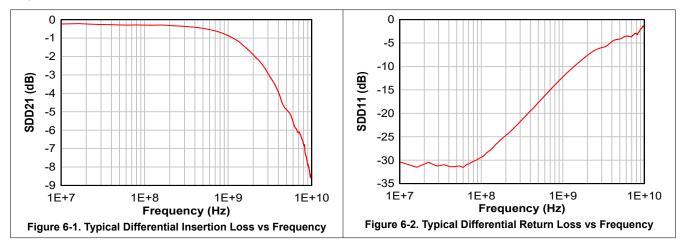
6.5 Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC}	Device active current	OEn = L		11	30	μA
ISTDN	Device shutdown current	OEn = H		1.3	4	μA
C _{ON}	Output ON capacitance to GND	OEn = L		1.7		pF
D	Channel ON resistance	$V_{I/O} = 0 V$, $I_O = -8 mA$		3	5.4	Ω
R _{ON}		V _{I/O} = 2.4 V, I _O = -8 mA		3.9	8	Ω
R _{ON,FLAT}	Channel ON resistance flatness defined as difference of R_{ON} over input voltage range	$V_{I/O}$ = 0 V and $V_{I/O}$ = 2.4 V; I _O = -8 mA		1		Ω
	On-resistance match between pairs for the same	V _{I/O} = 0 V; I _O = -8 mA			0.5	Ω
ΔR _{ON}	channel at same $V_{I/O}$, VCC and T_{A_i}	V _{I/O} = 2.4 V; I _O = -8 mA			0.5	Ω
VIH	Input high voltage, control pins (OEn, SEL)		1.4		3.6	V
VIL	Input low voltage, control pins (OEn, SEL)		-0.3		0.4	
l _{iH}	Input high current, control pins (OEn, SEL)	V _{IN} = 3.6 V			1	μA
IIL	Input low current, control pins (OEn, SEL)	V _{IN} = 0 V			0.2	μA
I _{I/O,H}	Input high current, data pins (Dx, DAx, DBx)	V _{I/O} = 3.6 V			2	μA
I _{I/O,L}	Input low current, data pins (Dx, DAx, DBx)	V _{I/O} = 0 V			0.2	μA
I _{HIZ,I/O}	Leakage current through turned off switch	OEn = H; V _{I/O} = 3.6 V			2	μA
I _{OFF,IN}	Failsafe leakage current for control pins (IN)	VCC = 0 V, V _{IN} = 3.6 V			10	μA
I _{OFF,I/O}	Failsafe leakage current for data pins (I/O)	VCC = 0 V, V _{I/O} = 3.6 V			10	μA

over operating free-air temperature and supply voltage range (unless otherwise noted)

6.6 High-Speed Performance Parameters

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
BW	–3-dB bandwidth	Relative to DC		3.3		GHz
	Differential insertion loss	f = 10 MHz		-0.3		dB
1 ¹ L		f = 240 MHz		-0.4		uВ
R	Differential return loss	f = 10 MHz		-32		dB
	Differential return loss	f = 240 MHz		-22		uВ
0	Differential OFF isolation (D to	f = 10 MHz		-56		dB
O _{IRR}	DA/DB)	f = 240 MHz		-32		uВ
хт	Differential cross-talk (DA to DB or	f = 10 MHz		-64		dB
~ 1	DB to DA)	f = 240 MHz		-32		dB


6.7 Switching Characteristics

over operating free-air temperature and supply voltage range (unless otherwise noted)

