

SoundPort[®] Controller

AD1816A

SoundPort is a registered trademark of Analog Devices, Inc. Phat is a trademark of Analog Devices, Inc. All other trademarks are the property of their respective holders.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781/329-4700
 World Wide Web Site: http://www.analog.com

 Fax: 781/326-8703
 © Analog Devices, Inc., 1997

PIN

PRODUCT OVERVIEW

The AD1816A SoundPort Controller is a single chip Plug and Play multimedia audio subsystem for concurrently processing multiple digital streams of 16-bit stereo audio in personal computers. The AD1816A maintains full legacy compatibility with applications written for SoundBlaster Pro and AdLib, while servicing Microsoft PC 97 application requirements. The AD1816A includes an internal OPL3 compatible music synthesizer, Phat

OUTLINE DIMENSIONS 50

Stereo circuitry for phase expanding the analog stereo output, an MPU-401 UART, joystick interface with a built-in timer, a DSP serial port and two I²S serial ports. The AD1816A on-chip Plug and Play routine provides configuration services for all integrated logical devices. Using an external E²PROM allows the AD1816A to decode up to two additional external user-defined logical devices such as modem and CD-ROM.

Table XIII. AD1816 Pin Muxing45

Table XIV. AD1816A Pin Muxing 46

FEATURES Figures Functional Block Diagram 1 Figure 1. PIO Read Cycle 6 SPECIFICATIONS Figure 2. PIO Write Cycle 6 PIN CONFIGURATION 9 FUNCTION DESCRIPTION S 11 INTERFACE ΝO Figure 5. Codec Transfers 7 ERENCES SERIAL INTERFACES . . 17 ISA INTERFACE 21 . . 21 Figure 9 Serial Interface Right-Justified Mode 17 AD1816A Chip Registers AD1816A Plug and Play Device Configuration Registers Figure 10. Serial Inverface I²S-Justified Mode ... 22 Fighre 1. Serial Interface Left-Justified Mode. 22 Sound System Direct Registers Figure 12. DSP Serial/Interface (Default Frame Rate) Figure 13. DSF Serial Interface (User Programmed Frame Rate) Figure 14. DSP Serial Port . Figure 15. Codec Transfers APPENDIX A. Figure 16. Recommended Application Circuit PLUG AND PLAY INTERNAL ROM 40 Figure 17. AD1816A Frequency Response Plots PLUG AND PLAY KEY AND "ALTERNATE KEY" Tables SEQUENCES 41 Table I. DSP Port Time Slot Map 18 AD1816 AND AD1816A COMPATIBILITY 42 Table II. Chip Register Diagram 21 USING AN EEPROM WITH THE AD1816 OR Table III. Logical Devices and Compatible Plug and AD1816A 42 AD1816 FLAG BYTE 42 Table IV. Internal Logical Device Configuration 23 USING THE AD1816 WITHOUT AN EEPROM 42 Table V. Sound System Direct Registers 23 Table VI. Codec Transfers 27 AD1816A FLAG BYTES 43 Table VII. Indirect Register Map and Reset/Default States . 30 USING THE AD1816A WITHOUT AN EEPROM 44 MAPPING THE AD1816 EEPROM INTO THE AD1816A EEPROM 45 Table X. AdLib ISA Bus Registers 39 PIN MUXING IN THE AD1816 AND AD1816A 45 Table XI. MIDI ISA Bus Registers 39 PROGRAMMING EXTERNAL EEPROMS 47 Table XII. Game Port ISA Bus Registers 39 REFERENCE DESIGNS AND DEVICE DRIVERS ... 47

TABLE OF CONTENTS

REV. A	

17

20

27

SPECIFICATIONS

STANDARD TEST CONDITIONS UNLESS

OTHERWISE NOTED		
Temperature	25	°C
Digital Supply (V _{DD})	5.0	V
Analog Supply (V _{CC})	5.0	V
Sample Rate (F_S)	48	kH z
Input Signal Frequency	1008	Ηz
Audio Output Passband	20 Hz to 20 kHz	Z
V _{IH}	5.0	V
V _{IL}	0	V

DAC Test Conditions 0 dB Attenuation Input Full Scale 16-Bit Linear Mode 100 kΩ Output Load Mute Off Measured at Line Output ADC Test Conditions 0 dB Gain Input -4 dB Relative to Full Scale Line Input Selected 16-Bit Linear Mode

ANALOG INPUT				
Parameter	Min	Тур	Max	Units
Rull-Scale Input Voltage (RMS Value Assume Sine Wave Input)				
PHONE_IN, LINE, SYNTH, CQ, VID		1		V rms
MIC with +20 dB Gain (MGE = 1)		2.83		V p-p V rms
		0.287	_	V p-p
MIC with 0 dB Gain (MGE = 0)	$ $ $ $ L			V rms
Input Impedance*		-2.83		V p-p
Input Capacitance*	$\Box \mid L$	15		pF
PROGRAMMABLE GAIN AMPLIFIER—ADC		<u> </u>		
Parameter	Min	Тур	Max	Units
Step Size (0 dB to 22.5 dB)				
(All Steps Tested)		1.5		dB
PGA Gain Range Span		22.5		dB

CD, LINE, MICROPHONE, SYNTHESIZER, AND VIDEO INPUT ANALOG GAIN/ATTENUATORS/MUTE AT LINE OUTPUT

Parameter	Min	Тур	Max	Units
CD, LINE, MIC, SYNTH, VID				
Step Size: (All Steps Tested)				
+12 dB to -34.5 dB		1.5		dB
Input Gain/Attenuation Range		46.5		dB
PHONE_IN				
Step Size 0 dB to -45 dB: (All Steps Tested)		3.0		dB
Input Gain/Attenuation Range		45		dB

DIGITAL DECIMATION AND INTERPOLATION FILTERS*

Parameter	Min	Гур Мах	Units
Audio Passband	0	$0.4 \times F_s$	Ηz
Audio Passband Ripple		± 0.09	dB
Audio Transition Band	$0.4 \times F_s$	$0.6 \times F_{s}$	Hz
Audio Stopband	$0.6 \times F_s$	~	Hz
Audio Stopband Rejection	82		dB
Audio Group Delay		12/F _s	sec
Group Delay Variation Over Passband		0.0	μs

ANALOG-TO-DIGITAL CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal to-Noise Ratio (SNR) (A-Weighted, Referenced to Full Scale)		82	80	dB
total Harmonic Distortion (THD) (Referenced to Full Scale)		0.011	0.015	%
Audio Dynamic Range (-60 dB Input THD+N Referenced to		-79	-76.5	dB
Full-Scale, A/Weighted	79	82		dB
Audio THDAN (Referenced to Full-Scale)			0.019	%
		-76	-74.5	dB
Signal-to-Intermodulation Distortion* (CCIF Method)	/ /	82		dB
ADC Crosstalk*				
Line Inputs (Input L, Ground R, Read R; Input R, Ground L Read L)		95 ~		dB
Line to MIC (Input LINE, Ground and Select MIC, Read ADC)	' / /		- \$ 0 /~~	$\frac{1}{dB}$
Line to SYNTH		-95	480/	d/B
Line to CD		95	<u>/80</u>	/ dB
Line to VID			/_8∅	dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)		\sim	$/ \pm 1/0$	1 %
Interchannel Gain Mismatch (Difference of Gain Errors)			<u>∽</u> ±⁄₁	/ L _{dB}
ADC Offset Error	-22		+15	mV

DIGITAL-TO-ANALOG CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Signal-to-Noise Ratio (SNR) (A-Weighted)		83	79	dB
Total Harmonic Distortion (THD)		0.006	0.009	%
		-85	-80.5	dB
Audio Dynamic Range (-60 dB Input THD+N Referenced to				
Full Scale, A-Weighted)	79	82		dB
Audio THD+N (Referenced to Full Scale)		0.013	0.017	%
		-78	-75.5	dB
Signal-to-Intermodulation Distortion* (CCIF Method)		95		dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 0.5	dB
DAC Crosstalk* (Input L, Zero R, Measure R_OUT;				
Input R, Zero L, Measure L_OUT)			-80	dB
Total Out-of-Band Energy (Measured from $0.6 \times F_s$ to 100 kHz				
at L_OUT and R_OUT)*			-45	dB
Audible Out-of-Band Energy (Measured from $0.6 \times F_s$ to 20 kHz				
at L_OUT and R_OUT)*			-75	dB

MASTER VOLUME ATTENUATORS (L_OUT AND R_OUT, PHONE_OUT)

Parameter	Min	Тур	Max	Units
Master Volume Step Size (0 dB to -46.5 dB)		1.5		dB
Master Volume Output Attenuation Range Span		46.5		dB
Mute Attenuation of 0 dB Fundamental*			-80	dB

DIGITAL MIX ATTENUATORS*

Parameter	Min	Тур	Max	Units
Step Size: I ² S (0), I ² S (1), Music, ISA		1.505		dB
Digital Mix Attenuation Range Span		94.8		dB

ANALOG OUTPUT

Parameter	Min	Тур	Max	Units
Full-Scale Output Voltage (at L_OUT, R_OUT, PHONE_OUT)		2.8		V p-p
Output Impedance*			570	Ω
External Load Impedance*	10			kΩ
Output Capacitance*		15		pF
External Load Capacitance			100	pF
REFX [*]	2.10	2.25	2.40	V
V _{KEFX} Current Drive*		100		μA
N _{REFX} Output Impedance*		6.5		kΩ
Master Volume Mute Click (Muted Analog Mixers), Muted				
Output Minus Unmuted Output at OdB		± 5		mV
SYSTEM SPIECIFICATIONS*	7			
Parameter	/ Min /	Тур	Max	Units
System Frequency Response Ripple (Line In to Line Out)			1.0	dB
Differential Nonlinearity	' <i> L</i>		- ±1 - ,	LSB
Phase Linearity Deviation				Degra
STATIC DIGITAL SPECIFICATIONS	\Box			
Parameter	Min		/ Max /	/ Units
High Level Input Voltage (V _{IH})	2		- Ľ	V_
XTALI	2.4			
Low Level Input Voltage (V _{IL})			0.8	V
High Level Output Voltage (V_{OH}), $I_{OH} = 8 \text{ mA}^{\dagger}$	2.4			V
Low Level Output Voltage (V_{OL}) , $I_{OL} = 8 \text{ mA}$			0.4	V
Input Leakage Current	-10		+10	μΑ
Output Leakage Current	-10		+10	μA

POWER SUPPLY

Parameter	Min	Тур	Max	Units
Power Supply Range—Analog	4.75		5.25	V
Power Supply Range—Digital	4.75		5.25	V
Power Supply Current			221	mA
Power Dissipation			1105	mW
Analog Supply Current			51	mA
Digital Supply Current			170	mA
Analog Power Supply Current—Power-Down			2	mA
Digital Power Supply Current—Power-Down			24	mA
Analog Power Supply Current—RESET			0.2	mA
Digital Power Supply Current—RESET			10	mA
Power Supply Rejection (100 mV p-p Signal on Both Analog and Digital				
Supply Pins, Measured at ADC and Line Outputs)		40		dB

CLOCK SPECIFICATIONS*

Parameter	Min	Тур	Max	Units
Input Clock Frequency Recommended Clock Duty Cycle Power-Up Initialization Time	25	33 50	75 500	MHz % ms

TIMING PARAMETERS (Guaranteed Over Operating Temperature Range)

IOW/IORStrobe WidthtstwIOW/IORRising to IOW/IORFallingtstwIOWPalling to IOWIOWRisingtwosuIOWFalling to Valid Read DatatwosutwosuAENSetup to IOW/IORFallingtaesuAENSetup to IOW/IORFallingtaesuAENHold from IOW/IORFallingtaesuAdr Setup to IOW/IORFallingtabusAdr Hold from IOW/IORFallingtabusDACKRising to IOW/IORFallingtbestDACKRising to IOW/IORFallingtbestDACKRising to IOW/IORFallingtbestDACKRising to IOW/IORFallingtbestDACKRising to IOW/IORFallingtbestDACKHold from IORRisingtbestData Hold from IOW/IORFallingtbestDACKHold from IOW/IORFallingtbestData Hold from IOW/IORFallingtbestData Hold from IOW/IORFallingtbestData Iold from IOW/IORFallingtbestData [SDI]Input Hold Time from SCLK*tsData [SDI]Input Hold Time from SCLK*theTrane Sync [SDFS]HI PulsetbestPropagation Delay*tbesttbyClock [SCLK] to Output Data [SDO]tald*Propagation Delay*tbesttbestClock [SCLK HI Pulse WidthtbestBCLKHI Pulse Widthtbest	100 80 10 10 0 10 0 20 15)	40 2 25	ns ns ns ns ns ns ns ns ns ns ns ns ns n
Write Data Setup to IOW RisingtwDSUIOW Falling to Valid Read DatatRDDVAEN Setup to IOW/IOR FallingtAESUAEN Hold from IOW/IOR RisingtAEBUAdr Setup to IOW/IOR FallingtADSUAdr Setup to IOW/IOR FallingtADSUAdr Hold from IOW/IOR FallingtADSUDACK Rising to IOW/IOR FallingtDKSUData Hold from IOW RisingtDHD1Data Hold from IOW RisingtDHD2DRC Hold from IOW/IOR FallingtDRHDDACK Hold from IOW/IOR FallingtDKHEData Hold from IOW/IOR RisingtDKHEData Hold from IOW/IOR FallingtDKHEDACK SCLK] to Fame Sync [SDFS]thPropagation Delay*tppClock [SCLK] to output Data [SD0] TalidtpvRESET Pulse WidthtpvDACK HUD LthDACK HUD Lth	10 10 0 10 0 20		2	ns ns ns ns ns ns ns ns ns ns
IOW Falling to Valid Read DatatRDDVIOW Falling to Valid Read DatatRDDVAEN Setup to IOW/IOR FallingtAESUAEN Hold from IOW/IOR FallingtABSUAdr Setup to IOW/IOR FallingtADSUAdr Hold from IOW/IOR FallingtADSUDACK Rising to IOW/IOR FallingtDKSUData Hold from IOW RisingtDHD1Data Hold from IOW/IOR FallingtDHD2DRO Hold from IOW/IOR FallingtDHD2DACK Hold from IOW/IOR FallingtDKSUData Hold from IOW/IOR FallingtDHD2DRO Hold from IOW/IOR FallingtDKHEDACK Hold from IOW/IOR FallingtDKHEDACK Hold from IOW/IOR FallingtDKHEDACK Hold from IOW/IOR FallingtDKHEDACK Hold from IOW/IOR FallingtDKHEData [SDI] Input Hold Time from SCLK*tSData [SDI] Input Hold Time from SCLK*tSData [SDI] Input Hold Time from SCLK*thClock [SCLK] to Frame Sync [SDFS]thPropagation Delay*tpvRESET Pulse WidthtpvDACK HULD HULth	10 0 10 0 20		2	ns ns ns ns ns ns ns ns
AEN Setup to IOW/IOR Falling tAESU AEN Hold from IOW/IOR Rising tAEHD Adr Setup to IOW/IOR Falling tADSU Adr Hold from IOW/IOR Falling tADSU Adr Hold from IOW/IOR Falling tADSU DACK Rising to IOW/IOR Falling tDKSU Data Hold from IOW Rising tDHD1 Data Hold from IOW/IOR Falling tDHD2 DRO Hold from IOW/IOR Falling tDHD2 DACK Hold from IOW/IOR Falling tDHD2 DACK Hold from IOW/IOR Falling tDHD2 DACK Hold from IOW/IOR Falling tDKHD DACK SDFSI HI Pulse Widh* tH Clock [SCLK] to Frame Sync [SDFS] th Propagation Delay* th <tr< td=""><td>0 10 0 20</td><td></td><td>2</td><td>ns ns ns ns ns ns</td></tr<>	0 10 0 20		2	ns ns ns ns ns ns
AEN Hold from IOW/IOR Rising tAEHD Adr Setup to IOW/IOR Falling tADSU Adr Hold from IOW/IOR Rising tADSU DACK Rising to IOW/IOR Falling tDKSU DACK Rising to IOW/IOR Falling tDKSU Data Hold from IOW Rising tDHD1 DACK Hold from IOW/IOR Falling tDKSU DACK Hold from IOW/IOR Falling tDHD1 DACK Hold from IOW/IOR Falling tDHD2 DACK Hold from IOW/IOR Falling tDR0 DACK Hold from IOW/IOR Falling tDKHD DATE (SDI] Input/Hold Time from SCLK* ts Frame Sync (SDFS) HI Pulse Width* th Propagation Delay* tpp Clock [SCLK] to Output Data [SD0] Talid* tpv RESET Pulse Width tpv DCL K ULD - Width tpv	0 10 0 20			ns ns ns ns ns
AEN Hold from IOW/IOR Rising tAEHD Adr Setup to IOW/IOR Falling tADSU Adr Hold from IOW/IOR Rising tADHD DACK Rising to IOW/IOR Falling tDKSU DACK Rising to IOW/IOR Rising tDKSU Data Hold from IOW Rising tDHD1 Data Hold from IOW/IOR Falling tDHD1 Data Hold from IOW/IOR Rising tDHD2 DRO Hold from IOW/IOR Falling tDHD2 DACK Hold from IOW/IOR Rising tDHD2 DACK Hold from IOW/IOR Rising tDHD2 DACK Hold from IOW/IOR Rising tDKHD DATA [SD1] Input Setup Time to SCLK* ts Data [SD1] Input Hold Time from SCLK* th Frame Sync [SDFS] th Propagation Delay* TPD Clock [SCLK] to Frame Sync [SDFS] th PRESET Pulse Width th VW th RESET Pulse Width th DACK [SCLK] th	10 0 20			ns ns ns ns
Adr Hold from IOW/IOR Rising taDHD DACK Rising to IOW/IOR Falling tbKsu Data Hold from IOR Rising tbHD1 Data Hold from IOW/IOR Falling tbHD1 Data Hold from IOW/IOR Falling tbHD1 DACK Hold from IOW/IOR Falling tbHD2 DRO Hold from IOW/IOR Falling tbHD2 DRO Hold from IOW/IOR Falling tbHD2 DACK SDI SDI Input Setup Time to SCLK* ts Frame Sync (SDFS) HI Pulse Width* ts Vock [SCLK] to Frame Sync [SDFS] th Propagation Delay* th Clock [SCLK] to output Data [SD0] talid* th RESET Pulse Width th DCLK ULD I With	0 20			ns ns ns
DACK Rising to IOW/IOR Falling tDKSU Data Hold from IOR Rising tDHD1 Data Hold from IOW Rising tDHD2 DRO Hold from IOW/IOR Falling tDHD2 DRO Hold from IOW/IOR Falling tDHD2 DACK SDI SDI SI Input Hold Time from SCLK* ts Frame Sync [SDFS] tH Propagation Delay* SDFS] Clock [SCLK] to Output Data [SD0] Talid* thv RESET Pulse Width thv DCLK ULD I With	20			ns ns
Data Hold from IOR Rising Data Hold from IOW Rising Data Hold from IOW/IOR Falling DRO Hold from IOW/IOR Falling DACK Hold from IOW/IOR Rising DACK Hold from IOW/IOR Rising Data [SDI] Input/Hold Time from SCLK* Data [SDI] Input/Hold Time from SCLK* Trane Sync (SDFS) HI Pulse Width* Clock [SCLK] to Frame Sync [SDFS] Propagation Delay* Clock [SCLK] to Output Data [SD0] Talid* RESET Pulse Width				ns
Data Hold from IOW Rising DRO Hold from IOW/IOR Falling DACK Hold from IOW/IOR Falling DACK Hold from IOW/IOR Rising Data [SDI] Input/Hold Time from SCLK* Data [SDI] Input/Hold Time from SCLK* Frame Sync (SDFS) HI Pulse Width* Clock [SCLK] to Frame Sync [SDFS] Propagation Delay* Clock [SCLK] to Output Data [SD0] Talid* RESET Pulse Width	15			
DR0 Hold from IOW/IOR Falling tDRHD DACK Hold from IOW/HOR Rising tDKHD DATA [SDI] Input/Setup Time to SCLK* ts Data [SDI] Input/Hold Time from SCLK* th Frame Sync (SDFS) HI Pulse Width* th Vock [SCLK] to Frame Sync [SDFS] tpp Propagation Delay* tpp Clock [SCLK] to Output Data [SD0] Valid* tpv RESET Pulse Width tpv	15		25	ns
DACK Hold from IOWHOR Rising tDKHE Data [SDI] Input Setup Time to SCLK* ts Data [SDI] Input Hold Time from SCLK* th Frame Sync (SDFS) HI Pulse Width* th Vock [SCLK] to Frame Sync [SDFS] th Propagation Delay* th Clock [SCLK] to Output Data [SD0] Valid* th Very RESET Pulse Width th Very Reset of the Width th			25	
Data [SDI] Input Setup Time to SCLK* ts Data [SDI] Input Hold Time from SCLK* ts Frame Sync [SDFS] HI Pulse Width* th Vock [SCLK] to Frame Sync [SDFS] tree Propagation Delay* to Clock [SCLK] to Output Data [SD0] Valid* to RESET Pulse Width to Data [SD0] Valid* to				ns
Data [SDI] Input Hold Time from SCLK [*] t _H France Sync [SDFS] HI Pulse Width [*] (lock [SCLK] to Frame Sync [SDFS] Propagation Delay [*] Clock [SCLK] to Output Data [SD0] Valid [*] RESET Pulse Width	10			ns
Frame Sync [SDFS] HI Pulse Width* Clock [SCLK] to Frame Sync [SDFS] Propagation Delay* Clock [SCLK] to Output Data [SD0] Valid RESET Pulse Width	15			ns
Clock [SCLK] to Frame Sync [SDFS] Propagation Delay* Clock [SCLK] to Output Data [SD0] Valid RESET Pulse Width DCLK ULD With	10			ns
Clock [SCLK] to Frame Sync [SDFS] Propagation Delay* Clock [SCLK] to Output Data [SD0] Valid* RESET Pulse Width DCLK ULD - Wild		80		ns
Clock [SCLK] to output Data [SD @] Valid RESET Pulse Width				
RESET Pulse Width			15	ns
		~	15	ns
BCLK HI Pulse Width	100		_	ns
BCLK HI Pulse width			1	ns
BCLK LO Pulse Width t_{DBL}				ns ns
BCLK Period				/ ns
LRCLK Setup t _{DLS}		$, \rightarrow$		/ n/s
SDATA Setup t _{DDS}				nts_
SDATA Hold t _{DDH}	5			ns_

†All ISA pins MIDI_OUT IOL = 24 mA. Refer to pin description for individual output drive levels.

Specifications subject to change without notice.

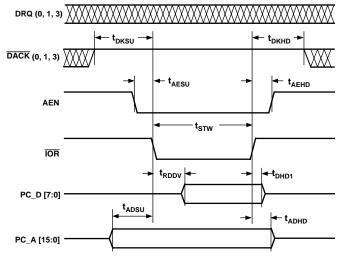


Figure 1. PIO Read Cycle

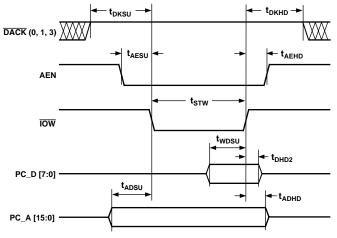
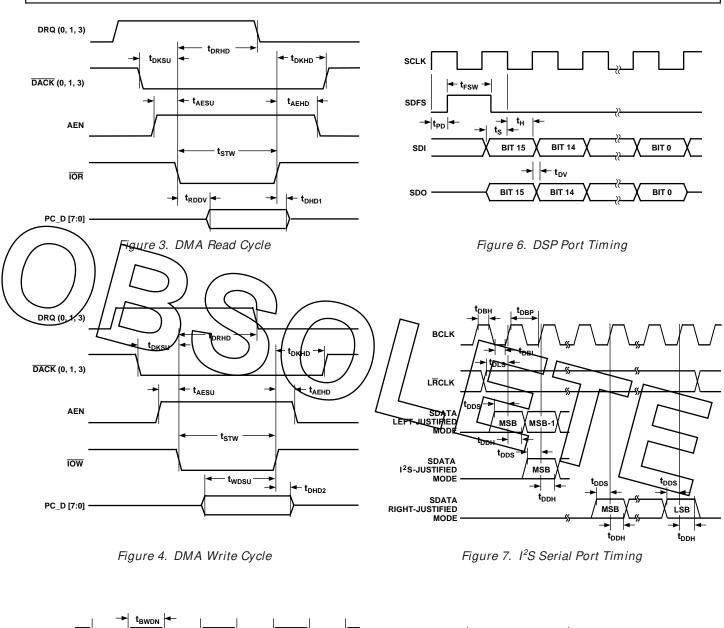
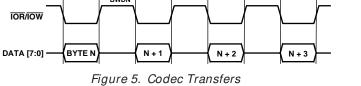
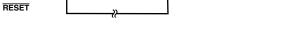





Figure 2. PIO Write Cycle

t_{RPWL}

Figure 8. Reset Pulse Width

ABSOLUTE MAXIMUM RATINGS*

Parameter	Min	Max	Units
Power Supplies			
$Digital(V_{DD})$	-0.3	6.0	V
Analog (V_{CC})	-0.3	6.0	V
Input Current (Except Supply Pins)		±10.0	mA
Analog Input Voltage (Signal Pins)	-0.3	$V_{CC} + 0.3$	V
Digital Input Voltage (Signal Pins)	-0.3	$V_{DD} + 0.3$	V
Ambient Temperature (Operating)	0	+70	°C
Storage Temperature	-65	+150	°C

*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ENVIRONMENTAL CONDITIONS

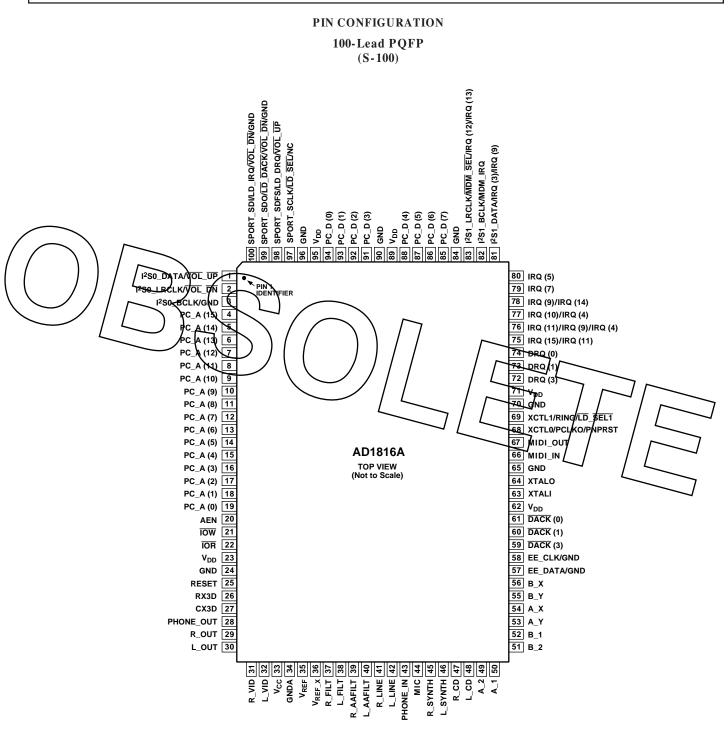
Ambient Temperature Rating:

- $T_{AMB} = T_{CASE} (PD \times \theta_{CA})$ $T_{CASE} = Case Temperature in °C$

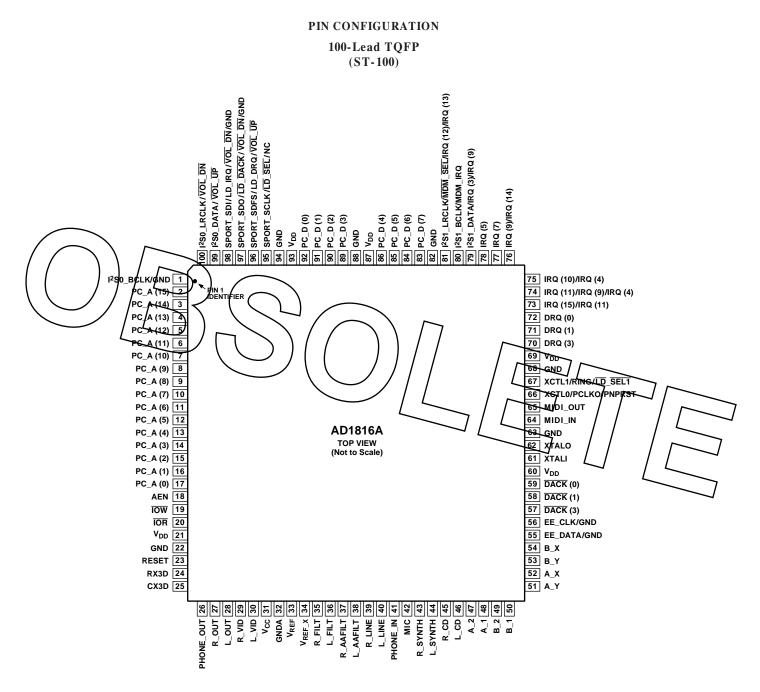
PD = Power Dissipation in W

 θ_{CA} = Thermal Resistance (Case-to-Ambient)

 θ_{JA} = Thermal Resistance (Junction-to-Ambient)


 θ_{JC} = Thermal Resistance (Junction-to-Case)

Package	θ _{JA}	θ_{JC}	θ _{CA}		
PQFP	35.1°C/W	7°C/W	28°C/W		
TQFP	35.3°C/W	8°C/W	27.3°C/W		


ORDERING GUIDE

ModelTemperature RangePackage DescriptionPackage Option*AD1816AJS AD1816AJST0°C to +70°C100-Lead PQFP 100-Lead TQFPS-100 ST-100*S = Plactic Quad Flatpack; ST = Thin Quad Flatpack. JST package option availability ubject to 10,000 PC minimum order quantity.e) sensitive device. Electrostatic charges as high as 4000 V readily body and test equipment and can discharge without detection.					
AD 1816AJST 0°C to +70°C 100-Lead TQFP ST-100 *S= Platic Quad Flatpack; ST = Thin Quad Flatpack. JST package option availability ubject to 10,000 PC minimum order quantity. re) sensitive device. Electrostatic charges as high as 4000 V readily body and test equipment and can discharge without detection.		Model	-	8	0
e) sensitive device. Electrostatic charges as high as 4000 V readily	$\leq (\bigcirc) \frown$				
body and test equipment and can discharge without detection.	$\mathcal{O}(\mathcal{O})$				age option
				WARNING!	

precautions are recommended to avoid performance degradation or loss of functionality. The AD1816A latchup immunity has been demonstrated at \geq +100 mA/-80 mA on all pins when tested to Industry Standard/JEDEC methods.

NC = NO CONNECT

NC = NO CONNECT

PIN FUNCTION DESCRIPTIONS

Analog Signals (All Inputs must be AC-Coupled)

Pin Name	PQFP	TQFP	I/O	Description
MIC	44	42	I	Microphone Input. The MIC input may be either line-level or -20 dB from line-level (the difference being made up through a software controlled 20 dB gain block). The mono MIC input may be sent to the left and right channel of the ADC for conversion, or gained/ attenuated from $+12 \text{ dB}$ to -34.5 dB in 1.5 dB steps and then summed with left and right line OUT before the Master Volume stage.
L_LINE	42	40	Ι	Left Line-Level Input. The left line-level input may be sent to the left channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).
R_LINE	41	39	Ι	Right Line-Level Input. The right line-level input may be sent to the right channel of the ADC; gained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).
(_SYNTH	46		I	Left Synthesizer Input. The left MIDI upgrade line-level input may be sent to the left channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).
R_SYNTH	15			Right Synthesizer Input. The right MIDI upgrade line-level input may be sent to the right channel of the ADC ; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summer with right line $QUT/(R_OUT)$.
L_CD	48	46		Left CD Line-Level Input. The left CD line level input may be sent to the left channel of the ADC; sained/attenuated from $+12$ dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (LOUT).
R_CD	47	45	Ι	Right CD Line-Level Input. The right CD line-level input may be sent to the right channel of the ADC; gained/attenuated from +12/dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).
L_VID	32	30	Ι	Left Video Input. The left audio track for a video time level input may be sent to the left channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with left line OUT (L_OUT).
R_VID	31	29	Ι	Right Video Input. The right audio track for a video line-level input may be sent to the right channel of the ADC; gained/attenuated from +12 dB to -34.5 dB in 1.5 dB steps and then summed with right line OUT (R_OUT).
L_OUT	30	28	0	Left Output. Left channel line-level post-mixed output. The final stage passes through the Master Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.
R_OUT	29	27	0	Right Output. Right channel line-level post-mixed output. The final stage passes through the Master Volume block and may be attenuated 0 dB to -45 dB in 1.5 dB steps.
PHONE_IN	43	41	Ι	Phone Input. Line-level input from a DAA/modem chipset.
PHONE_OUT	28	26	0	Phone Output. Line-level output from a DAA/modem chipset.
RX3D	26	24	0	Phat Stereo Phase Expander filter network, resistor pin.
CX3D	27	25	Ι	Phat Stereo Phase Expander filter network, capacitor pin.

Parallel Interface (All Outputs are 24 mA Drivers)

Pin Name	PQFP	TQFP	I/O	Description
PC_D[7:0]	85-88, 91-94	83-86, 89-92	I/O	Bidirectional ISA Bus PC Data, 24 mA drive. Connects the AD1816A to the low byte data on the bus.
IRQ (x)*	75-81,83	73–79, 81	0	Host Interrupt Request, 24 mA drive. IRQ (3)/IRQ (9), IRQ (5), IRQ (7), IRQ (9)/IRQ (14), IRQ (10)/IRQ (4), IRQ (11)/IRQ (9)/IRQ (4), IRQ (12)/IRQ (13), IRQ (15)/IRQ (11). Active HI signals indicating a pending interrupt.
DRQ (x)	72–74	70–72	0	DMA Request, 24 mA drive. DRQ (0), DRQ (1), DRQ (3). Active HI signals indicating a request for DMA bus operation.
PC_A[15:0]	4–19	2-17	Ι	ISA Bus PC Address. Connects the AD1816A to the ISA bus address lines.
AEN	20	18	Ι	Address Enable. Low signal indicates a PIO transfer.
DACK (x)	59-61	57–59	Ι	DMA Acknowledge. DACK (0), DACK (1), DACK (3). Active LO signal indicating that a DMA operation can begin.
IDR	22	20	Ι	I/O Read. Active LO signal indicates a read operation.
tow .		19	L	I/O Write. Active HI signal indicates a write operation.
RESET /	2/5 /	23 ($-$		Reset. Active HI.
Game Port				
Pin Name	PQFP	TQFP	I/Ø	Description
A_1	50	48	I	Game Port A Button #1.
A_2	49	47	Ι	Game Port A, Button #2.
A_X	54	52	Ι	Game Port A, X-Axis
A_Y	53	51	Ι	Game Port A, Y-Axis.
B_1	52	50	Ι	Game Port B, Button #1.
B_2	51	49	Ι	Game Port B, Button #2.
B_X	56	54	Ι	Game Port B, X-Axis.
B_Y	55	53	Ι	Game Port B, Y-Axis.

MIDI Interface Signal (24 mA Drivers)

Pin Name	PQFP	TQFP	I/O	Description
MIDI_IN	66	64	Ι	RXD MIDI Input. This pin is typically connected to Pin 15 of the game port connector.
MIDI_OUT	67	65	0	TXD MIDI Output. This pin is typically connected to Pin 12 of the game port connector.

Muxed Serial Ports (8 mA Drivers)

Pin Name	PQFP	TQFP	I/O	Description
$\overline{I^2S(0)}_BCLK^*$	3	1	Ι	I ² S (0) Bit Clock.
I ² S(0)_LRCLK*	2	100	Ι	I ² S (0) Left/Right Clock.
$I^2S(0)_DATA^*$	1	99	Ι	I ² S (0) Serial Data Input.
I ² S(1)_BCLK*	82	80	Ι	$I^2S(1)$ Bit Clock.
I ² S(1)_LRCLK*	83	81	Ι	I ² S (1) Left/Right Clock.
$I^2S(1)_DATA^*$	81	79	Ι	I ² S (1) Serial Data Input.
SPORT_SDI*	100	98	Ι	Serial Port Digital Serial Input.
SPORT_SCLK*	97	95	0	Serial Port Serial Clock.
SPORT_SDFS*	98	96	0	Serial Port Serial Data Frame Synchronization.
SPORT_SDO*	99	97	0	Serial Port Serial Data Output.

SFORT DU.	99	91	0	Senar Fort Senar Data Output.
Miscellaneous Anal	Pins Pins			
Pin Name	<u>PQ</u> FP	TOFP	I/O	Description
V _{REF_X}	\square			Voltage Reference. Nominal 2.25 volt reference available for dc-coupling and level-shifting. V_{REF_X} should not be used to sink or source signal current. V_{REF_X} should be bypassed with 10 μ F and 0.1 μ F parallel capacitors.
V_{REF}	35	33		Voltage Reference Filter. Voltage reference filter point for external bypassing only. N_{REF} should be bypassed with 10 μ F and 0.1 μ F parallel capacitors.
L_FILT	38	36		Left Channel Filter. Requires a T.O HF to analog ground for proper operation.
R_FILT	37	35	Ι	Right Channel Filter. Requires a 1.0 µF to analog ground for proper operation.
L_AAFILT	40	38	Ι	Left Channel Antialias Filter. This pin requires a 560 pF NPO capacitor to analog ground for proper operation.
R_AAFILT	39	37	Ι	Right Channel Antialias Filter. This pin requires a 560 pF NPO capacitor to analog ground for proper operation.

Crystal	Din
Crystal	PIN

Pin Name	PQFP	TQFP	I/O	Description
XTALO	64	62	0	33 MHz Crystal Output. If no Crystal is present leave XTALO unconnected.
XTALI	63	61	Ι	33 MHz Clock. When using a crystal as a clock source, the crystal should be connected between the XTALI and XTALO pins. Clock input may be driven into XTALI in place of a crystal. When using an external clock $V_{\rm IH}$ must be 2.4 V rather than the $V_{\rm IH}$ of 2.0 V specified for all other digital inputs.

External Logical Devices

Pin Name	PQFP	TQFP	I/O	Description
LD_IRQ*	100	98	Ι	Logical Device IRQ.
LD_DACK*	99	97	0	Logical Device DACK.
LD_DRQ*	98	96	Ι	Logical Device DRQ.
LD_SEL*	97	95	0	Logical Device Select.
MDM_SEL*	83	81	0	Modem Chip Set Select.
MDM_IRQ*	82	82	Ι	Modem Chip Set IRQ.
LD_SEL1*	69	67	0	Logical Device (1) Select.
PNPRST *	68	66	0	Plug and Play Reset.