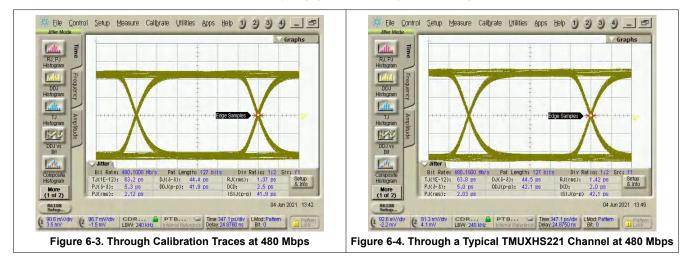
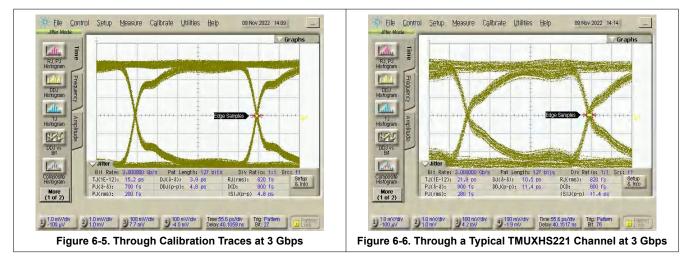
	PARAMETER		MIN	TYP	MAX	UNIT
t _{PD}	Switch propagation delay			60	80	ps
t _{sw}	Switching time CTRL-to-Switch ON (SEL toggles in between H, L)	R _L = 50 Ω, C _L = 10 pF			1	μs
t _{OFF}	Time required for device ON-to-OFF transition (OEn = L to H)	R _L = 50 Ω, C _L = 10 pF			0.5	μs
t _{ON}	Time required for device OFF-to-ON transition (OEn = H to L)	R_L = 50 Ω, C_L = 10 pF			16	μs
t _{sk_intra}	Intra-pair output skew between positive and negative for same differential channel	For Dx to DAx or DBx channels		2	10	ps
t _{SK_INTER}	Inter-pair output skew between channels	For Dx to DAx or DBx channels		2	10	ps

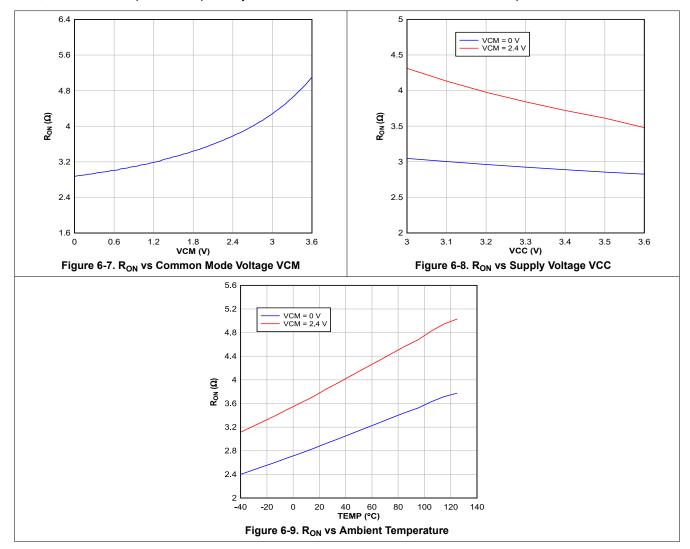
6.8 Typical Characteristics – S-Parameters

Figure 6-1 and Figure 6-2 show differential insertion loss and return loss repectively for a typical TMUXHS221 channel. The excellent high speed performance at 240 MHz results in minimal attenuation to the USB 2.0 or eUSB2 HS signal eye diagrams. Note: measurements are performed in TI evaluation board with board and equipment parasitics calibrated out.

6.9 Typical Characteristics – Eye Diagrams

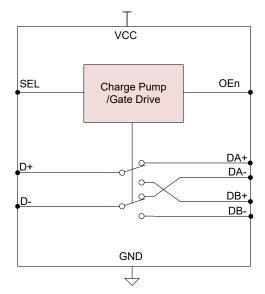
Figure 6-3 and Figure 6-4 show a side by side comparison of 480 Mbps USB 2.0 HS signals through calibration traces (without the device) and a typical TMUXHS221 channel. Attenuation of the vertical and horizonal eye opening through the device is minimal. The mux device also adds a very negligible amount of jitter to the signals.


Figure 6-5 and Figure 6-6 show a side by side eye diagram comparison at 3 Gbps signals through calibration traces (without the device) and a typical TMUXHS221 channel. Attenuation of the vertical and horizonal eye opening through the device is minimal. The mux device adds only a small amount of jitter at 3 Gbps.

6.10 Typical Characteristics – R_{ON}

Figure 6-7, Figure 6-8, and Figure 6-9 show switch ON resistance R_{ON} versus common mode voltage VCM, supply voltage VCC, and ambient temperature respectively. All curves are at nominal PVT conditions unless specified.


7 Detailed Description

7.1 Overview

The TMUXHS221 is an analog passive mux with 2:1/1:2 multiplexer/demultiplexer that can work for any low-speed, high-speed, differential or single ended signals. The signals must be within the allowable voltage range of -0.3 to 3.6 V. The device is optimized for eUSB2 and USB 2.0 LS, FS, and HS signaling.