Hardware Volume Pins

Pin Name	PQFP	TQFP	I/O	Description
VOL_DN*	2, 99, 100	97, 98, 100	Ι	Master Volume Down. Modifies output level on pins L_OUT and R_OUT. When asserted LO, decreases Master Volume by 1.5 dB/sec. Must be asserted at least 25 ms to be recognized. When asserted simultaneously with $\overline{VOL_UP}$, out- put is muted. Output level modification reflected in indirect register [41].
VOL_UP*	1, 98	96, 99	I	Master Volume Up. Modifies output level on pins L_OUT and R_OUT. When asserted LO, increases Master Volume by 1.5 dB/sec. Must be asserted at least 25 ms to be recognized. When asserted simultaneously with VOL_UP, output is muted. Output level modification reflected in indirect register [41].

Control Pins

Pin Name PQFP	TQFP	I/O	Description
XCT 0* 68 PCI KO* 68			External Control 0. The state of this pin (TTL HI or LO) is reflected in codec indexed register. This pin is an open drain driver. Programmable Clock Output. This pin can be programmed to generate an out- put clock equal to F_s , $8 \times F_s$, $16 \times F_s$, $32 \times F_s$, $64 \times F_s$, $128 \times F_s$ or $256 \times F_s$. MPEG decoder typically require a master clock of $256 \times F_s$ for audio synchronization.
XCTL1* 69		\bigcirc	External Control 1. The state of this pin (TTL HI or LO) is reflected in codec indexed register. Open drain, 8 mA active 0.5 mA pull-up resistor.
RING* 69	67	I	Ring Indicator. Used to accept the ring indicator flag from the DAA
Demos Samultos			

Pin Name	PQFP	TQFP	I/O	Description
V _{CC}	33	31	Ι	Analog Supply Voltage (+5 V).
GNDA	34	32	Ι	Analog Ground.
V _{DD}	23, 62, 71, 89, 95	21, 60, 69, 87, 93	I	Digital Supply Voltage (+5 V).
GND	3*, 24, 65, 70, 84, 90, 96, 99*, 100*	1*, 22, 63, 68, 82, 88, 94, 97*, 98*	Ι	Digital Ground.

Optional EEPROM Pins

Pin Name	PQFP	TQFP	I/O	Description
EE_CLK	58	56	0	EEPROM Clock. Open drain output, requires external pull-up.
EE_DATA	57	55	I/O	EEPROM Data. Open drain I/O, requires external pull-up.

*The position of this pin location/function is dependent on the EEPROM data.

HOST INTERFACE

The AD1816A contains all necessary ISA bus interface logic on chip. This logic includes address decoding for all onboard resources, control and signal interpretation, DMA selection and control logic, IRQ selection and control logic, and all interface configuration logic.

The AD1816A supports a Type "F" DMA request/grant architecture for transferring data with the ISA bus through the 8-bit interface. The AD1816A also supports DACK preemption. Programmed I/O (PIO) mode is also supported for control register accesses and for applications lacking DMA control. The AD1816A includes dual DMA count registers for full-duplex operation enabling simultaneous capture and playback on separate DMA channels.

Codec Functional Description

The AD 1810A's full-duplex stereo codec supports business audio and multimedia applications. The codec includes stereo audio converters, complete on-chip filtering, MRC Level-2 and Level-3 compliant analog mixing programmable gain and attenuation, variable sample rate converters, extensive digital mixing and EIFOs buffering the Iglug and Play ISA bus interface.

Analog Inputs

The codec contains a stereo pair of analog to digital converters (ADC). Inputs to the ADC can be selected from the following analog signals: mono (PHONE_IN), mono microphone (MIC), stereo line (LINE), external stereo synthesizer (SYNTH), stereo CD ROM (CD), stereo audio from a video source (VID) and post-mixed stereo or mono line output (OUT).

Analog Mixing

PHONE_IN, MIC, LINE, SYNTH, CD and VID can be mixed in the analog domain with the stereo line OUT from the $\Sigma\Delta$ digital-to-analog converters (DAC). Each channel of the stereo analog inputs can be independently gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps, except for PHONE_IN, which has a range of 0 dB to -45 dB steps. The summing path for the mono inputs (MIC, and PHONE_IN to line OUT) duplicates mono channel data on both the left and right line OUT, which can also be gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps for MIC, and +0 dB to -45.0 dB in 3 dB steps for PHONE_IN. The left and right mono summing signals are always identical being gained or attenuated equally.

Analog-to-Digital Datapath

The selector sends left and right channel information to the programmable gain amplifier (PGA). The PGA following the selector allows independent gain for each channel entering the ADC from 0 dB to 22.5 dB in 1.5 dB steps.

For supporting time correlated I/O echo cancellation, the ADC is capable of sampling microphone data on the left channel and the mono summation of left and right OUT on the right channel.

The codec can operate in either a global stereo mode or a global mono mode with left channel inputs appearing at both channels of the 16-bit $\Sigma\Delta$ converters. Data can be sampled at the programmed sampling frequency (from 4 kHz to 55.2 kHz with 1 Hz resolution).

Digital Mixing and Sample Rates

The audio ADC sample rate and the audio DAC sample rates are completely independent. The AD1816A includes a variable sample rate converter that lets the codec instantaneously change and process sample rates from 4 kHz to 55.2 kHz with a resolution of 1 Hz. The in-band integrated noise and distortion artifacts introduced by rate conversions are below –90 dB. Up to four channels of digital data can be summed together and presented to the stereo DAC for conversion. Each digital channel pair can contain information encoded at a different sample rate. For example, 8 kHz .wav data received from the ISA interface, 48 kHz MPEG audio data received from $I^2S(0)$, digital 44.1 kHz CD data received from $I^2S(1)$ and internally generated 22.05 kHz music data may be summed together and converted by the DACs.

Digital-to-Analog Datapath

The internally generated music synthesizer data, PCM data received from the ISA interface, data received from the $I^2S(0)$ port and data received from the $I^2S(1)$ port, and the DSP serial port passes through an attenuation mute stage. The attenuator allows independent control over each digital channel, which can be attenuated from 0 dB to -94.5 dB in 1.5 dB steps before being summed together and passed to the DAC, or the channel may be muted entirely.

Analog Outputs and Phat Stereo

The analog output of the DAC can be summed with any of the analog input signals. The summed analog signal enters the Master Volume stage where each channel L_OUT, R_OUT and PHONE_OUT may be attenuated from 0 dB to -46.5 dB in

1.5 dB steps or muted. Andlog Outputs and Phat Stereo

The AD1816A includes ADI's proprietary Phal Steree 3D phase enhancement technology, which creates an increased sense of spiciousness using two speakers. Our unique patented feedback technology enables superior control over the width and depth of the acoustic signals arriving at the human ear. The AD1816A employs an electrical model of the speaker-to-ear path allowing precise control over a signal's phase at the ear. The Phat Stereo circuitry expands apparent sound images beyond the angle of the speakers by exploiting phase information in the audio signal and creating a more immersive listening experience.

Digital Data Types

The codec can process 16-bit twos complement PCM linear digital data, 8-bit unsigned magnitude PCM linear data and 8-bit µ-law or A-law companded digital data as specified in the control registers. The AD1816A also supports ADPCM encoded in the Creative SoundBlaster ADPCM formats.

Host-Based Echo Cancellation Support

The AD1816A supports time correlated I/O data format by presenting MIC data on the left channel of the ADC and the mono summation of left and right OUT on the right channel. The ADC sample rates are independent of the DAC sample rate allowing the AD1816A to support ADC time correlated I/O data at 8 kHz and DAC data at any other sample rate in the range of 4 kHz to 55.2 kHz simultaneously.

Telephony Support

The AD1816A contains a PHONE_IN input and a PHONE_OUT output. These pins are supplied so the AD1816A may be connected to a modem chip set, a telephone handset or down-line phone.

WSS and SoundBlaster Compatibility

Windows Sound System software audio compatibility is built into the AD1816A.

SoundBlaster emulation is provided through the SoundBlaster register set and the internal music synthesizer. SoundBlaster Pro version 3.02 functions are supported, including record and Creative SoundBlaster ADPCM.

Virtually all applications developed for SoundBlaster, Windows Sound System, AdLib and MIDI MPU-401 platforms run on the AD1816A SoundPort Controller. Follow the same development process for the controller as you would for these other devices.

As the AD1816A contains SoundBlaster (compatible) and Windows Sound System logical devices. You may find the following related development kits useful when developing AD1816A applications.

Developer Kit for SoundBlaster Series, 2nd ed. © 1993, Creative Labs, Inc., 1901 McCarthy Blvd., Milpitas, CA 95035

Microsoft Windows Sound System Driver Development Kit (CD), Version 2.0, © 1993, Microsoft Corp., One Microsoft Way, Redmond, WA 98052

The following reference texts can serve as additional sources of information on developing applications that run on the AD1816A.

S. De Furia & J. Schccieterro, The MIDI Implementation Book, (© 1986, Third Earth, Pompton Lake C. Petzold, Programming Windows: the Microsoft guide to writing applications for Windows 3.1, 3rd. ed., (© 1992, Microsoft

Press, Redmond

K. Pohlmann, *Principles of Digital Audio*, (© Indianapolis)

A. Stolz, The SoundBlaster Book, (© 1993, Abacau, Gran Rapids)

J. Strawn, *Digital Audio Engineering*, *An Anthology*, (© 1985, Kaufmann, Los Altos)

Yamamoto, *MIDI Guidebook*, 4th. ed., (© 1987, 1989, Roland Corp.)

Multimedia PC Capabilities

The AD1816A is MPC-2 and MPC-3 compliant. This compliance is achieved through the AD1816A's flexible mixer and the embedded chip resources.

Music Synthesis

The AD1816A includes an embedded music synthesizer that emulates industry standard OPL3 FM synthesizer chips and delivers 20 voice polyphony. The internal synthesizer generates digital music data at 22.05 kHz and is summed into the DACs digital data stream prior to conversion. To sum synthesizer data with the ADC output, the ADC must be programmed for a 22.05 kHz sample rate.

The synthesizer is a hardware implementation of Eusynth-1+ code that was developed by Euphonics, a research and development company that specializes in audio processing and electronic music synthesis.

989

am

Wavetable MIDI Inputs

The AD1816A has a dedicated analog input for receiving an analog wavetable synthesizer output. Alternatively, a wavetable synthesizer's I²S formatted digital output can be directly connected to one of the AD1816A's I²S serial ports. Digital wavetable data from the AD1816A's I²S port may be summed with other digital data streams being handled by the AD1816A and then sent to the 16-bit $\Sigma\Delta$ DAC.

MIDI

The primary interface for communicating MIDI data to and from the host PC is the compatible MPU-401 interface that operates only in UART mode. The MPU-401 interface has two built-in FIFOs: a 64-byte receive FIFO and a 16-byte transmit FIFO.

Game Port

An IBM-compatible game port interface is provided on chip. The game port supports up to two joysticks via a 15-pin D-sub connector. Joystick registers supporting the Microsoft Direct Input standard are included as part of the codec register map. The AD1816A may be programmed to automatically sample the game port and save the value in the Joystick Position Data Register. When enabled, this feature saves up to 10% CPU MIPS by off-loading the host from constantly polling the joystick port.

Volum e Control

The registers that control the Master Volume output stage are accessible through the ISA Bus. Master Volume output can also be controlled through a 2-pin hardware interface. One pin is used to increase the gain, the other pin attenuates the output and both pins together entirely mute the output. Once muted, any forther activity on these pins will unmute the AD1816A's output.

Plug and Play Configuration

The AD 1816A is fully Plug and Play configurable. For motherboard applications, the built-in Plug and Play protocol can be disabled with a software key providing a back door for the BIOS to configure the AD 18 f6A's logical devices. For information on the Plug and Play mode configuration process, see the *Plug and Play ISA Specification Version L 0a (May 5, 1994)* All the AD 1816A's logical devices comply with Plug and Flay resource definitions described in the specification

The AD1816A may alternatively be configured using an optional Plug and Play Resource ROM. When the EEPROM is present, some additional AD1816A muxed-pin features become available. For example, pins that control an external modem logical device are muxed with the DSP serial port. Some of these pin option combinations are mutually exclusive (see Appendix A for more information).

REFERENCES

The AD1816A also complies with the following related specifications; they can be used as an additional reference to AD1816A operations beyond the material in this data sheet.

Plug and Play ISA Specification, Version 1.0a, © 1993, 1994, Intel Corp. & Microsoft Corp., One Microsoft Way, Redmond, WA 98052

Multimedia PC Level 2 Specification, © 1993, Multimedia PC Marketing Council, 1730 M St. NW, Suite 707, Washington, DC 20036

MIDI 1.0 Detailed Specification & Standard MIDI Files 1.0, © 1994, MIDI Manufacturers Association, PO Box 3173 La Habra, CA 90632-3173

Recommendation G.711-Pulse Code Modulation (PCM) Of Voice Frequencies (µ-Law & A-Law Companding), The International Telegraph and Telephone Consultative Committee IX Plenary Assembly Blue Book, Volume III - Fascicle III.4, General Aspects Of Digital Transmission Systems; Terminal Equipment's, Recommendations G.700 - G.795, (Geneva, 1988), ISBN 92-61-03341-5

SERIAL INTERFACES

I²S Serial Ports

The two I²S serial ports on the AD1816A accept serial data in the following formats: Right-Justified, I²S-Justified and Left-Justified.

Figure 9 shows the right-justified mode. LRCLK is HI for the left channel and LO for the right channel. Data is valid on the rising edge of the BCLK. The MSB is delayed 16-bit clock periods from an LRCLK transition, so that when there are 64 BCLK periods per LRCLK period, the LSB of the data will be right-justified to the next LRCLK transition.

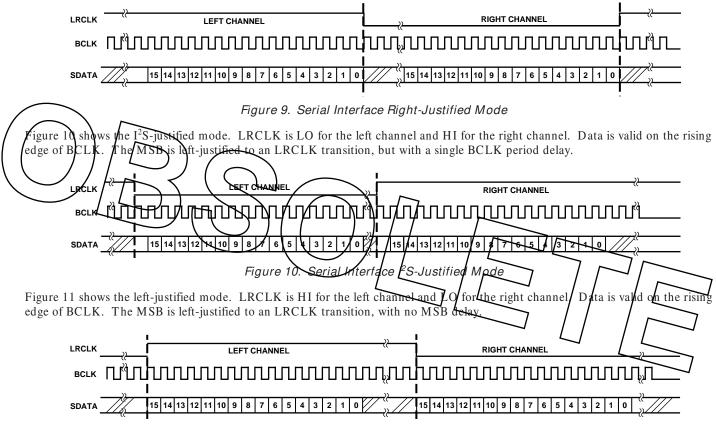


Figure 11. Serial Interface Left-Justified Mode

Bidirectional DSP Serial Interface

The AD1816A SoundPort Controller transmits and receives both data and control/status information through its DSP serial interface port (SPORT). The AD1816A is always the bus master and supplies the frame sync and the serial clock. The AD1816A has four pins assigned to the SPORT: SDI, SDO, SDFS and SCLK. The SPORT has two operating modes: monitor and intercept. The SPORT always monitors the various data streams being processed by the AD1816A. In intercept mode, any of the digital data streams can be manipulated by the DSP before reaching the final ADC or DAC stages.

The SDI and SDO pins handle the serial data input and output of the AD1816A. Communication in and out of the AD1816A requires that bits of data be transmitted after a rising edge of SCLK and sampled on the falling edge of SCLK. The SCLK frequency is always 11 MHz (or 1/3 or XTALI).

DSP Serial Port Interface time slots are mapped as shown in Table I.

Table I.	DSP	Port	Time	Slot	Map
----------	-----	------	------	------	-----

Time Slot	SDI Pin	SDO Pin		
0	Control Word Input	Status Word Output		
1	Control Register Data Input	Control Register Data Output		
2	* SS/SB ADC Right Input (to ISA)	SS/SB ADC Right Output (from Codec)		
3	* SS/SB ADC Left Input (to ISA)	SS/SB ADC Left Output (from Codec)		
4	* SS/SB DAC Right Input (to Codec)	SS/SB DAC Right Output (from ISA)		
5	* SS/SB DAC Left Input (to Codec)	SS/SB DAC Left Output (from ISA)		
6	* FM DAC Right Input (to Codec)	FM DAC Right Output (from FM Synth Block		
7	* FM DAC Left Input (to Codec)	FM DAC Left Output (from FM Synth Block)		
8	* I ² S (1) DAC Right Input (to Codec)	I ² S (1) DAC Right Output (from I ² S Port (1))		
9	* I ² S (1) DAC Left Input (to Codec)	I ² S (1) DAC Left Output (from I ² S Port (1))		
10	* I ² S (0) DAC Right Input (to Codec)	I ² S (0) DAC Right Output (from I ² S Port (0))		
11	* I ² S (0) DAC Left Input (to Codec)	I ² S (0) DAC Left Output (from I ² S Port (0))		

At start-up (after pin reset), there are ekactly 12 time slots per frame. The frame rate will be 57,291 and 2/3 Hz (11 MHz sclk/ [10 bits \times 12 slots]). Interfacing with an Analog Devices 21xx family DSP can be achieved by putting the ADSP-21xx in 24 slot per frame mode, where the first 12 and second 12 slots in the ADSP-21xx frame are identical.

The frame rate can be changed from its default by a write to the DFS(2:0) bits in register 33. Rate choices are: Maximum (57,291 and 2/3 Hz default), SS capture rate, SS playback rate. FM rate, 1²S Port (1) rate, or 1²S Port (6) rate. When the frame rate is less than 57,261 and 2/3 Hz, extra SCLK periods are added to FM up the time. The number of SCLK periods added will vary somewhat from frame to frame.

To control the sample data flow of each channel through the DSP Port, valid input, valid output and request bits are located in the control and status words. If the specified channel sample rate is equal to the frame rate these bits may be ignored since they will always be set to "1."

By default, the DSP serial port allows only codec sample data I/O to be monitored. Intercept modes must be enabled to make substitutions in sample data flow to and from the codec. There are five bits in SS register 33, which enable intercept mode for SS capture. SS playback, FM playback, I²S Port (1) playback and I²S Port (0) playback.

Control Word Input (Slot 0 SDI)

laster M

15	14	13	12	11	10	9	8
FCLR	RES	RES	SSCVI	SSPVI	FMVI	IS1VI	ISOVI
7	6	5	4	3	2	1	0
ALIVE	R/W			IA[5:0]			

IA [5:0] Indirect Register Address. Sound System Indirect Register Address defines the address of indirect registers shown in Table VI.

R/W Read/Write request. Either a read from or a write to an SS indirect register occurs every frame. Setting this bit initiates an SS indirect register read while clearing this bit initiates an SS indirect register write.

- ALIVE DSP port alive bit. When set, this bit indicates to the power-down timer that the DSP port is active. When cleared, this bit indicates that the DSP port is inactive.
- ISOVI I²S Port 0 Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for the I²S port 0 channel pair, or (2) The AD1816A did not request data from the I²S port 0 channel pair in the previous frame. Otherwise, setting this bit indicates that slots 10 and 11 contain valid right and left I²S Port 0 substitution data. When this bit is cleared, data in slots 10 and 11 is ignored.
- IS1VI IS1VI
- FMVIFM Synthesis Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for the
FM synthesis channel pair or (2) The AD1816A did not request data from the FM synthesis channel pair in the
previous frame (see the FMRQ Bit 9 in the status word output). Otherwise, setting this bit to 1 indicates that slots
6 and 7 contain valid right and left FM synthesis channel substitution data. When this bit is reset to 0, data in slots
6 and 7 is ignored.