Excellent dynamic characteristics of the device allow high speed switching with minimal attenuation to the signal eye diagram with very little added jitter. While the device is recommended for the interfaces up to 3 Gbps, actual data rate where the device can be used highly depends on the electrical channels. For low loss channels where adequate margin is maintained, the device can potentially be used for higher data rates.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Output Enable and Power Savings

The TMUXHS221 has two power modes: Active or Normal operating mode and Standby or Shutdown mode. During Standby mode, the device consumes very-little current to achieve ultra low power in systems where saving power is critical. To enter Standby mode, OEn must be pulled high.

7.3.2 Data Line Biasing

The TMUXHS221 does not contain any internal biasing. All channels of the device must be biased from either of the two sides to avoid floating channels.

7.4 Device Functional Modes

SEL	OEn Mux Configuration					
L	L	D to DA				
Н	L	D to DB				
Х	Н	All channels are disabled and Hi-Z				

(1) The TMUXHS221 can tolerate polarity inversions for differential signals. Ensure that the polarity consistency is maintained for all differential pairs.

Copyright © 2022 Texas Instruments Incorporated

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The TMUXHS221 is an analog high-speed mux/demux that can be used for routing differential as well as single ended CMOS signals through it. The device can be used for many high speed and low speed interfaces up to 3 Gbps including the following:

- Universal Serial Bus (USB) 2.0 HS, FS, and LS
- Embedded Universal Serial Bus (eUSB) 2.0 HS, FS, and LS
- I²C
- System Management Bus (SMBus[™])
- Universal Asynchronous Receiver-Transmitter (UART[™])
- Debug interface signals
- Mipi[®] Camera Serial Interface (CSI-2), Display Serial Interface (DSI)
- PCIe[®] clock
- DisplayPort[™] Auxiliary and Hot Plug Detect Signals
- USB-C[™] SBU signals
- Low Voltage Differential Signalling (LVDS)

An available GPIO pin of a controller or hard tie to voltage level H or L can easily control the mux or demux selection pin (SEL) of the device as an application requires.

Many interfaces require AC coupling capacitors between the transmitter and receiver. The 0201 or 0402 capacitors are the preferred option, but other capacitors can also be used depending on interface speed and signal integrity needs. If AC coupling capacitors are used on both sides of the TMUXHS221, then ensure the device is biased from either side, as there is no internal biasing to the device.

8.2 Typical Applications

8.2.1 Routing Debug Signals to USB Port

Many electronic end-equipment such as PCs, media players, point of sales registers, printers, cameras, headphones, smartphones, tablets, and so forth use USB ports (such as USB Type-A, USB Type-B, or USB Type-C^m) for in-field or factory debug interface. In such use cases debug signals are routed to USB 2.0 pins of a USB port through a mux or demux device. TMUXHS221 is a good fit for such use cases with its flexible data handling capability. TMUXHS221 virtually can handle any debug interface signals as long as they are limited to -0.3 V (minimum) to 3.6 V (maximum). The device also provides very low attenuation to both USB 2.0 and debug signals with its very low channel ON resistance, high bandwidth, and low reflection.

Figure 8-1 shows a system implementation where USB 2.0 signals are multiplexed with debug interface signals into DP/DM wires of a USB port.

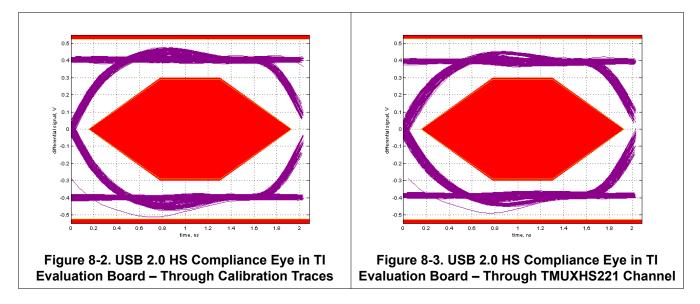
Figure 8-1. Routing Debug Signals to USB Port

8.2.1.1 Design Requirements

Table 8-1 provides various parameters and their expected values to implement the routing debug signals into the USB port. Note that the recommendation is for illustration purpose only.

DESIGN PARAMETER	VALUE
DA+, DA-, DB+, and DB−	Direct connect to processors, −0.3 – 3.6 V
SEL/OEn pin maximum voltage for low	0.4 V
SEL/OEn pin minimum voltage for high	1.4 V
Decoupling capacitor for VCC	0.1 μF and 1 μF

8.2.1.2 Detailed Design Procedure


The TMUXHS221 is a high-speed passive switch device that can behave as a mux or demux. Signal integrity is important because as a passive switch, the device provides no signal conditioning capability. The TMUXHS221 has an excellent electrical performance with very low channel ON resistance, high bandwidth, low reflection, and low added jitter for both debug signals and USB 2.0 signals.