SSPVI SS/SB Playback Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for SS/SB playback or (2) The AD1816A did not request data for SS/SB playback in the previous frame (see the SSPRQ bit in the Status Word Output). Otherwise, setting this bit indicates that Slots 4 and 5 contain valid right and left SS/SB playback substitution data. If in "capture rate equal to playback rate" mode, setting this bit also indicates that valid capture substitution data is being sent to the AD1816A. If not in modem mode, right and left channel capture substitution data is accepted in Slots 2 and 3 respectively. If in modem mode, only mono capture substitution data is accepted in slots 2 and 3. When this bit is cleared, data in all slots controlled by this bit, as defined above, is ignored.

SSC VI SS/SB Capture Substitution Data Input Valid Flag. This bit is ignored if: (1) Intercept mode is not enabled for SS/ SB capture or (2) The AD1816A did not request data for SS/SB capture in the previous frame (see the SSCRQ bit in the Status Word Output). Otherwise, setting this bit indicates that valid SS/SB capture substitution data is being sent to the AD1816A. If not in modem mode, or DSP port or ISA bus based, right and left channel capture data is accepted in Slots 2 and 3 respectively. If in modem mode, only mono capture substitution data is accepted in Slot 3, because Slot 2, which is mapped to the right capture channel, is being used for modem. This mono data will, however, be sent to both left and right ISA SS/SB capture channels. When this bit is cleared, data in Slots 3 and 2 is ignored.

RES FCLR

Xo ensur<u>e fu</u>ture compatibility write "0" to all reserved bits. Reserved

Status Flag. When this bit is set, (write 1), the PNPR and PDN flag bits in the status word (Bits DSR Port CI of slots 0 SDO are cleared. When this bit is cleared, (writing a 0), it has no effect on PNPR and PDN 5 and 14 and preserves them in the previous states

Status Word	Output (Slot 0/SDO)						
	15 12 14 10 8						
	PDN PNPR RES SSC /0 / SSP VO FMVØ IS VO ISOVO						
	MB1 MB0 RES SSCRQ SSPRQ FMRQ S1RQ ISORQ						
ISORQ	I^2S Port (0) Input Request Flag. This bit is set if intercept mode is enabled for I^2S Port (0) and its four-word stereo input buffer is not full.						
IS1RQ	I^2S Port (1) Input Request Flag. This bit is set if intercept mode is enabled for I^2S Port (1) and its four-word stereo input buffer is not full.						
FMRQ	FM Synthesis Input Request Flag. This bit is set if intercept mode is enabled for FM synthesis and its four-word stereo input buffer is not full.						
SSPRQ	SS/SB Playback Input Request Flag. This bit is set if intercept mode is enabled for SS/SB playback and its four- word stereo input buffer is not full.						
SSCRQ	SS/SB Capture Input Request Flag. This bit is set if intercept mode is enabled for SS/SB capture and its four-word stereo input buffer is not full.						
MB0	Mailbox 0 Status Flag. This bit is set if the most recent action to SS indirect register 42 (DSP port Mail Box 1) was a write, and is cleared if the most recent action was a read. The status of this bit is also reflected in SS indirect register 33. It may be used as a handshake bit to facilitate communication between a DSP on the DSP port and a host CPU on the ISA bus.						
MB1	Mailbox 1 Status Flag. This bit is set if the most recent action to SS indirect register 43 (DSP port Mail Box 1) was a write and is cleared if the most recent action was a read. The status of this bit is also reflected in SS indirect register 33. It may be used as a handshake bit to facilitate communication between a DSP on the DSP port and a host CPU on the ISA bus.						
ISOVO	I ² S Port 0 Valid Out. This bit is set if Slots 10 and 11 contain valid right and left I ² S Port 0 data.						
IS1V1	I ² S Port 1 Valid Out. This bit is set if Slots 8 and 9 contain valid right and left I ² S Port 1 data.						
FMVO	FM Synthesis Valid Out. This bit is set if Slots 6 and 7 contain valid left and right FM synthesis data.						
SSPVO	SS/SB Playback Valid Out. This bit is set if Slots 4 and 5 contain valid right and left SS/SB playback data.						
SSCVO	SS/SB Capture Valid Out. This bit is set if valid SS/SB capture data is being transmitted. If not in a modem mode, Slots 2 and 3 will contain valid right and left SS/SB capture data. If in modem mode, only Slot 3 will contain valid left SS/SB capture data as Slot 2 and the ADC right channel are used by the modem.						

- PNPR Plug and Play Reset flag. This bit is set by an AD1816A reset (RESETB pin asserted LOW) or by a Plug and Play reset command. This bit is cleared by the assertion of the FCLR bit in the control word. While this bit is set, all attempts to write an SS indirect register via the DSP port will be ignored and fail. This is to ensure that Plug and Play resets are immediately applied to the application running on the DSP, without requiring them to continuously poll the Plug and Play reset status bit. During the frame in which this bit is cleared (by asserting FCLR), an attempt to write an SS indirect register will succeed. If the FCLR bit is continuously asserted, writes to indirect registers via the DSP port will always be enabled. A Plug and Play reset command will set this PNPR bit HIGH during at least one frame.
- PDN Power-Down flag. This bit is set by an AD1816A reset (RESETB pin asserted LOW), or by an AD1816A powerdown. Before an AD1816A power-down sequence shuts down the DSP port, at least one frame will be sent with this bit set. This bit can be cleared by the assertion of the FCLR (DSP port status clear) bit in the control word, providing the AD1816A is no longer in power-down.

The SDFS pin is used for the serial interface frame synchronization. New frames are marked by a one SCLK duration HI pulse, driven out on SDFS, one serial clock period before the frame begins. Upon initializing, there are exactly 12 time slots per frame and 16 bits per time slot. The frame rate is 57,291 and 2/3 Hz (11 MHz SCLK /(16 bits \times 12 slots)). The frame rate can also be changed from the default alue by reprogramming the rate in registers. The frame rate can run at the default rate or be programmed to match the nodem sample rate, ADC capture rate, DAC playback rate, music sample rate, I²S(1) sample rate or I²S(0) sample rate. When the frame rate is not equivalent to the sample rate, Valid Out, Request In and Valid In bits are used to control the sample data flow. When the frame rate is equivalent to the sample rate. Valid and Request bits can be ignored.

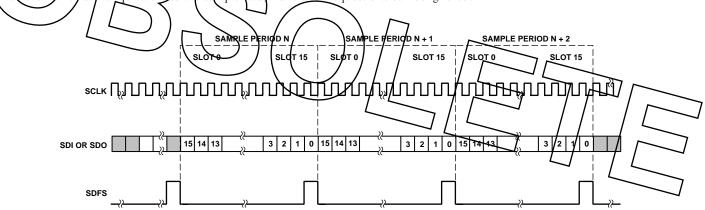
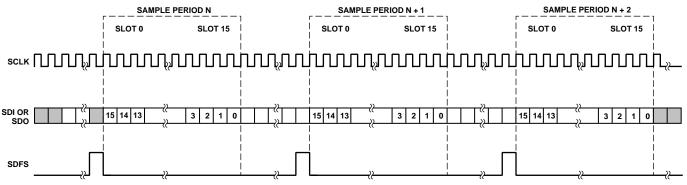



Figure 12. DSP Serial Interface (Default Frame Rate)

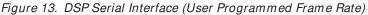


Figure 14 illustrates the flexibility of the DSP Serial Port interface. This port can monitor or intercept any of the digital streams managed by the AD1816A. Any ADC or DAC data stream can be intercepted by the port, shipped to an external DSP or ASIC manipulated, and returned to any DAC summing path or to the ADC.

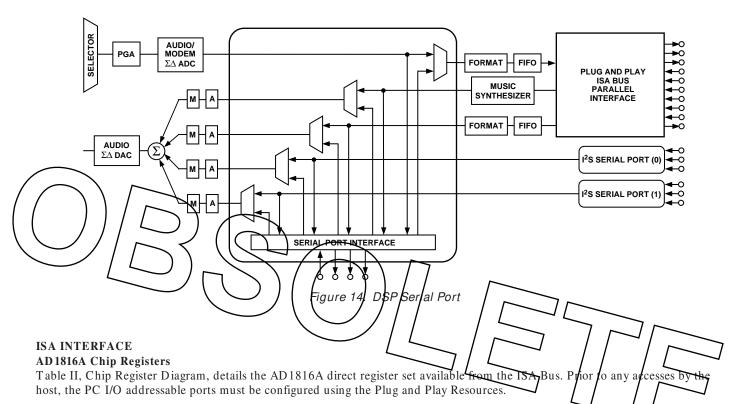


Table II. Chip Register Diagram

Register Type-Register Name	Register PC I/O Address
Plug and Play	
ADDRESS	0x279
WRITE_DATA	0xA79
READ_DATA	Relocatable in Range 0x203 – 0x3FF
Sound System Codec	
CODEC REGISTERS	0x(SS Base+0 - SS Base+15)
	Relocatable in Range 0x100 – 0x3FF
	See Table V
SoundBlaster Pro	
Music0: Address (w), Status (r)	(SB Base) Relocatable in Range 0x100 – 0x3F0
Music0: Data (w)	(SB Base+1)
Music1: Address (w)	(SB Base+2)
Music1: Data (w)	(SB Base+3)
Mixer Address (w)	(SB Base+4)
Mixer Data (w)	(SB Base+5)
Reset (w)	(SB Base+6 or 7)
Music0: Address (w)	(SB Base+8)
Music0: Data (w)	(SB Base+9)
Input Data (r)	(SB Base+A or +B)
Status (r), Output Data (w)	(SB Base+C or +D)
Status (r)	(SB Base+E or +F)

Register Type-Register Name	Register PC I/O Address		
AdLib			
Music0: Address (w), Status (r)	(AdLib Base) Relocatable in Range 0x100 - 0x3F8		
Music0: Data (w)	(AdLib Base+1)		
Music1: Address (w)	(AdLib Base+2)		
Music1: Data (w)	(AdLib Base+3)		
MIDI MPU-401			
MIDI Data (r/w)	(MIDI Base) Relocatable in Range 0x100 – 0x3FE		
MIDI Status (r), Command (w)	(MIDI Base+1)		
Game Port			
Game Port I/O	(Game Base +0 to Game Base +7) Relocatable in Range		
0x100 – 0x3F8			

Ap 1816A Plug and Play Device Configuration Registers

The AD1816A may be configured according to the Intel/Microsoft Plug and Play Specification using the internal ROM. Alternatively, the PnP configuration sequence may be bypassed using the "Alternate Key Sequence" described in Appendix A.

The operating system configures the AI 1816A Plug and Play Logical Devices after system boot. There are no "boot-devices" among the Plug and Play Logidal Devices in the AD1816A. Non Plug and Play BIOS systems configure the AD1816A's Logical Devices after boot using drivers. Depending on BIOS implementations, Plug and Play BIOS systems may configure the AD1816A's Logical Devices before POST or after Boot. See the Plug and Play ISA Specification Version 1.0a for more information on configuration control. To complete this configuration, the system reads resource data from the AD1816A's dn-chip resource ROM or optional EEPROM and from any other Plug and Play cards in the system, and then arbitrates the configuration of system resources with a heuristic algorithm. The algorithm maximizes the number of active devices and the acceptability of their configurations.

The system considers all Plug and Play logical device resource data at the same time and makes a conflict-free assignment of resources to the devices. If the system cannot assign a conflict-free resource to a device, the system does not configure or activate the device. All configured devices are activated.

The system's Plug and Play support selects all necessary drivers, starts them and maintains a list of system resources allocated to each logical device. As an option, system resources can be reassigned at runtime with a Plug and Play Resource Manager. The custom setup created using the manager can be saved and used automatically on subsequent system boots.

Plug and Play Device IDs (embedded in the logical device's resource data) provide the system with the information required to find and load the correct device drivers. One custom driver, the AD1816A Sound System driver from Analog Devices, is required for correct operation. In the other cases (MIDI, Game Port), the system can use generic drivers. Table III lists the AD1816A's Logical Devices and compatible Plug and Play device drivers.

Logical Device Number	Emulated Device	Compatible (Device ID)	Device ID
0	Sound System	–	AD \$7180
1	MIDI MPU401 Compatible	PNPB006	AD \$7181
2	Game/Joystick Port	PNPB02F	AD \$7182

Table III. Logical Devices and Compatible Plug and Play Device Drivers

The configuration process for the logical devices on the AD1816A is described in the *Plug and Play ISA Specification Version 1.0a* (*May 5, 1994*). The specification describes how to transfer the logical devices from their start-up *Wait For Key* state to the *Config* state and how to assign I/O ranges, interrupt channels and DMA channels. See Appendix A for an example setup program and specific Plug and Play resource data.

Table IV describes in detail the I/O Port Address Descriptors, DMA Channels, Interrupts for the functions required for the AD1816A Logical Device groups.

LDN	PnP Function	Description		
0	I/O Port Address Descriptor (0x60-0x61)	The SoundBlaster Pro address range is from 0x100 to 0x3F0. The typ cal address is 0x220. The range is 16 bytes long and must be aligned a 16 byte memory boundary.		
0	I/O Port Address Descriptor (0x62-0x63)	The AdLib address range is from 0x100 to 0x3F8. The typical address is 0x388. The range is 4 bytes long and must be aligned to an 8 byte memory boundary.		
0	I/O Port Address Descriptor (0x64-0x65)	The Codec address range is from 0x100 to 0x3F8. The range is 16 bytes long and must be aligned to a 16 byte memory boundary.		
0	Interrupt Request Level Select (0x70-0x71)	This IRQ is shared between the SB Pro device and the Codec. These devices require one of the following IRQ channels: 5, 7, 9, 11, 12 or 15. Typically, the IRQ is set to 5 or 7 for this device.		
~	DMA Playback Channel Select (0x74)	This 8-bit channel is shared between the SB Pro device and the Codec for playback. These devices require one of the following DMA channels: 0, 1, 3. Typically, DMA channel 1 is set.		
	DMA Capture Ctrannel Select (0x75)	This the DMA channel used for capturing Codec data. The Codec op- erates in single channel mode if a separate DMA channel for capture and playback is not assigned. The following DMA channels may be programmed, 0, 1, 3. DMA Channel 4 indicates single channel mode.		
1	I/O Port Address Descriptor (0x60-0x61)	The MFU-401 compatible device address range is 0x100 to 0x3FE. Typical configurations use 0x330. The range is 2 byter long and must be aligned to a 2 byter memory boundary.		
1	Interrupt Request Level Select (0x70-0x71)	The MIDI device requires one of the following IRQ channels: 5, 7, 9, 11, 12 or 15.		
2	I/O Port Address Descriptor (0x60-0x61)	The Game Port address range is from 0x 00 to 0x3F8. The typical address is 0x200. The range is 8 bytes long and must be aligned to an 8 byte memory boundary.		

Table IV. Internal Logical Device Configuration

NOTE

DMA channel 4 indicates single-channel mode.

Sound System Direct Registers

The AD1816A has a set of 16 programmable Sound System Direct Registers and 36 Indirect Registers. This section describes all the AD1816A registers and gives their address, name and initialization state/reset value. Following each register table is a list (in ascending order) of the full register name, its usage and its type: (RO) Read Only, (WO) Write Only, (STKY) Sticky, (RW) Read Write and Reserved (res). Table V is a map of the AD1816A direct registers.

Direct													
Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
SSBASE + 0	CRDY VBL			•	INADI	R[5:0]							
SSBASE + 1	PI	CI	TI	VI	DI	RI	GI	SI					
SSBASE + 2		Indirect SS Data [7:0]											
SSBASE + 3		Indirect SS Data [15:8]											
SSBASE + 4	RI	ES	PUR	COR	ORR	8 [1:0]	ORL [1:0]						
SSBASE + 5	PFH	PDR	PLR	PUL	CFH	CDR	CLR	CUL					
SSBASE + 6				PIO Playback/C	Capture [7:0]								
SSBASE + 7				RESERV	ED								
SSBASE + 8	TRD	DAZ	PFM	T [1:0]	PC/L	PST	PIO	PEN					
SSBASE + 9	RES		CFM	T [1:0]	CC/L	CST	CIO	CEN					
SSBASE + 10				RESE	RVED								
SSBASE + 11				RESE	RVED								
SSBASE + 12				JOYSTICK DA	ATA [7:0]								
SSBASE + 13	JRDY JWRP JSEL [1:0] JMSK [3:0]												
SSBASE + 14				JAXIS	5 [7:0]								
SSBASE + 15				JAXIS	5 [15:8]								

Table V.	Sound	System	Direct	Registers
----------	-------	--------	--------	-----------

[Base+0]	Chip Status/Indirect Address
ſ	7 6 5 4 3 2 1 0 CRDY VBL INADR[5:0] RESET = [0x00]
L	
INADR [5:0]	 (RW) Indirect Address for Sound System (SS). These bits are used to access the Indirect Registers shown in Table VIII. All registers data must be written in pairs, low byte followed by high byte, by loading the Indirect SS Data Registers, (Base +2) and (Base +3).
VBL	Volume Button Location. When using an EEPROM to configure the PnP state of the AD1816A, this bit determines whether PQFP Pins 1 and 2 (TQFP Pins 99 and 100) are used for VOL_UP and VOL_DN or I ² S0_DATA and I ² S0_LRCLK respectively. 0 I ² S0_DATA and I ² S0_LRCLK 1 VOL_UP and VOL_DN
CRDY	(RO) AD1816A Ready. The AD1816A asserts this bit when AD1816A can accept data.
$(\frown$	0 AD1816A not ready 1 AD1816A ready
[Base+1]	Interrupt Status
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
SI	(RQ) SoundBlaster generated Interrupt.
51	No internupt
GI	1 SoundBlater interrupt pending (RW) Game Interrupt (Sticky, Write "0" to Clear).
01	0 No interrupt
DI	1 An interrupt is pending due to Digital Game Port data ready
RI	(RW) Ring Interrupt (Sticky, Write "0" to Clear). 0 No interrupt 1 An interrupt is pending due to a Hardware Ring pin being asserted
DI	(RW) DSP Interrupt (Sticky, Write "0" to Clear).
	 No interrupt An interrupt is pending due to a write to the DIT bit in indirect register [33] bit <13>
VI	(RW) Volume Interrupt (Sticky, Write "0" to Clear).
	 No interrupt An interrupt is pending due to Hardware Volume Button being pressed
ΤI	(RW) Timer Interrupt. This bit indicates there is an interrupt pending from the timer count registers. (Sticky,
	Write "0" to Clear). 0 No interrupt
	1 Interrupt is pending from the timer count register
CI	(RW) Capture Interrupt. This bit indicates that there is an interrupt pending from the capture DMA count register. (Sticky, Write "0" to Clear).
	0 No interrupt
PI	1 Interrupt is pending from the capture DMA count register (RW) Playback Interrupt. This bit indicates that there is an interrupt pending from the playback DMA count
	register. (Sticky, Write "0" to Clear).
	 No interrupt Interrupt is pending from the playback DMA count register
[Base+2]	Indirect SS Data Low Byte
_	7 6 5 4 3 2 1 0 Indirect SS Data [7:0] RESET = [0xXX]
[Base+3]	Indirect SS Data High Byte
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Indirect SS	Indirect Sound System Data. Data in this register is written to the Sound System Indirect Register specified by the

Indirect SSIndirect Sound System Data. Data in this register is written to the Sound System Indirect Register specified by the
address contained in INDAR [5:0], Sound System Direct Register [Base +0]. Data is written when the Indirect SS
Data High Byte value is loaded.

			AD1816A
[Base+4]	PIO Del	bug	
	7	6 5 4 3 2 1 0	
	F	RES PUR COR ORR[1:0] ORL[1:0] RESET	f = [0x00]
All bits in the	his regist	ter are sticky until any write that clears all bits to 0.	
ORL/ORR [1:0]	(RO)	Overrange Left/Right detect. These bits record the largest output magnitude on the AD channels and are cleared to 00 after any write to this register. The peak amplitude as rec "sticky," i.e., the largest output magnitude recorded by these bits will persist until these cleared. They are also cleared by powering down the chip.	corded by these bits is
		ORL/ORR Over/Under Range Detection	
		00 Less than -1 dB Underrange	
		01 Between -1 dB and 0 dB Underrange	
\frown		10 Between 0 dB and 1 dB Overrange	
\frown	$\setminus \Gamma$	11 Greater than 1 dB Overrange	
PUR		Capture over Run. The codec sets (1) this bit when capture data is not read within one capture DIFO fills. When COR is set, the FIFO is full and the codec discards any new d codec clears this bit immediately after a byte capture sample is read. Playback Under Run. The codec sets (1) this bit when playback data is not written with ter the playback FIFO empties. The codec clears (0) this bit immediately after a 4 byte p ten. When PUR is set, the playback channel has "run out" of data and either plays back repeats the last sample.	lata generated. The in one sample period playback sample is w
[Base+5]	PIO Sta		\square
	7		
	PFH	H PDR PLR PUL CFH CDR QLR CUL RESE	T = [0x]00]
CUL	(RO)	Capture Upper/Lower Sample. This bit indicates whether the PIO capture data ready is or lower byte of the channel. 0 Lower byte ready 1 Upper byte ready or any 8-bit mode	for the upper
CLR	(RO)	Capture Left/Right Sample. This bit indicates whether the PIO capture data waiting is f or the right channel ADC. 0 Right channel 1 Left channel or mono	for the left channel A
CDR	(RO)	Capture Data Ready. The PIO Capture Data register contains data ready for reading by the used only when direct programmed I/O data transfers are desired (FIFO has at least 4 b 0 ADC is stale. Do not reread the information 1 ADC data is fresh. Ready for next host data read	
CFH	(RO)	Capture FIFO Half Full. (FIFO has at least 32 bytes before full.)	
PUL	(RO)	 Playback Upper/Lower Sample. This bit indicates whether the PIO playback data neede lower byte of the channel. 0 Lower byte needed 1 Upper byte needed or any 8-bit mode 	d is for the upper or
PLR	(RO)	 Playback Left/Right Sample. This bit indicates whether the PIO playback data needed is DAC or the right channel DAC. 0 Right channel needed 	s or the left channel
		1 Left channel or mono	
PDR	(RO)		

[Base+6]	PIO D	ata
	7	6 5 4 3 2 1 0 PIO Playback/Capture [7:0] RESET = [0x00]
PIO Playbac Capture [7:0		The Programmed I/O (PIO) Data Registers for capture and playback are mapped to the same address. Writes send data to the Playback Register and reads will receive data from the Capture Register.
		Reading this register will increment the capture byte state machine so that the following read will be from the next appropriate byte in the sample. The exact byte may be determined by reading the PIO Status Register. Once all relevant bytes have been read, the state machine will stay pointed to the last byte of the sample until a new sample is received.
\frown		Writing data to this register will increment the playback byte tracking state machine so that the following write will be to the correct byte of the sample. Once all bytes have been written, subsequent byte writes will be ignored. The state machine is reset when the current sample is transferred.
Note: All wr	ites to the	eFIFO MUST" contain 4 bytes of data. * sample of 16-bit stereo * 2 samples of 16-bit mono * 2 samples of 8-bit sterep (Linear PCM, µ-law PCM, A-Law PCM) * 4 samples of 8 bit mono (Linear PCM, µ-law PCM, A-Law PCM)
[Base+7]	Reserve	$\frac{ed}{6} \int_{5} \frac{1}{Reserved} \frac{3}{[7:0]} \frac{2}{1} \int_{1} \frac{1}{RESET} = [0xxx]$
[Base+8]	Playbac 7 TRD	ck Configuration 6 5 4 3 2 1 0 DAZPFMT [1:0]PC/LPSTPIOPENRESET $[0x00]$
PEN	(RW)	Playback Enable. This bit enables or disables programmed I/O data playback. 0 Disable 1 Enable
PIO	(RW)	 Programmed Input/Output. This bit determines whether the playback data is transferred via DMA or PIO. 0 DMA transfers only 1 PIO transfers only
PST	(RW)	 Playback Stereo/Mono select. These bits select stereo or mono formatting for the input audio data streams. In stereo, the Codec alternates samples between channels to provide left and right channel input. For mono, the Codec captures samples on the left channel stereo. 0 Mono 1 Stereo
PC/L	(RW)	 Playback Companded/Linear Select. This bit selects between a linear digital representation of the audio signal or a nonlinear companded format for all output data. The type of linear PCM or the type of companded format is defined by PFMT [1:0]. Linear PCM Companded
PFMT [1:0]	(RW)	Playback Format. Use these bits to select the playback data format for output data according to Table VI and Figure 15.
DAZ	(RW)	 DAC zero. This bit forces the DAC to zero. 0 Repeat last sample 1 Force DAC to ZERO
TRD	(RW)	 Transfer Request Disable. This bit enables or disables Codec DMA transfers during a Codec interrupt (indicated by the SS Codec Status register's INT bit being set [1]). This assumes Codec DMA transfers were enabled and the PEN or CEN bits are set. 0 Transfer Request Enable 1 Transfer Request Disable

After setting format bits, sample data into the AD1816A must be ordered according to Figure 15, Table VI.

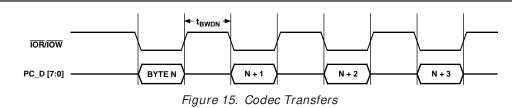


Table VI. Codec Transfers

ST	FMT1 FMT0 C/L	Format	Byte 3 MSB LSB	Byte 2 MSB LSB	Byte 1 MSB LSB	Byte 0 MSB LSB
0	000	Mono	Sample 3	Sample 2	Sample 1	Sample 0
		Linear, 8-Bit	8 Bits	8 Bits	8 Bits	8 Bits
\frown	$ \land \land$	Unsigned	Left Channel	Left Channel	Left Channel	Left Channel
1		Stereo	Sample 1	Sample 1	Sample 0	Sample 0
		Linear, 8-Bit Unsigned	8 Bits Right Channel	8 Bits Left Channel	8 Bits Right Channel	8 Bits Left Channel
\sum_{0}		Mono	Sample 3	Sample 2	Sample 1	Sample 0
<u> </u>		<u>µ-Law, 8-Bit</u>	8 Bits	87Bits	8 Bits	8 Bits
		Companded	Left Channel	left Channel	Left Channel	Left Channel
1	001	Stereo	Sample 1	Sample 1	Sample 0	Sample 0
		µ-Law, 8-Bit	8 Bits	8 Bits	8 Bits	8 Bits
		Companded	Right Channel	Left Channel	Right Charnel	Left Channel
0	010	Mono	Sample 1	Sample 1	Sample 0	\$ample 0
		Linear 16-Bit Little Endian	Upper 8 Bits Left Channel	Lower 8 Bits	Upper 8 Bits Deft Channel	Lower 8 Bits Left Channel
1	010					
1	010	Stereo Linear 16-Bit	Sample 0 Upper 8 Bits	Sample 0 Lower 8 Bits	Sample Upper 8 Bits	Sample 0 Lower 8 Bits
		Little Endian	Right Channel	Right Channel	Left Channel	Left Changel
0	011	Mono	Sample 3	Sample 2	Sample 1	Sample 0
		A-Law, 8-Bit	8 Bits	8 Bits	8 Bits	8 Bits
		Companded	Left Channel	Left Channel	Left Channel	Left Channel
1	011	Stereo	Sample 1	Sample 1	Sample 0	Sample 0
		A-Law, 8-Bit	8 Bits	8 Bits Left Channel	8 Bits	8 Bits Left Channel
	100	Companded	Right Channel		Right Channel	
0	100	Reserved				
1	100	Reserved				
0	101	Reserved				
1	101	Reserved				
0	110	Mono	Sample 1	Sample 1	Sample 0	Sample 0
		Linear, 16-Bit Big Endian	Lower 8 Bits Left Channel	Upper 8 Bits Left Channel	Lower 8 Bits Left Channel	Upper 8 Bits Left Channel
0	110	Stereo Linear, 16-Bit	Sample 0 Lower 8 Bits	Sample 0 Upper 8 Bits	Sample 0 Lower 8 Bits	Sample 0 Upper 8 Bits
		Big Endian	Right Channel	Left Channel	Left Channel	Left Channel
0	111	Reserved				
	111			1		

[Base+9]	Captu	re Conf	iguration						
,	1	6	5	4	3	2	1	0	
	RES		CFMT	[1:0]	CC/L	CST	CIO	CEN	RESET = [0x00]
CEN (RW) 0 Disable 1 Enable			Capture Enab	le. This b	it enables o	or disables o	lata capture		
CIO	(RW)	0 1	re Programmed DMA PIO	d I/O. Th	is bit deteri	nines whetl	ner the capt	ure data is tran	sferred via DMA or PIO.
CST	(RW)	In ster the Cc 0 N		alternates	s samples b	etween chai			input audio data streams. ght channel input. For mono,
dcn	(RW)	nal or ormat 0 1	a nonlinear, co)s defined by Linear PCM Companded	Ompanded CFMT [1	l format for 1:0].	all output	data. The ty	vpe of linear PC	resentation of the audio sig- CM or the type of companded
CFMT [1:0]	(KW)	Capta	re Format. Use	these bi	ls to select	the format t	for capture of	lata according	to the following Table VI and
[Base+10]	Reserv			2))/			
	1	6	5	4 RESE	ERVED	\nearrow	1		RESET = [0XXX]
[Base+11]	Reserv	ved							
· · · · · ·	1	6	5	4	3	2	1		
				RESE	ERVED				$\mathbf{RESET} = [0xXX]$
[Base+12]	Joystic	ck RAW	DATA						
,	1	6	5	4	3	2	1	0	
			Joyst	ick Data [7:0]				RESET = [0xF0]
Joystick Data	(RO)	Joystic	k Data. Joysti	ck Data ((identical to	DDN 2):	Writes to th	is register are ig	gnored.
[Base+13]	Joystic	ck Cont	rol						
, 		6	5	4	3	2	1	0	
		JWRP	JSEL [K [3:0]		RESET = [0xF0]
JMSK [3:0]	(RW)	Joystic	k Axis Mask. J	RDY bit	calculated	based on ax	es selected	by JMSK only.	
				x	xx1	Enable AX	K		
				х	x1x	Enable A			
				x	x1xx	Enable B2	K		
				1	XXX	Enable B	Ý		

JSEL [1:0] (RW) Joystick Select. Selects one of four joystick axis register sets according to the following table:

00	Read AX (16 Bits) from [Base+14] & [Base+15]
01	Read AY (16 Bits) from [Base+14] & [Base+15]
10	Read BX (16 Bits) from [Base+14] & [Base+15]
11	Read BY (16 Bits) from [Base+14] & [Base+15]

JWRP (RW) Joystick Wrapmode. Continuous Joystick sampling mode—sampling automatically restarted every ~16 ms.

JRDY (RO) Joystick Ready. Sampling complete, joystick data ready for reading.

Note: Sampling must be started manually if JWRP is set before any sampling cycles are run. To start sampling after setting the JWRP bit, write to the joystick port [Base+14].

[Base+14] Joystick Position Data Low Byte

7	6	5	4	3	2	1	0	_
			JAXI	S [7:0]				RESET = [0xFF]

JAXIS [7:0] (RO) Joystick Axis Low Byte.

Note: Axis to be read through this register is selected by the JSEL bits in the control register. A write to this register starts a sampling cycle.

[Base+15] Joystick Position Data High Byte

7	6	5	4	3	2	1	0	_
			JAXIS	[15:8]				RESET = [0xFF]

JAXIS [15:8] (RO) Joystick Axis High Byte.

Note: Axis to be read through this register is selected by the JSEL bits in the control register. A write to this register starts a sampling cycle

Sound System Indirect Registers Writing Indired egiste

All Indirect Registers must be written in pairs: low byte followed by high byte. The Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to write low data byte and the Indirect High Data Byte [SSBASE+3] is used to write the high data byte. The low data byte is held in the temporary register until the upper byte is written.

lice

playback sampl

Programming Example

- "Write Sample Rate for Voice Playback
- 1) Write [SSBASE+0] with 0x02
- 2) Write [SSBASE+2] with 0xF83) Write [SSBASE+3] with 0x2A
- ; low byte of 16-bit sample rate register ; high byte of 16-bit sample rate register

(0x2AF8

ect legister før vo

Η

indir

Reading Indirect Registers

All indirect registers can be individually read. The Sound System Indirect Address Register [SSBASE+0] holds the address for a register pair, the Indirect Low Data Byte [SSBASE+2] is used to read low data byte and Indirect High Data Byte [SSBASE+3] is used to read the High data byte.

Programming Example

"Read Sample Rate for Voice Playback set to 11,000 Hz (0x2AF8)"

- 1) Write [SSBASE+0] with 0x02
- 2) Read [SSBASE+2]
- ; indirect register for voice playback sample rate
- ; low byte of 16-bit sample rate register set to 0xF8
- 3) Read [SSBASE+3] ; hig
- ; high byte of 16-bit sample rate register set to 0x2A

ISR Saves and Restores

For Interrupt Service Routines, ISRs, it is necessary to save and restore the Indirect Address and the Low Byte Temporary Data holding registers inside the ISR.

Programming Example

"Save/Restore during an ISR"

- Beginning of ISR:
- 1) Read [SSBASE+0]
- 2) Write [SSBASE+0] with 0x00;
- 3) Read [SSBASE+2]
- 4) ISR Code

- ; save Indirect Address register to TMP_IA ; indirect Register for Low Byte Temporary Data
- ; save Low Byte Temporary data to TMP_LBT
- ; ISR routine
- 5) Write [SSBASE+2] with TMP LBT ; restore Low Byte Temporary data TMP LBT
 - A ; restore Indirect Address Register to TMP IA
- 6) Write [SSBASE+0] with TMP_IA7) Return from Interrupt
- ; return from ISR

Address	Register Name	Reset/ Default State
00	Low Byte TMP	0xXX
01	Interrupt Enable and External Control	0x0102
02	Voice Playback Sample Rate	0x1F40
03	Voice Capture Sample Rate	0x1F40
04	Voice Attenuation	0x8080
05	FM Attenuation	0x8080
06	$I^2S(1)$ Attenuation	0x8080
07	$I^2S(0)$ Attenuation	0x8080
08	Playback Base Count	0x0000
09	Playback Current Count	0x0000
10	Capture Base Count	0x0000
$\langle \frown \rangle \not\Vdash$	Capture Current Count	0x0000
	Timer Base Count	0x0000
	Timer Current Count	0x0000
	Master Volume Attenuation	0x0000
	CD Gain Attenuation	0x8888
(16)	Synth Gain/Attenuation	0x8888
17	Video Gain Attenuation	0x8888
18	Line Cain/Artennation	-0x8888
19	MicPHONE_IN Gain (Attenuation)	-0x8888
20	ADC Source Select and ADC PGA	_0x0000
32	Chip Configuration	0x09F0
33	DSP Configuration	00000
34	FM Sample Rate	_0x5622
35	I ² S(1) Sample Rate	0x7C44
36	I ² S(0) Sample Rate	0xAC44 / / / / /
37	Reserved	0x0000
38	Programmable Clock Rate	0xAC44
39	3D Phat Stereo Control/PHONE_OUT Gain Attenuation	0x8000
40	Reserved	0x0000
41	Hardware Volume Button Modifier	0xXX1B
42	DSP Mailbox 0	0x0000
43	DSP Mailbox 1	0x0000
44	Power-Down and Timer Control	0x0000
45	Version ID	0xXXXX
46	Reserved	0x0000

Table VII. Indirect Register Map and Reset/Default States

				(High	Buta)				(Low Byte)								
- 1	ADDRESS	(High Byte) DDRESS 7 6 5 4 3 2 1 0										5	4	3	2	1	0
	00 (0x00)	,	Ů	5	RI			1	Ů	7	7 6 5 4 3 2 1 0 LBTD [7:0]						
	01 (0x01)	PIE	CIE	TIE	VIE	DIE	RIE	ЛЕ	SIE	TE			EBI	D [7.0]		XC1	XC0
	02 (0x02)				VPSR	[15.8]							VPS	R [7:0]			
	03 (0x03)				VCSR	[15:8]								R [7:0]			
	04 (0x04)	LVM	RES			LVA	[5:0]			RVM	RES			RVA	A [5:0]		
	05 (0x05)	05 (0x05) LFMM RES LFMA [5:0]							RFMM	RES	RES RFMA [5:0]						
	06 (0x06)	LS1M	RES			LS1A	A [5:0]			RS1M	RES			RS1.	A [5:0]		
	07 (0x07)	LSOM	RES				A [5:0]			RS0M	RES				A [5:0]		
	08 (0x08)				PBC									[7:0]			
	09 (0x09)				PCC									C [7:0]			
	10 (0x0A)				CBC									C [7:0]			
	11 (0x0B)				CCC								C [7:0]				
	12 (0x0C) 13 (0x0D)				TBC					TBC [7:0]							
/	13 (000) 14 (0x0K)	LMVM	RI	7.0	TCC		LMVA [4:0)1		RMVM	TCC [7:0]						
	14 (0x0K) 15 (0x0F)	ICDM					LCDA [4:0	-		RCDM	RES RCDA [4:0]						
	15(0x01) 16(0x10)	LSYM		<u> </u>			LSYA [4:0			RSYM	RES RSYA [4:0]						
	10 (0x11)	LVDM			1 -		LVDA [4:0	-		RVDM		RES RVDA [4:0]					
N	18 (0x12)	/ LLM		ES	$I \subset$	1	LLA [4:0	-		RLM		RES RLA [4:0]					
	19 (0x13)	м¢м	M20	NES	$\langle \ \rangle$	$\neg \Box$	MCA [4:0			PIM	R	ES			PIA [3:0	-	RES
	20 (0x14)	LGC	\square	LAS [2:0]		$\overline{}$	LAC	3 [3:0]		RAGC		RAS [2:0]			RA	AG [3:0]	
	32 (0x20)	WSE_	CDE	RES	CNP		/ / R	RES			COF	[3:0]		I2SF	1 [1:0]	I2SF	0 [1:0]
	33 (0x21)	DS1	DS0	DIT	RI	<u> </u>	ADR	I1T	10T	CPI	PBI	FMI	Ę	I01		DFS [2:0	J
	34 (0x22)				FSMR	· / ·		/		I/	/	\square		R [7:0]			
	35 (0x23)				SISR				\square	/				<u>e [2:0]</u>	\sim	7~	
	36 (0x24)				SOSR			\checkmark		Į		\sim		R [7:0]	\sim	$4 \geq$	
	37 (0x25)					ES			$- \leftarrow$			\vdash		RES	<u> </u>	$+ \neg$	
	38 (0x26)	20.01	R	20	PCR	[15:8]	[2.0]		RES	POM			PCR	<u>[7:0]</u>	DO A FAR	+ -	
	39 (0x27) 40 (0x28)	3DDM	K	ES	RI		[3:0]		KE5	POM		ES		ES	POA [4:	<u> </u>	$ \rightarrow $
	40(0x28) 41(0x29)				RI					VMU	VUP	VDN		<u> </u>	BM [4		\prec
	41(0x29) 42(0x2A)	MBOR [15:8]								VIVIO	101	VDIN	MB0	R [7:0]			
	43 (0x2B)				MB1R									R [7:0]			
	44 (0x2C)	CPD	RES	PIW	PIR	PAA	PDA	PDP	PTB	3D	PD3D	GPSP	RES	DM		RES	
	45 (0x2D)								1		-			R [7:0]	-		
	46 (0x2E)				RES									RES			
	. ,	NL5															I

Table VIII. Sound System Indirect Registers

[00] I	NDIRE	CT LOV	W BYTI	е тмр									DEFA	ULT =	[0xXX]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RI	ES								LBTI	D [7:0]			

LBTD [7:0] Low Byte Temporary Data holding latch for register pair writes;

Written on any write to [SSBase + 2],

Read from [SSBase + 2] when the indirect address is 0x00.