- Determine the loss profile between circuits that are to be muxed or demuxed.
- Provide clean impedance and electrical length matched board traces.
- Provide a control signal for the SEL and OEn pins.
- Provide good ground connection to the board ground plane.
- See the application schematics for the recommended decouple capacitors from VCC pins to ground.

8.2.1.3 Application Curves

Figure 8-2 and Figure 8-3 show eye diagrams for USB 2.0 signals through calibration traces (without device) and TMUXHS221 channel. A combination of very low channel ON resistance, high bandwidth, very low reflection (retun loss), and low added jitter from the device allows 480 MBps USB 2.0 HS signals to stay almost unattenuated. Many system platforms struggle to pass USB 2.0 compliance due to high loss. TMUXHS221 allows insertion of an analog mux device in the signal path without creating any additional signal integrity challenge.

8.3 Systems Examples

8.3.1 PCIe Clock Muxing

Figure 8-4 shows an application where TMUXHS221 is used to switch the PCIe clock. The device is measured in a TI evaluation board with an available clock source to show an added jitter less than 10 fs for all NOISE_FOLD and PCIe 5.0 CK filter versions, which is well below PCIe 5.0 clock specifications.

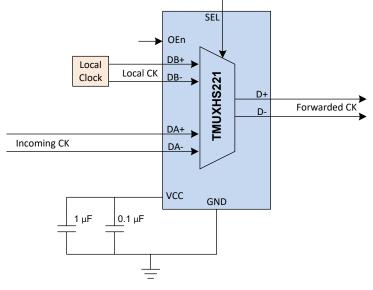
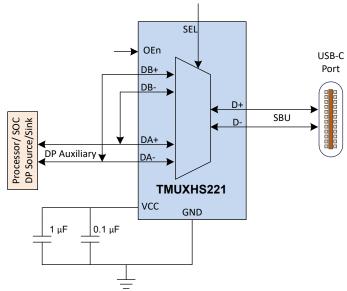




Figure 8-4. PCIe Clock Muxing

8.3.2 USB-C SBU Muxing

Figure 8-5 shows an application block diagram that implements SBU cross-muxing in a USB Type-C interface for implementing DisplayPort (DP) Alternate mode using the TMUXHS221. Note that the device has adequate bandwidth to support fast Auxiliary (AUX) signals. It is also capable of handling asymetric biasing for DP AUX signals.

8.3.3 Switching USB Port

Figure 8-6 shows an application block diagram where TMUXHS221 is used to switch the USB port in between a handheld portable device and its connected dock.

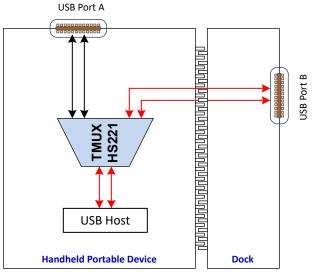


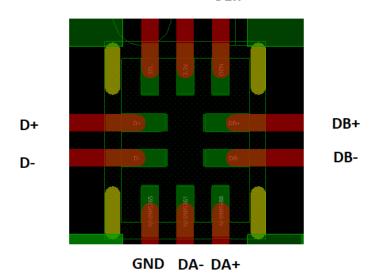
Figure 8-6. Switching USB Port

9 Power Supply Recommendations

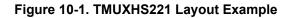
The TMUXHS221 does not require a power supply sequence. However, TI recommends that the device is enabled after VCC is stable and in specification. TI also recommends to place ample decoupling capacitors at the device VCC near the pin.

10 Layout

10.1 Layout Guidelines


Place supply bypass capacitors as close to the VCC pin as possible. Avoid placing the bypass capacitors near the D+/D-traces. The high-speed D+/D- traces should always be matched and must be no more than 4 inches, otherwise the eye diagram performance may be degraded. A high-speed USB connection is made through a shielded, twisted pair cable with a differential characteristic impedance. In the layout, the impedance of D+ and D- traces should match the cable characteristic differential impedance for optimal performance. Route the high-speed USB signals using a minimum of vias and corners which will reduce signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points on twisted pair lines; through-hole pins are not recommended.