[01] I	NTERR	UPT E	NABLE	AND I	EXTER	NAL CO	ONTRO	L					DEFAU	$\mathbf{U}\mathbf{L}\mathbf{T} = [$	0x0102]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
PIE	CIE	TIE	VIE	DIE	RIE	ЛЕ	SIE	ΤE			RES	S		XC1	XC0
XC0	R	RW										1	his pin is a ee SS [32]		ed with
XC1	F	RW									e XCTL ull-up ~	*	CTL1 ma	y also be	used for
ΤE	R	RW	Time	er Enabl	e Bit.										
SIE	R	RW	Sour 0 1	Sc	r Interru oundBla oundBla	ster Inte	rrupt di	sabled	t be se	t to en	able Cu	rrent Co	ount Timer		
ЛЕ	R	RW	Joyst 0 1		rrupt En ystick Ir ystick Ir	terrupt									

RIE	F	RW	Ring Int	terrupt Ena	ble;								
			0		errupt disab								
DIE	г			-	errupt enab	led							
DIE	ľ	RW	0	terrupt Ena DSP Int	ole; errupt disab	oled							
			1		errupt enab								
VIE	F	RW										TON MODIF	
			interrup 0		id pushing l Interrupt di		only set	s vup,	VDN, V	MU bits	. It d	oes not change	the volume.
			1		Interrupt er								
TIE	F	RW	-	nterrupt En									
			0		nterrupt disa nterrupt ena								
CIE	F	RW	Capture	Interrupt I	*	loied							
		~	0	Capture	Interrupt d								
PIE			Playbac	Capture k Interrupt	Interrupt er Enable:	nabled							
		Ϋ́ / /	0		Anterrupt of	lisabled	1						
$\langle \langle \rangle$			-		Interrupt e								
[02]	VOICE	E PLAYB	ACK SAI	MPLE RAS		\frown	\sum	\sim				DEFAULT =	= [0x1F40]
7	6	5	$_{4}$	$r \sim r$	$ \rightarrow / /$	0	$\frac{1}{1}$	<u> </u>	5	4	3	2 1	
			VPSR [15:8	<u>' </u>		\mathbf{y}	L		VPSR	[7:0]		
VDCD	[15.0]	Voice Die	wheels Son	nnla Dota T			h	andmad	from 1			z in 1 hertz incr	manta Tha
VPSK				nple rate is 8			beprogr	Lammed		HZTO-JZ	$\sum_{k=1}^{2}$		emenis. The
[03]			•	PLE RATI					$\neg /$	/ _	-	DEFAULT =	[0x1F40]
7	6	5	4	3 2		0	7	6	- j_	4	3	2 / 1	
			VCSR [15:8]						VCSR	7:0		
VCCD	[15.0]	Vaios Cor	ntuna Com	ala Doto Ti	h a	ta aam 1	h a <i>m</i> na ana	man ad f		I.a. to 55 () 1.TT.		
VUSK												in 1 hertz incre capture sample	
[04]		E ATTEN							L			DEFAULT =	
7	6	5	4	3 2	1	0	7	6	5	4	3	2 1	0
LVM	RES			LVA [5:0]			RVM	RES				RVA [5:0]	
RVA [5.01	Dight Voi	ioo Attony	ution for D	lavback cho	nnal T	bolSD	ranrasar	to 15	4 P 0000	00 -	= 0 dB and the	
KVA [.	5.0]	range is 0			layback clia	111101. 1	IIC LSD	represer	115 -1.5	uв, 0000	-000	- 0 uB and the	
RVM		e			uted, $1 = M$	luted.							
LVA [5:0]				yback chan	nel. Th	e LSB re	epresent	s –1.5 d	B, 00000	= 0	0 dB and the	
		range is 0			. 1 1 17	. 1							
LVM) = Unmu	ted, $1 = Mu$	ited.							
		TTENUA -		2 2	1	0	7	(~	4	2	DEFAULT =	
7 LFMM	6 I RES	5	4	3 2 LFMA [5:0]		0	7 RFMM	6 RES	5	4	3	2 1 RFMA [5:0]	0
		DILED	£ • • • · ·			1.1.4					1		
RFMA	A [5:0]			-94.5 dB.		al Musi	c Synthe	sizer. T	he LSB	represent	ts -1.	5 dB, 000000 =	= 0 dB and
RFMM	Л	-			nmuted, 1 =	Muteo	1.						
		-						izer. The	e LSB re	presents	-1.5	dB, 000000 =	0 dB and the
		range is 0					•			•			
LFMN	Л	Left F M	usic Mute	e. 0 = Unr	muted, $1 = 1$	Muted.							
		ATTENU	ATION									DEFAULT =	= [0x8080]
7	6	5	4										
	-		4	3 2		0	7	6	5	4	3	2 1	0
LS1M	-		4	3 2 LS1A [5:0		0	7 RS1M	6 RES	5	4	3	2 1 RS1A [5:0]	0

RS1A [5:0] Right I²S(1) Attenuation register. The LSB represents -1.5 dB, 000000 = 0 dB and the range is 0 dB to -94.5 dB.

RS1M LS1A [5 LS1M	5:0]	Right I ² S(Left I ² S(1 Left I ² S(1) Atten	uation r	egister. I	The LSI	B repre		5 dB, 00	0000 =) dB and	d the	range	is 0 dH	3 to -94	4.5 dB
[07] I ²	S(0)	ATTENUA	TION										DEF	FAULT	$\Gamma = [0x]$	80801
7	6	5	4	3	2	1	0	7	6	5	4	3		2	1	0
	RES			LSOA		1	0	RSOM	RES	5	-	5		4 [5:0]	1	0
RSOA [5: RSOM LSOA [5: LSOM		Right I ² S(Right I ² S(Left I ² S(0 Left I ² S(0	0) Mut) Attent	e. $0 = U$ uation r	Unmuted register. 7	, 1 = М Гhe LSI	uted. B repre						C			
[08] P	LAY	BACK BA	SE CO	UNT									DEI	FAUL	T = [0x	x0000]
	6	5	4	3	2	1	0	7	6	5	4	3		2	1	0
\square		\square	PBC [15:8]							PBC	[7:0]				
	/	(PEN) is of transferred	d y ia a I	ed. Wh	en PEN wele. Th	is as sert next_t	ransfer	after zer	o is reac	hed in t	ne Playb	ents o ack C	once fo	or ever	y four	bytes gener
7	6	Count she circular so BACK CU 5	Ald alw oftware 1 RREN 4 PCC	reload the variable $T COU$	he Rlayb program uffer mu NT 2	ack Cur med to stbe di	Numbo ivisible	bly four to	fivided b b ensure 6	y foir, r proper	peratio	ck Bas ne ((N $\frac{3}{[7:0]}$	se Cou Jumbe	AULY	The Playl s/4) -1	back I). The (0000]
7 PCC [15: [10] C	6 5:0] CAPT	Count she circular se BACK CU 5 Playback (when PEN URE BAS	Ald alw oftware 1 RREN 4 PCC 1 Current J is dea	reload ti vays be j DMA b T COU 3 [15:8] : Count sserted. JNT	he Rlayb urogram uffer mu NT 2 register.	ack Cur med to stbe di	Numbo ivisible	er Bytes d by four to 7 current Pl	fivided b o ensure	y foir, r proper	peratio	the Basis of the Control of the Basis of the Control of the Contr	Se Cou Lumbe	rites m	The Playl s/4) -1	back E). The (0000]
7 PCC [15:	6	Count sh circular sc BACK CU 5 Playback (when PEN	Ald alw oftware 1 RREN 4 PCC 1 Current J is dea	reload ti vays be j DMA b T COU 3 [15:8] C Count sserted. JNT 3	he Rlay program uffer nu NT 2 register.	ack Cur med to stbe di	Numbo ivisible	er Bytes d by four to 7	fivided b b ensure 6	y foir, r proper	peratio	the Basis of the Control of the Basis of the Control of the Contr	Se Cou Lumbe	rites m	the Playl s/4) -1 f = [0x] hust be	back H). The (0000)
7 PCC [15: [10] C 7	6 5:0] CAPT 6	Count she circular se BACK CU 5 Playback (when PEN URE BAS	And Like And Like And Current And Current And Content And Content	reload ti vays be j DMA b T COU 3 [15:8] : Count sserted. JNT 3 [15:8] unt. Th ata into een CEN The ne apture C nmed to	he clayb program uffer mu NT 2 register. 2 is registe the Capt V is asser ext transf Current Co o Numbe	Contai 1 Contai 1 r is for ure Cut ted, the er, after Count w er Bytes	Numbo ivisible ns the 0 loading rrent C c Captur r zero i vith the divide	er Bytes d by four to 7 current Pl 7 g the Capt count regis tre Currer s reached e value in to d by four,	ture DM ster. Lo nt Coun in the C minus of	y foir, r proper 5 DMAC 5 1A Coun ading m t decrem capture (ture Bas one ((No	4 PCC 000001 Ref 4 PCC 000001 Ref 4 CBC t. Writin ust be d ents one Current e Count	ck Bas ie ((N)) 3 [7:0] ie ads a 3 [7:0] ing a v lone v ce for Coun . The	The set of	rites m FAUL 2 o this n four b genera ure Bas	The Playles $(4) - 1$ (5, 4) - 1 (5, 4	also le (CH ransfe interru
7 PCC [15: [10] C 7 CBC [15:	6 5:0] 5:0]	Count she circular sec BACK CU 5 Playback (when PEN URE BAS 5 Capture E loads the is deassert via a DM, and reload always be	Ald hiw offwart RRENT 4 PCC PCC Current V is dea E COU 4 CBC CBC CBC	reload ti vays be j DMA b T COU 3 [15:8] : Count sserted. JNT 3 [15:8] unt. Th ata into en CEN The ne apture C nmed tu t be div	he clayb programm uffer mu NT 2 register. 2 is registe the Capt V is asser ext transf Current C o Numbe isible by	Contai 1 Contai 1 r is for ure Cut ted, the er, after Count w er Bytes	Numbo ivisible ns the 0 loading rrent C c Captur r zero i vith the divide	er Bytes d by four to 7 current Pl 7 g the Capt count regis tre Currer s reached e value in to d by four,	ture DM ster. Lo nt Coun in the C minus of	y foir, r proper 5 DMAC 5 1A Coun ading m t decrem capture (ture Bas one ((No	4 PCC 000001 Ref 4 PCC 000001 Ref 4 CBC t. Writin ust be d ents one Current e Count	ck Bas ie ((N)) 3 [7:0] ie ads a 3 [7:0] ing a v lone v ce for Coun . The	DEF and W DEI value to vhen O every it, will Captu 4) -1).	rites m FAUL 2 o this r Capture four b genera ure Bas	The Playles $(4) - 1$ (5, 4) - 1 (5, 4	also le (CF ransfe nterru nt sho
7 PCC [15: [10] C 7 CBC [15:	6 5:0] 5:0]	Count she circular sec BACK CU 5 Playback (when PEN URE BAS 5 Capture E loads the is deassert via a DMA and reload always be DMA buf	Ald hiw offwart RRENT 4 PCC PCC Current V is dea E COU 4 CBC CBC CBC	reload ti vays be j DMA b T COU 3 [15:8] : Count sserted. JNT 3 [15:8] unt. Th ata into een CEN The ne apture C nmed to t be div COUN 3	he clayb programm uffer mu NT 2 register. 2 is registe the Capt V is asser ext transf Current C o Numbe isible by	Contai 1 Contai 1 r is for ure Cut ted, the er, after Count w er Bytes	Numbo ivisible ns the 0 loading rrent C c Captur r zero i vith the divide	er Bytes d by four to 7 current Pl 7 g the Capt count regis tre Currer s reached e value in to d by four,	ture DM ster. Lo nt Coun in the C minus of	y foir, r proper 5 DMAC 5 1A Coun ading m t decrem capture (ture Bas one ((No	4 PCC 000001 Ref 4 PCC 000001 Ref 4 CBC t. Writin ust be d ents one Current e Count	ck Bas ne ((N 3 [7:0] eads a 3 [7:0] ng a v lone v ce for Coun . The sytes/ a 3	DEF Trained W DET Trained W DET Trained W Trained W DET Trained W Trained W	rites m FAUL 2 o this r Capture four b genera ure Bas	The Playles $(4) -1$ f = [0, 1] f = [0, 2] The prediction of the prediction	also le (CF ransfe nterru nt sho

CCC [15:0] Capture Current Count register. Contains the current Capture DMA Count. Reading and Writing must be done when CEN is deasserted.

[12]	TIMER	BASE	COUNT	ſ]	DEFAU	LT = [0	Dx0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			TBC	[15:8]							TBC	[7:0]			

TBC [15:0] Timer Base Count. Writing a value to this register loads data into the Timer Current Count register. Loading must be done when Timer Enable (TE) is deasserted. When TE is asserted, the Timer Current Count register decrements once for every specified time period. The time period (10 µs or 100 ms) is programmed via the PTB bit in SS [44]. When TE is asserted, the Timer Current Count decrements once every time period. The next count, after zero is reached in the Timer Current Count register, will generate an interrupt and reload the Timer Current Count register with the value in the Timer Base Count register.

7 6	5	4 3	2	1 0	7	6	5	4	3	2	1 0
		TCC [15:8]						ТСС	[7:0]		
C [15:0]	Timer D TE is dea	MA Current C asserted.	ount registe	er. Contains	the curren	nt timer c	count. l	Reading a	und W	riting must	be done wher
[14] MAS	TER VOL	UME ATTE	NUATION							DEFAULT	$\Gamma = [0x0000]$
7 6		4 3	2	1 0	7	6	5	4	3	2	1 0
MVM	RES		LMVA [4:0]		RMVM	RE	S			RMVA [4:0]	
MVM MVA [40]	-46.5 dB Volume a Right Mas 46/5 dB Volume a	aster Volume A c. This register i attenuation leve aster Volume M ster Volume At c. This register i attenuation leve	is added with 1. See Hardw Aute. 0 = U tenuation. T is added with 1. See Hardw	h the Hardwa ware Volume nmuted, 1 = The LSB rep h the Hardwa ware Volume	are Volum Button M Muted. resents –1 ure Volum Button M	e Button odifier Ro .5 dB, 00 e Button	Modifie egister o 0000 = Modifie	er value to descriptio 0 dB and er value to	o prod n for : l the : o prod	luce the final more details. range is 0 dH uce the final	DAC Master 3 to DAC Master
[15] CD (ter Volume Mi ENUATION	ute. $0 = Un$	muted 1 = 1	Muted.	\square				DEFAUL	Γ = [0x8888]
7 6	-	4 3	2	1 0	7	[]	5	<u>_</u>	3	2	1 0
LCDM	RES		LCDA [4:0]	$\downarrow \downarrow$	RCDM	RE	s		\neg	REDA [4:0]	
RCDM LCDA [4:0] LCDM	Left CD	O Mute. $0 = U_1$ Attenuation. T Mute. $0 = U_1$	The LSB re	presents –1.5	5 dB, 000	00 = +12	dB an	d the ran	ge is ·	+12/dB/to -:	34.5 dB.
		ATTENUATI	ON		7	6	F	4]	DEFAULT	r = [0 x8888]
7 6		ATTENUATIO		Muted.	7 RSYM	6 RE	5 S	4	3	DEFAUL7 2 RSYA [4:0]	$\Gamma = \begin{bmatrix} 0 \mathbf{x} \mathbf{s} \mathbf{s} \mathbf{s} \mathbf{s} \\ 1 \end{bmatrix}$
7 6 LSYM	5 RES Right SY Right SY Left SYN Left SYN GAIN/ATT 5	ATTENUATIO 4 3 NTH Attenuar NTH Mute. 0 NTH Attenuation NTH Mute. 0 = TENUATION 4 3	2 LSYA [4:0] tion. The La = Unmuted on. The LS = Unmuted, 2	1 0 SB represent d, 1 = Mute B represents	RSYM ts -1.5 dB d. -1.5 dB,	RE , 00000 = 00000 = 6	s = +12 d +12 d 5	dB and th	ne ran	2 RSYA [4:0] ge is +12 dH e is +12 dB DEFAULT 2	1 0 3 to -34.5 dB
7 6 LSYM	5 RES Right SY Right SY Left SYN Left SYN GAIN/ATT	ATTENUATIO 4 3 NTH Attenuar NTH Mute. 0 NTH Attenuation NTH Mute. 0 = TENUATION 4 3	ON 2 LSYA [4:0] tion. The La = Unmuted on. The LS = Unmuted,	1 0 SB represent d, 1 = Mute B represents 1 = Muted	RSYM ts -1.5 dB d. -1.5 dB,	RE , 00000 = 00000 =	s = +12 d +12 d 5	dB and th B and the	ie ran e rang	2 RSYA [4:0] ge is +12 dH e is +12 dB DEFAULT	$\frac{1}{1} = \frac{1}{1}$ B to -34.5 dB to -34.5 dB. T = [0x8888]
7 6 LSYM RSYA [4:0] RSYM LSYA [4:0] LSYM [17] VID 7 6 LVDM RVDA [4:0] LVDA [4:0] LVDA [4:0] LVDM	5 RES Right SY Right SY Left SYN Left SYN GAIN/ATT 5 RES Right VII Right VII Left VII Left VII Left VII	ATTENUATIO 4 3 NTH Attenuar NTH Mute. 0 NTH Attenuation NTH Mute. 0 = TENUATION 4 3	$\frac{2}{\text{LSYA [4:0]}}$ tion. The Li = Unmuted on. The LS = Unmuted, $\frac{2}{\text{LVDA [4:0]}}$ The LSB r fumute, 1 = The LSB re umuted, 1 =	$\frac{1}{0}$ SB represents d, 1 = Muted B represents 1 = Muted $\frac{1}{0}$ represents -1 Muted.	RSYM ts -1.5 dB d. -1.5 dB, RVDM .5 dB, 00	$\frac{RE}{00000} = \frac{6}{RE}$	s = +12 d +12 d 5 = 5 2 dB a	dB and th B and the 4 nd the ra	ne rang rang 3 nge is	2 RSYA [4:0] ge is +12 dH e is +12 dB DEFAULT 2 RVDA [4:0] s +12 dB to +12 dB to -	$\frac{1}{1}$ $\frac{1}$

LLA [4:0] Left LINE Attenuation. The LSB represents -1.5 dB, 00000 = +12 dB and the range is +12 dB to -34.5 dB.

LLM Left Line Mute. 0 = Unmuted, 1 = Muted.

7	MIC/PH 6	IONE_I 5	N GAII 4	N/ATTEN 3	2 1	0	7	6	5	4	3	DEFAU 2	LI = [' 1	0x868x 0 0
/ MCM	M20	RES	4		A [4:0]	0	PIM	RES		4	PIA		1	RES
mem	1120	KE5		MC	11[4.0]		1 1101	KES			1 17 1	[5.0]		KE.
PIA [3 PIM MCA M20		PHON Microp	E_IN M hone At	lute. ttenuation.	The LSB	represents represents -bit enables	–1.5 dB	, 00000 =	+12 d]	B and th	e range			34.5 d
МСМ		Microp	hone M	ute.										
[20] A]	DC SO	URCES	ELECI	Г AND AD	C PGA						I	DEFAU	LT = [0x000
7	6	5	4	3		1 0	7	6	5	4	3	2	1	0
LAGC		LAS [2:0)]		LAG [3:0)]	RAGC	RA	AS [2:0]		RAG	[3:0]	
~						_								
RAC	3:0]					ce select and	d Gain. F	or Gain, L	SB rep	resents	+1.5 dB	, 0000 =	= 0 dB	
				s 0 dB to +										
RAG	1 /	1	< \ \	\sim		C) Enable,								
LAG	[3:0]					e select and	Gain. Fo	r Gain, LS	B repr	esents +	1.5 dB,	= 0000	0 dB	
				0 (B to		\frown								
LAG	<pre>/</pre>	Left A	itomatic	Gain Con	trol (AGC) Enable, 1	l = En <u>ab</u>	led, $0 = D$	isable	1.				
	L	\smile	/ -	¬∕`	$\setminus / /$	$\langle \rangle$	/ /	1						
RAS [2:0]			out Source)		LAS [2:0]	AÐ	<u>C Left</u>	Input So	ource		
000		R_LIN		$\overline{}$	/			000		LINE	7	_		
001		R_OU7	Γ	\smile		\bigcirc /	1 1	001	/ ↓	OUT_	·		- -	
010		R_CD						010	L_				$\Box \Box$	
011		R_SYN	ΤН				6	₩ /		SYNJ H		1	r	-
100		R_VID							_	VID		1	IL	_
101		Mono 1						101	MI	- /	. /	/		
110		Reserve						10		ONE_I	N / /			
111		Reserve						111		served		L		_
Note:	When the	ne AGC	is enabl	ed, gain co	ntrol setti	ngs for the	ADC PC	GA are ove	erridde	n for all	inputs.			\sim
[32]	снір с	ONFIG	URATI	ION								DEFAU	LT = [0x00F
7	6	5	4	3	2	1 0	7	6	5	4	3	2	1	0
WSE	CDE	RES	CNP		RES			COF [3:01		I ² SF1	[1:0]	I ² SF	0 [1:0
				1					,		1 51 1	[1.0]	1 51	0 [1.0
I ² SF0	[1:0]	I ² S Por	t Config	guration for	r serial da	ta type.								
I^2SF1				00 Disał										
				01 Right										
				10 I^2S Ju										
				11 Left.	Justified									
												ing the t	followir	ng forr
COF	[3:0]	Clock (Dutput l	Frequency.	Program	mable clock	c output	on PCLK	O pin i	s detern	nined us	mg the		
COF [[3:0]	PCLK	D = 256	Frequency. × PCR/2 ^C	^{OF} where (COF = 0:11	1 and PC	on PCLK CR is the v	O pin i alue of	s detern the Pro	nined us gramma	able Clo	ck Rate	Regis
COF [[3:0]	PCLK	D = 256	Frequency. × PCR/2 ^C	^{OF} where (mable clock COF = 0:11 D is disable	1 and PC	on PCLK CR is the v	O pin i alue of	s detern the Pro	nined us gramma	ible Cloo	ck Rate	Regis
	[3:0]	PCLKO SS [38] Capture	D = 256 . If CO e not eq	Frequency. $\times PCR/2^{C}$ F > 11, the pual to Play	^{OF} where (en PCLK(back.	COF = 0:11 D is disable	l and PC d.	CR is the v	alue of	the Pro	gramma	able Cloo		-
	[3:0]	PCLK(SS [38] Captur 0 = Caj	D = 256 . If CO e not eq pture eq	Frequency. × PCR/2 ^C F > 11, the ual to Play uals Playb	^{OF} where (en PCLK(back. ack. The c	COF = 0:11 D is disable capture sam	l and PC d.	CR is the v	alue of	the Pro	gramma	able Cloo		-
	[3:0]	PCLK(SS [38] Captur 0 = Cap	D = 256 . If CO e not eq pture eq	Frequency. $\times PCR/2^{C}$ F > 11, the pual to Play	^{OF} where (en PCLK(back. ack. The c	COF = 0:11 D is disable capture sam	l and PC d.	CR is the v	alue of	the Pro	gramma	able Cloo		-
CNP	[3:0]	PCLK0 SS $[38]$ Captur 0 = Cap 1 = Cap	D = 256 . If CO e not eq pture eq pture no	Frequency. $5 \times PCR/2^{C}$ F > 11, the pual to Play puals Playb pt equal to	^{OF} where (en PCLK(back. ack. The c Playback.	COF = 0:11 D is disable capture sam	1 and PC d. 1ple rate	CR is the v	alue of ned by	the Pro	gramma yback sa	uble Cloo	te in SS	[02].
CNP	[3:0]	PCLK(SS [38] Captur 0 = Caj 1 = Caj CD En	D = 256 . If CO e not eq pture eq pture no able, Se	Frequency. $5 \times PCR/2^{C}$ F > 11, the qual to Play pluals Playb ot equal to t to "1" wl	^{OF} where (en PCLK(back. ack. The o Playback. nen a CD	COF = 0:11 D is disable capture sam	1 and PC d. aple rate	CR is the v	alue of ned by	the Pro	gramma yback sa	uble Cloo	te in SS	[02].
CNP CDE	[3:0]	PCLK(SS $[38]$ Captur 0 = Ca 1 = Ca CD En the ana	D = 256 . If CO e not eq pture eq pture no able, Se log CD	Frequency: $x \text{PCR}/2^{C}$ F > 11, the ual to Play puals Playb ot equal to x to "1" wh attenuator	^{OF} where (en PCLK(back. ack. The o Playback. nen a CD	COF = 0:11 O is disabled capture sam player is co	1 and PC d. aple rate	CR is the v	alue of ned by	the Pro	gramma yback sa	uble Cloo	te in SS	[02].
COF CNP CDE WSE	[3:0]	PCLKC SS [38] Captur 0 = Caj 1 = Caj CD En the ana Sound	D = 256 . If CO e not eq pture eq pture no able, Se log CD System	Frequency. $5 \times PCR/2^{C}$ F > 11, the qual to Play pluals Playb ot equal to t to "1" wl	^{OF} where (en PCLK(back. ack. The o Playback. nen a CD	COF = 0:11 O is disabled capture sam player is co	1 and PC d. aple rate	CR is the v	alue of ned by	the Pro	gramma yback sa	uble Cloo	te in SS	[02].
CNP CDE	3:0]	PCLKC SS [38] Captur 0 = Caj 1 = Caj CD En the ana Sound 0 = Sou	D = 256 . If CO e not eq pture eq pture no able, Se log CD System andBlas	Frequency. $5 \times PCR/2^{C}$ F > 11, the ual to Play puals Playb ot equal to t to "1" wl attenuator Enable.	^{oF} where (en PCLK(back. ack. The of Playback. nen a CD inputs to	COF = 0.11 D is disable capture sam player is co I^2S (0) seri	1 and PC d. aple rate	CR is the v	alue of ned by	the Pro	gramma yback sa	uble Cloo	te in SS	[02].
CNP CDE	[3:0]	PCLKC SS [38] Captur 0 = Caj 1 = Caj CD En the ana Sound 0 = Sou 1 = Sou	D = 256 . If CO e not eq pture eq pture no able, Se log CD System ind Blas ind Syst	Frequency. $5 \times PCR/2^{C}$ F > 11, the ual to Playbout equal to provide the to the total second total to the total second second second total second second second second second second total second secon	^{oF} where (en PCLK(back. ack. The c Playback. nen a CD inputs to under Win	COF = 0.11 D is disable capture sam player is co I^2S (0) seri	1 and PC d. pple rate pnnected ial port.	CR is the v is determi to I ² S (0),	alue of ned by maps	the Pro the play SoundE	gramma yback sa Blaster C	mple Cloo	te in SS r contro	[02].

[33] D: 7	SP CO 6	ONFIGU 5	RATION 4	3	2	1	0	7	6	5	4	3	DEFAU 2	$J\mathbf{LT} = [0]$	x0000] 0
DS1	DS0	DIT	RES		ADR	I1T	IOT	CPI	PBI	FMI	I1I	101	-	DFS [2:0	-
FS [2:0		000—Ma 001—I ² S 010—I ² S 011—Mu	me Sync S aximum F (0) Sampl (1) Sampl usic Synth	rame l le Rate le Rate esizer	Rate e Sample	Rate		me Syno	c accord	ing to th	ne follow	ving so	urce.		
			and System and System served												
)I		$I^2S(0)$ Da	ata Interce	ept. 0	= Disabl	le, $1 = I$	ntercept	$I^{2}S(0)$ I	Data En	abled.					
			ata Interce									_			
MI	/ /		ic Synthes			÷			-			ta Ena	bled.		
PBA		1 1 1	Data Inte	-											
CPI IOT		1 4 1	Data Inte ikeover D						ure Dat	a Enabi	ed.				
	/ /		ikeover D		()	1	\sim								
ADR		1 1	sync. Wri	\			\sim	``	port to I	be re-ini	tialized.				
DIT			rrupt A v									_			
DS0		DSP Mai	ilbox 0 Sta	atus. O) = last a	ccess in	dicates 1	ad, 1 =	last acc	cess indi	icates wr		$1 \sim 1$		
DS1		DSP Mai	ilbox 1 Sta	atus. C	– las t a	ccess in	dicates	ead, 1	: last aco	cess ind	cates wr	rite.			_
[34] FI	M SA	MPLE R	ATE				\smile	/ /	\square		\sim	\Box	DEFAU	[T = {0¢	5622]
7	6	5	4	3	2	1	0	75		75	4	3	$-\frac{2}{2}$	<u> </u>	
		FN	ISR [15:8]							FMSI	<u>~ [7:0]</u>			\sim
FMSR [1	5:0]	F Music	Sample R	ate reg	gister. Tl	he samp	le rate c	an be pi	ogramn	ned from	n 4 kHz	to 27.0	6 kHz ih i	1 hertz in	rement
$[35] I^2 S$	S(1) S	AMPLE	RATE										DEFAUI	$LT = 40x^2$	C44]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		S1	SR [15:8]							SISE	R [7:0]			
SISR [15			mple Rate								kHz to	55.2 k	kHz in 1 h	nertz incre	ements.
[36] I ² S	5(0) S	AMPLE	RATE											LT = [0x]	AC44]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		50	SR [15:8]							SOSR	[7:0]			
SOSR [15			mple Rate								Hz to 55	5.2 kH	z in 1 her	tz increm	ents.
[37] R	ESER	VED											DEFA	$\mathbf{ULT} = [0]$	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		RES									RES				
[38] P	ROGI	RAMMAI	BLE CLC	OCK F	RATE								DEFAU	LT = [0x]	AC44]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
		Р	CR [15:8]								PCR	[7:0]			
PCR [15:	0]	increm	mmable C ents. This PCR/2 ^{COF}	s regist	ter is onl	y valid	when the	e COF b	its in SS	5 [32] ai					
CK [15.		230 A I													
) Pha			and P	HONE	OUT A	ttenuat	ion					DEFA	ULT = [0]	x8000]
) Pha 6		Control a	and P 3	HONE_2	OUT A	ttenuat 0	ion 7	6	5	4	3	DEFA	$\mathbf{ULT} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	0 x8000]

Mute. $0 = Un$ Stereo Enhan to 100%. Writing a "1 reo Enhancen <u>3 2</u> BUTTON M <u>3 2</u> BUTTON M <u>3 2</u> S olume attenua h the Master 50 ms on the an 200 ms wi otary ground le by a momen also causes a v VI bit in SS [1	tion offse volume a ing of bot	Control. bit has t e turned 0 ER 0 et, which trenuati The pin w n auto-c h the \overline{V}	The LSI the same l off. 0 = 7 7 VMU h can be ion to provill cause ecrement 0L_UP	affect a Phat St 6 0 VUP increme oduce th a decre t every and VO	s writing ereo is of 5 5 VDN ented or of the actual ment (de 200 ms.	0s to 3I n, 1 = Pl 4 4 4 4 4 4 4 4	DD [3:0 nat Ster 3 DE 3 DE 3 H ted via Volume a Attent Iso true	b) bits, an reo is off. DEFAUL 2 2 3 3 3 3 4 4 5 3 4 5 4 5 3 4 5 3 5 5 5 5	d cause LT = [0] 1 = [0xX] 1 dware V tenuation this representation	x 0000 0 X1B] 0 Volumo n. A r gister. y grou
to 100%. 2. Writing a "1 reo Enhancen 3 2 3 BUTTON M 3 2 5 BUTTON M 3 2 5 r olume attenua h the Master V 50 ms on the an 200 ms will attary ground by a momen also causes a v	1" to this nent to be 1 AOD IFIE 1 ation offse Volume a ing of bot ttary groun volume in	bit has t e turned 0 ER 0 et, which trenuati \overline{TP} pin w n auto-c h the \overline{V}	the same l off. 0 = 7 7 VMU h can be ion to provill cause ecrement 0L_UP	affect a Phat St 6 0 VUP increme oduce th a decre t every and VO	s writing ereo is of 5 5 VDN ented or of the actual ment (de 200 ms.	0s to 3I n, 1 = Pl 4 4 4 4 4 4 4 4	DD [3:0 nat Ster 3 DE 3 DE 3 H ted via Volume a Attent Iso true	b) bits, an reo is off. DEFAUL 2 2 3 3 3 3 4 4 5 3 4 5 4 5 3 4 5 3 5 5 5 5	d cause LT = [0] 1 = [0xX] 1 dware V tenuation this representation	x 0000 0 X1B] 0 Volumo n. A r gister. y grou
e. Writing a "1 reo Enhancen <u>3</u> 2 BUTTON M <u>3</u> 2 BUTTON M <u>3</u> 2 5 c c c c c c c c c c c c c c c c c c	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e turned 0 ER 0 et, which tresnati TR pin w n auto-c h the V	h can be on to provide the contract of the content of the conten	6 6 VUP increme oduce th a decre t every and VO	5 5 VDN ented or o ne actual ment (de 200 ms.	h, 1 = Pl 4 RE 4 lecreme Master V crease in This is a	3 3 5 DE 3 I nted via Volume Attent Iso true	EFAULT 2 EFAULT 2 EFAULT 2 3M [4:0] a the Har e DAC at uation) in e for a mo	LT = [0] $= [0xX]$ $dware V$ $tenuation this re omentar$	x0000 0 X1B] 0 Volumon. A r gister. y grou
$\frac{3}{2}$ BUTTON N $\frac{3}{2}$ BUTTON N $\frac{3}{2}$ $\frac{2}{5}$ $\frac{3}{5}$ $$	1 100 IFIE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{0}{2\mathbf{R}}$ $\frac{0}{1000}$ et, which there national thermal terms of the	7 7 VMU h can be ion to provill cause decrement OL_UP	6 VUP increme oduce th a decre t every and VO	5 5 VDN ented or o ne actual ment (de 200 ms.	4 RE 4 lecreme Master V crease in T his is a	3 S DE 3 Inted via Volume Attent Iso true	DEFAULT 2 EFAULT 2 3M [4:0] a the Har e DAC at uation) ir e for a mo	LT = [0 1 = [0xX 1 dware V tenuation this reported	0 X1B] 0 Volumo on. A r gister.
BUTTON M 3 2 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AOD IF II 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ER 0 et, which trenuati \overline{TP} pin w n auto-c h the \overline{V}	7 VMU h can be ion to provill cause decrement OL_UP	6 VUP increme oduce th a decre t every and VO	5 VDN ented or o ne actual ment (de 200 ms.	4 decreme: Master ^v crease in T his is a	3 S DE 3 Inted via Volume Attentilso true	2 FAULT 2 3M [4:0] a the Har c DAC at uation) in e for a mo	1 = [0xX 1 dware V tenuation this re-	0 X1B] 0 Volumo on. A r gister.
BUTTON M 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5	1 ation offse Volume a e VOI – I cause a ing of bot	0 et, which trenuati P pin w n auto-c h the V nding of	VMU h can be ion to pro vill cause ecremen OL_UP	VUP increme oduce th a decre t every and VO	VDN ented or o ne actual ment (de 200 ms.	4 lecreme Master ^v crease in T his is a	DE 3 Inted via Volume Attent Iso true	2 3M [4:0] a the Har b DAC at uation) in e for a mo	dware V tenuation this re-	0 /olum/ on. A r gister.
3 2 5 5 5 5 5 5 5 5 0 ms on the an 200 ms will otary ground attraction of the and the by a moment also causes a v	1 ation offse Volume a e VOI – I cause a ing of bot	0 et, which trenuati P pin w n auto-c h the V nding of	VMU h can be ion to pro vill cause ecremen OL_UP	VUP increme oduce th a decre t every and VO	VDN ented or o ne actual ment (de 200 ms.	lecreme Master crease ir This is a	3 Inted via Volume Attentilso true	2 3M [4:0] a the Har b DAC at uation) in e for a mo	dware V tenuation this re-	0 /olum/ on. A r gister.
3 2 5 5 5 5 5 5 5 5 0 ms on the an 200 ms will otary ground attraction of the and the by a moment also causes a v	1 ation offse Volume a e VOI – I cause a ing of bot	0 et, which trenuati P pin w n auto-c h the V nding of	VMU h can be ion to pro vill cause ecremen OL_UP	VUP increme oduce th a decre t every and VO	VDN ented or o ne actual ment (de 200 ms.	lecreme Master crease ir This is a	3 Inted via Volume Attentilso true	2 3M [4:0] a the Har b DAC at uation) in e for a mo	dware V tenuation this re-	0 /olum/ on. A r gister.
olume attenua h the Master 50 ms on the an 200 ms wi atary ground le by a momen also causes a v	Volume a e VOL E I cause a ing of bot utary groun volume in	$\frac{\Pi + n}{PR} \text{ pin } w$ $n \text{ auto-} c$ $h \text{ the } \overline{V}$ $n \text{ ding of }$	h can be ion to provill cause decrement OL_UP	increme oduce th a decre t every and VO	ented or o ne actual ment (de 200 ms.	Master ` crease ir This is a	nted via Volume Atten Iso true	a the Har DAC at uation) in e for a mo	tenuation this regomentar	on. A r gister. y grou
olume attenua h the Master 50 ms on the an 200 ms wi ntary ground he by a momen also causes a v	Volume a e VOL E I cause a ing of bot utary groun volume in	$\frac{\Pi + n}{PR} \text{ pin } w$ $n \text{ auto-} c$ $h \text{ the } \overline{V}$ $n \text{ ding of }$	ion to provide the provided the provided the provided technical structure of tec	a decre a decre t every and VO	ie actual ment (de 200 ms.	Master ` crease ir This is a	Volume Atten Iso true	DAC at uation) ir e for a mo	tenuation this regomentar	on. A r gister. y grou
2 2				entary gr	olunding			his also c EFAUL	auses a	volum
3 2	1	0	7	6	5		1			<u></u>
			L				[7:0] -		\geq	
ised to send d	lata and c	control i	nformati	on to an	id from t	he DSP.				\neg
		0	-		-				T = [0]	-
	1	0	7	6	5			2	I	0
							. ,			
ised to send d	lata and c	control i	nformati	on to an	id from t	he DSP.				
	-	0	-	,	_					
			-					2		0
1	15:8] sed to send c 3 2 15:8] sed to send c MER CONT 3 2 PAA PDA	15:8] sed to send data and c 3 2 15:8] sed to send data and c MER CONTROL 3 2 PAA PDA	15:8] sed to send data and control i 3 2 1 0 15:8] sed to send data and control i MER CONTROL 3 2 1 0 PAA PDA PDP PTB	15:8] sed to send data and control information 3 2 1 0 7 15:8] sed to send data and control information MER CONTROL 3 2 1 0 7 PAA PDA PDP PTB 3D	15:8] sed to send data and control information to an 3 2 1 0 7 6 15:8]	15:8] sed to send data and control information to and from the send data and cont	MBOR 15:8] MBOR sed to send data and control information to and from the DSP. MBIR Sed to send data and control information to and from the DSP. MER CONTROL 3 2 1 0 7 6 5 4 MER CONTROL 3 2 1 0 7 6 5 4 PAA PDA PDP PTB 3D PD3D GPSP RES	15:8] MBOR [7:0] sed to send data and control information to and from the DSP. 3 2 1 0 7 6 5 4 3 15:8] MB1R [7:0] sed to send data and control information to and from the DSP. MER CONTROL 3 2 1 0 7 6 5 4 3 MB1R [7:0] MB1R [7:0] sed to send data and control information to and from the DSP. MER CONTROL 3 2 1 0 7 6 5 4 3 PAA PDA PDP PTB 3D PD3D GPSP RES DM	MBOR [7:0]MBOR [7:0]Sed to send data and control information to and from the DSP.DEFAUL 3 2 1 0 7 6 5 4 3 2 IS:8]MB1R [7:0]sed to send data and control information to and from the DSP.MER CONTROLDEFAUL 3 2 1 0 7 6 5 4 3 2 PAAPDAPDPPTB3DPD3DGPSPRESDM	MBOR [7:0]MBOR [7:0]DEFAULT = [0x3 2 1 0 7 6 5 4 3 2 1MBIR [7:0]sed to send data and control information to and from the DSP.MER CONTROLDEFAULT = [0x3 2 1 0 7 6 5 4 3 2 1DEFAULT = [0x3 2 1 0 7 6 5 4 3 2 1