When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance discontinuities. Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices, or IC's that use or duplicate clock signals. Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable, then the stub should be less than 200 mm. Route all high-speed USB signal traces over continuous planes (VCC or GND) with no interruptions. Avoid crossing over anti-etch, commonly found with plane split.


For high speed layout guidelines, refer to *High-Speed Layout Guidelines for Signal Conditioners and USB Hubs* application note.

10.2 Layout Example

Figure 10-1 shows TMUXHS221 layout example.

SEL VCC OEn

11 Device and Documentation Support

11.1 Related Documentation

For related documenattion, see the following:

• Texas Instruments, High-Speed Layout Guidelines for Signal Conditioners and USB Hubs application note

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.4 Trademarks

SMBus[™] is a trademark of Intel.
UART[™] is a trademark of Synopsys, Inc.
DisplayPort[™] is a trademark of VESA.
USB-C[™] and USB Type-C[™] are trademarks of USB Implementers Forum.
TI E2E[™] is a trademark of Texas Instruments.
Mipi[®] is a registered trademark of MIPI Alliance, Inc.
PCIe[®] is a registered trademark of PCI-SIG.
All trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TMUXHS221NKGR	ACTIVE	UQFN	NKG	10	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	21	Samples
TMUXHS221NKGT	ACTIVE	UQFN	NKG	10	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	21	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

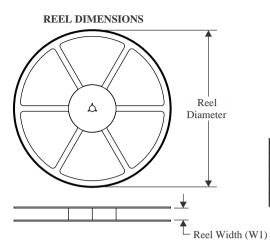
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

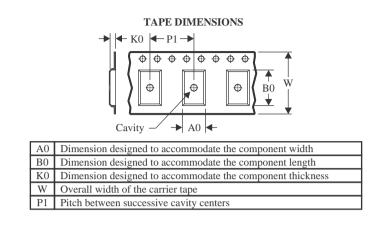
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

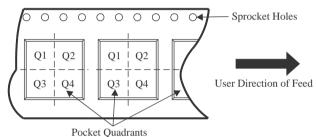
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

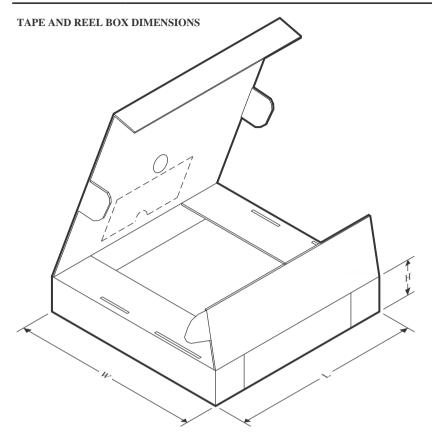

www.ti.com


PACKAGE OPTION ADDENDUM


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUXHS221NKGR	UQFN	NKG	10	3000	180.0	8.4	1.7	2.1	0.7	4.0	8.0	Q1
TMUXHS221NKGT	UQFN	NKG	10	250	180.0	8.4	1.7	2.1	0.7	4.0	8.0	Q1

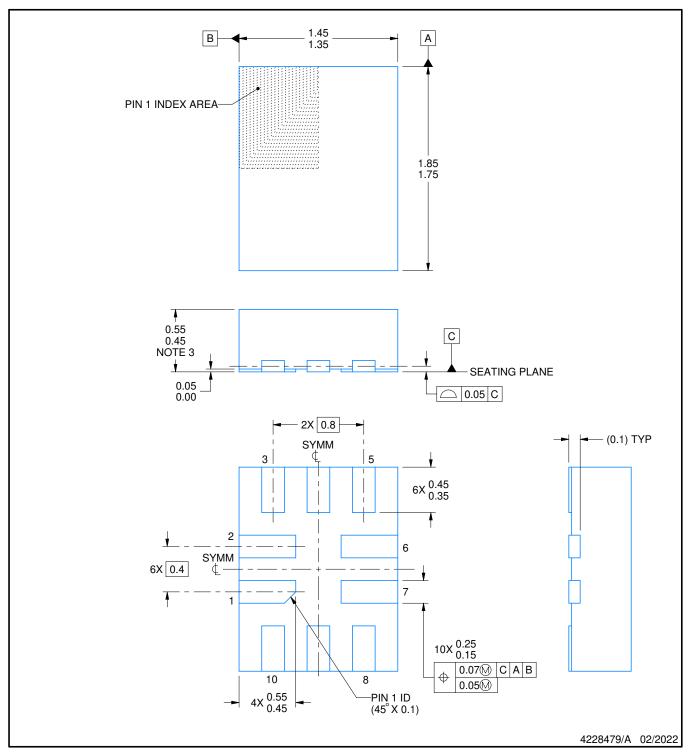
www.ti.com

PACKAGE MATERIALS INFORMATION

28-Nov-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUXHS221NKGR	UQFN	NKG	10	3000	210.0	185.0	35.0
TMUXHS221NKGT	UQFN	NKG	10	250	210.0	185.0	35.0