- 4) Write [SSBASE+0] with 0x2C ; Write Indirect address for POWER-DOWN and TIMER CONTROL register
- 5) Write [SSBASE+2] with 0x00 ; Write Low byte of POWER-DOWN and TIMER CONTROL register
- 6) Write [SSBASE+3] with 0x31 ; Set Enable bits for PIW and PIR
- 7) Write [SSBASE+0] with 0x01 ; Write Indirect address for INTERRUPT CONFIG register
- 8) Write [SSBASE+2] with 0x82 ; Set the TE (Timer Enable) bit
- 9) Write [SSBASE+3] with 0x20 ; Set the TIE (Timer Interrupt Enable) bit

DM	DAC	Mute. T	his bit r	nutes th	e digital	DAC o	utput en	tering tl	he analog	g mixer.					
GPSP	Game 0 1	Slow C	eed Sele Jame Po ame Poi	rt	ets the o	perating	g speed o	of the ga	me port.						
PD3D	Power 0 1	-Down On Off	3D. Tur	ns off in	ternal P	hat Stei	reo circui	itry.							
3D	ultima	te flexib AC outp 3D Ph	ility for	mixing a DEnable	ind any d for D	combin AC Out	ation of a						Stereo Ci enhanceo		
PT B PD P	Power	-Down -down c	Time Ba ount rel	use. $1 = 1$ oad on I	timer se DSP Poi	t to 100 rt enable	ms, 0 = ed; "1" =	Reload	l count i		Port enab	oled. DS	SP Port is	s enable	d when
PIFA	Slot 0 of SDL of the DSP Serial Port Input is Alive (Bit 7 = 1). Power-down count reload on Digital Activity; "1" = Reload count on Digital Activity. Digital Activity is defined as any activity on (FS0, I ² \$1, FM of PLAYBACK).											ed as any			
PAR	Power	-down-	ount rel	oad on A	nalog A	Activity;	" 1" = R MIC, PI	eload co IONE_	ount on . IN <u>)</u> or M	Analog I AST E	Activity. R VOLU	Analog JME un	g Activity Imuting.	is defin	ed as any
PIR	logical	device	inside th	e AD 8	16A)) ()					_		any active
PIW			ount rel			te; * 1" `	Reload	count	on ISA w	vrite. IS	A Write	defined	as a writ	te to any	y active
CPD	1 0	Power	-Down; -Up][
	er-up, s ERSIO		should p	oll the [SSBAS	E+0] CI	RY bit fo	r "1" be	efore wri	ting or	reading		cal devico EFAULI		
[4 3] v 7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	-0
		V	ER [15:	8]						V	VER [7:0)]			
[46] R	RESERV	/ED											DEFAU	LT = [0	x0000]
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
			RES								RES				

Test register. Should never be written or read under normal operation.

SB Pro; AdLib Registers

The AD1816A contains sets of ISA Bus registers (ports) that correspond to those used by the SoundBlaster Pro audio card from Creative Labs and the AdLib audio card from AdLib Multimedia. Table IX lists the ISA Bus SoundBlaster Pro registers. Table X lists the ISA Bus AdLib registers. Because the AdLib registers are a subset of those in the SoundBlaster card, you can find complete information on using both of these registers in the *Developer Kit for SoundBlaster Series, 2nd ed.* © *1993*, Creative Labs, Inc., 1901 McCarthy Blvd., Milpitas, CA 95035.

Table IX.	SoundBlaster	Pro ISA	Bus Re	gisters
-----------	--------------	---------	--------	---------

Register Name	ISA Bus Address
Music0: Address (w), Status (r)	(SB Base) Relocatable in range 0x100 – 0x3F0
Music0: Data (w)	(SB Base+1)
Music1: Address (w)	(SB Base+2)
Music1: Data (w)	(SB Base+3)
Mixer Address (w)	(SB Base+4)
Mixer Data (w)	(SB Base+5)
Reset (w)	(SB Base+6)
Music0: Address (w)	(SB Base+8)
Music0: Data (w)	(SB Base+9)
Input Data (r)	(SB Base+A)
Status (r), Output Data (w)	(SB Base+C)
Status (r)	(SB Base+E)

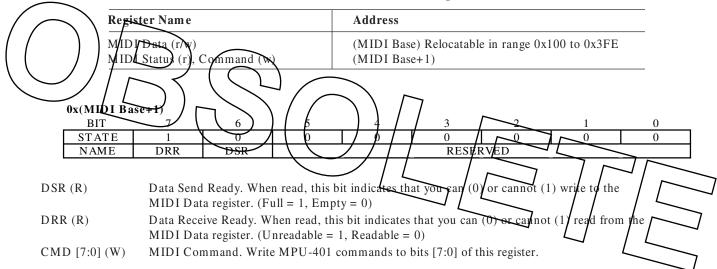

Register Name	ISA Bus Address
Music0: Address (w), Status (r)	(AdLib Base) Relocatable in range 0x100 – 0x3F8
Music0: Data (w)	(AdLib Base+1)
Music1: Address (w)	(AdLib Base+2)
Music1: Data (w)	(AdLib Base+3)

Table X. AdLib ISA Bus Registers

MPU-401 Registers

The AD1816A contains a set of ISA Bus registers (ports) that correspond to those used by the ISA bus MIDI audio interface cards. Table XI lists the ISA Bus MIDI registers. These registers support commands and data transfers described in *MIDI 1.0 Detailed Specification and Standard MIDI Files 1.0*, © 1994, MIDI Manufacturers Association, PO Box 3173 La Habra, CA 90632-3173.

Table XI. MPU-401 ISA Bus Registers

NOTES

The AD1816A supports *only* the MPU-401 0xFF (reset) and 0x3F (UART) commands. The controller powers setup for Smart mode, but must be put in pass-through mode. To start MIDI operations, send a reset command (0xFF) and then send a UART mode command (0x3F). The MPU-401 data register contains an acknowledge byte (0xFE) after each command transfer unless it is in UART mode..

All commands return an ACK byte in "smart" mode.

Status commands (0xAx) return ACK and a data byte; all other commands return ACK.

All commands except reset (0xFF) are ignored in UART mode. No ACK bytes are returned.

"Smart" mode data transfers are not supported.

Game Port Registers

The AD1816A contains a Game Port ISA Bus Register that is compatible with the IBM joystick standard.

Register Name	Address
Game Port I/O	(Game Port Base+0 to Game Port Base+7) Relocatable in the range 0x100 to 0x3F8

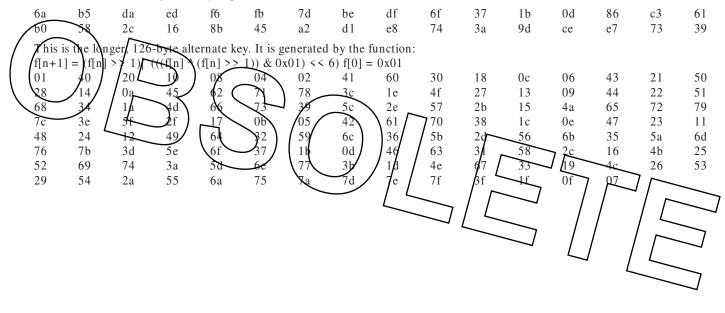
Table XII. Game Port ISA Bus Registers

APPENDIX A

PLUG AND PLAY INTERNAL ROM Note: All addresses are depicted in hexadecimal notation. Vendor ID: ADS7181 Serial Number: FFFFFFF Checksum: 2F PNP Version: 1.0, vendor version: 20 ASCII string: "Analog Devices AD1816A" Logical Device ID: ADS7180 not a boot device, implements PNP register(s) 31 Start dependent function, best config IRQ: channel(s) 5 7 type(s) active-high, edge-triggered DMA: channel(s) 1 Type F, count-by byte nonbus-mastering, 8-bit only DMA: channel(s) 0/1 3 Type F, count-by-byte, non bus-mastering, 8-bit only I/Q: 16-bit/decode, range [0220,0240] mod 20, longth 10 16-bit decode, range [0388,0388] mod 08. length 04 10:16-bit decode, range [0500 0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 10 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only I/O: 16-bit decode, range [0220,0240] mod 20, length 10 I/O: 16-bit decode, range [0388,0388] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 End: type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: channel(s) 0 1 3

- Type F, count-by-byte, nonbus-mastering, 8-bit only
- I/O: 16-bit decode, range [0220,02E0] mod 20, length 10
- I/O: 16-bit decode, range [0388,03B8] mod 08, length 04
- I/O: 16-bit decode, range [0500,0560] mod 10, length 10

Start dependent function, suboptimal config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered DMA: channel(s) 0 1 3 Type F, count-by-byte, nonbus-mastering, 8-bit only DMA: NULL I/O: 16-bit decode, range [0220,02E0] mod 20, length 10 I/O: 16-bit decode, range [0388,03B8] mod 08, length 04 I/O: 16-bit decode, range [0500,0560] mod 10, length 10 End all dependent functions Logical Device ID: ADS7181 not a boot device, implements PNP register(s) 31 Compatible Device ID: PNPB006 Start dependent function, best config IRO: channel(s) 5 7 9 11 type(s) active-high, edge-triggered I/O: 16-bit decode, range [0300,0330] mod 30, length 02 Start dependent function, acceptable config IRQ: channel(s) 5 7 9 10 11 15 type(s) active-high, edge-triggered /O:/16-bit decode, /ange [0300,0420] mod 30, length 02 End all dependent functions. ogical Device ID: ADS2182 not a boot device, implements PNP register(s) 31 Compatible Device ID PNPB02F Start dependent function, best config I/O: 16-bit decode, range 0200,0200 mbd 08, length 08 Start dependent function, acceptable confi I/O: 16-bit decode, range [0200,0208] hod 08, length 08 End all dependent functions


PLUG AND PLAY KEY AND "ALTERNATE KEY" SEQUENCES

One additional feature of the AD1816A is an alternate programming method used, for example, if a BIOS wants to assume control of the AD1816A and present DEVNODES to the OS (rather than having the device participate in Plug and Play enumeration). The following technique may be used.

Instead of the normal 32 byte Plug and Play key sequence, an alternate 126 byte key is used. After the 126 byte key, the AD1816A device will transition to the Plug and Play "sleep" state. It can then be programmed as usual using the standard Plug and Play ports. After programming, the AD1816A should be sent to the Plug and Play "WFK" (wait for key) state. Once the AD1816A has seen the alternate key, it will no longer parse for the Plug and Play key (and therefore never participate in Plug and Play enumeration). It can be reprogrammed by reissuing the alternate key again.

Both the Plug and Play key and the alternate key are sequences of writes to the Plug and Play address register, 0x279. Below are the ISA data values of both keys.

This is the standard Plug and Play sequence:

AD1816 AND AD1816A COMPATIBILITY

The AD1816 and AD1816A are pin for pin and functionally compatible. The AD1816A may be dropped directly into an existing AD1816 design. However, the AD1816A has greater pin assignment flexibility to accommodate a wider range of applications and for controlling extra logical devices such as a modem chip set or an Enhanced IDE controller. Pin assignments are controlled by the external EEPROM. Consequently, the optional EEPROM must be reprogrammed to configure the AD1816A.

USING AN EEPROM WITH THE AD1816 OR AD1816A

The AD1816 and AD1816A support an optional Plug and Play resource ROM. If present, the ROM must be a two-wire serial device (e.g. Xicor X24C02) and the clock and data lines should be wired to EE CLK and EE DATA pins; pull-up resistors are required on both signals. The EEPROM's A2 and A1 pins (also A0 for 256-byte EEPROMs) must all be tied to ground. The write control pin (WC*) must be tied to power if you wish to program the EEPROM in place; otherwise, we recommend tying it to ground to prevent accidental writes.

The EEPROM interface logic examines the state of the EE_CLK pin shortly after RESET is deasserted and whenever the Plug and Play reset register (02h) is written with a value X such that ($[X \& 1] \neq 0$). If an EEPROM is connected, EE_CLK is pulled high and the **EEPROM** logic attempts to read the first ROM byte (page 0, byte 0). If EE_CLK is tied low, the internal ROM is used; in this is used to set the state of VOL_EN, and should also be tied high or low. EE_CLK is not used as an input at any case EE_DATA othe, time.

initial part of the ROM is not part of the Plug and Play resource data. It consists of a number of flags that enable optional func-Γhe lity. The number of flag bytes and the purpose of each bit depend on whether an AD1816 or an AD1816A is being used.

AD1816 FLA G I The AD1816 ha	s a single flag byte that is used as shown below:
7	$6 \qquad 5 \qquad 1 \qquad 2 \qquad 1 \qquad 0$
1	0 0 XTRA_SIXE VOL_EN XTRA_IRQ XTRA_EN MODEM_EN
MODEM_EN	Program to one to enable the modem logical device. This logical device has an I/O range and an IRQ. The I/O range has the following requirements:
	 Length of eight bytes Alignment of eight bytes 16-bit address decode
	Program to zero to enable I ² S Port 1.
XTRA_EN	Program to one to enable the XTRA logical device. This logical device has an I/O range, an optional IRQ, and an optional DMA. The I/O range has the following requirements:
	 Length of eight bytes or 16 bytes, selectable by XTRA_SIZE Alignment of eight bytes or 16 bytes, matches length 16-bit address decode
	Program to zero to enable the DSP serial port.
XTRA_IRQ	Program to one to include an IRQ in the XTRA logical device. When enabled, the IRQ level and type are pro- grammed through PnP registers 0x70 and 0x71. (Note: For the 1816, the IRQ type is hard coded and rising edge triggered.)
VOL_EN	Program to one to enable hardware volume control.
XTRA_SIZE/ VOL_SEL	The function of this bit depends on XTRA_EN. If XTRA_EN is one, this bit selects the size of the XTRA device's I/O range. Program to one to make the XTRA logical device I/O length 16 bytes. Program to zero to set the XTRA logical device I/O length to eight bytes. The alignment specified in the resource data must be an integer multiple of the length. If XTRA_EN is zero (and VOL_EN is one), then this bit selects the location of the hard-

multiple of the length. If XTRA_EN is zero (and VOL_EN is one), then this bit selects the location of the hardware volume control pins. Program to zero to replace I^2SO with the volume control pins; program to one to replace the SPORT.

The three MSBs in the first byte of the AD1816 EEPROM are used to verify that the EEPROM data is valid. The bits are compared to the values shown; if a mismatch is found, then the EEPROM will be ignored. The internal ROM will be used to perform PnP enumeration, and the MODEM and XTRA logical devices will not be available. Hardware volume will be enabled on the l^2S0 port. The SPORT is disabled.

USING THE AD 1816 WITHOUT AN EEPROM

If the EEPROM is absent (EE CLK pin = GND), the flags are set as shown below:

MODEM_EN = XTRA_EN = XTRA_IRQ = VOL_SEL = 0 VOL EN = EE DATA pin

ΗV

AD1816A FLAG BYTES

The AD1816A has four flag bytes that are used as shown below: (*) AD1816-compatible setting.

Byte 0

 7	6	5	4	3	2	1	0
1	0	0	XTRA_HV	I ² S0_HV	SUPER_EN	XTRA_EN	MODEM_EN

MODEM_EN Program to one to enable the modem logical device. This logical device has an I/O range and an IRQ. The I/O range has the following requirements: - Length of eight bytes - Alignment of eight bytes - 16-bit address decode Program to zero to enable I²S Port 1 (SUPER_EN and IRQ_EN must also be zero). Program to one to enable the XTRA logical device. This logical device has an I/O range, an optional TRA IRQ, and an optional DMA. The I/O range has the following requirements: Length of 1 to 16 bytes selectable by XTRASZ0[3:0] Alignment of to byles matches length 16-bit address decode Program to zero to enable the DSP serial port (XTRA_HV A second I/O range is available XTRA (see S) must also be z Program to one to merge the XTRX and modern logical devices. If this bit is so SUPER_EN oone, XTRA_EN and IRQ_EN must be set to one and MODEN EN must be set to zero. The combined device has up to two I/D ranges, two IRQs and one DMA. The two I/O ranges are both taken from the XTRA device; the modern I/O range is disabled. The first IRQ is the XTRA device IRQ, the second is the modent IRQ. Program to zero for distinct model and XTRA devices. (*) $I^2SO HV$ Program to one to enable hardware volume inputs on the I²S port 0 pins. Program to one