NKG0010A

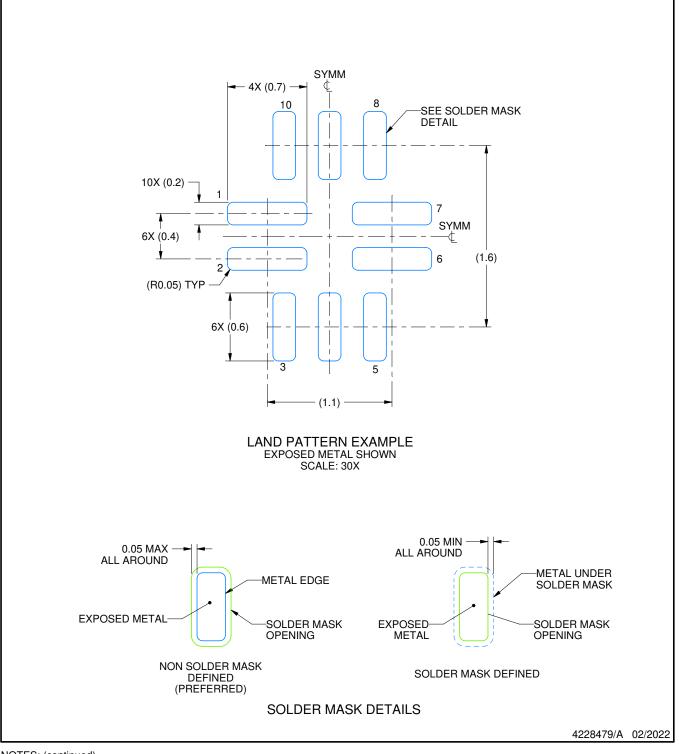
PACKAGE OUTLINE

UQFN - 0.55 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing All linear dimensions are in minimeters. Any dimensions in parentices are in resonance empirication of the resonace empirication of the resonance empirication of the resonac



NKG0010A

EXAMPLE BOARD LAYOUT

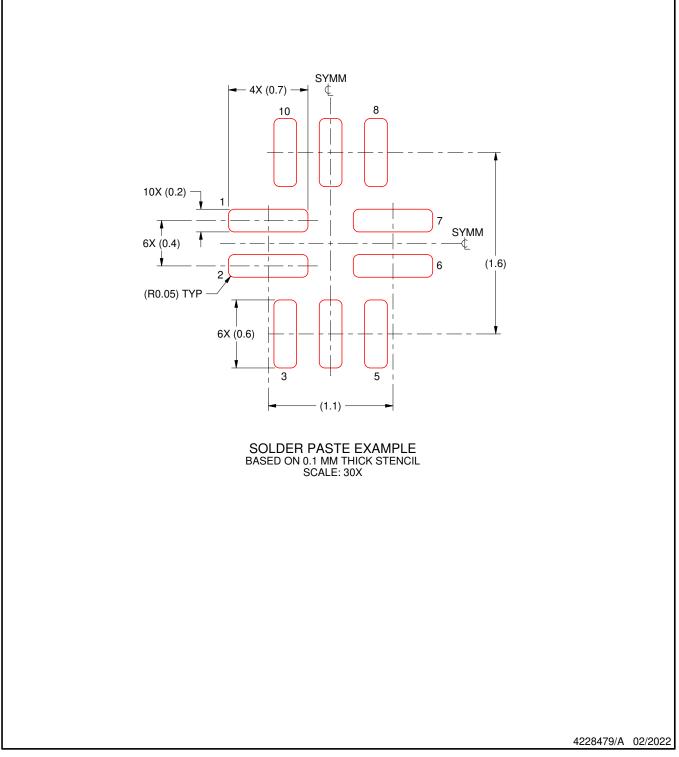
UQFN - 0.55 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



NKG0010A

EXAMPLE STENCIL DESIGN

UQFN - 0.55 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated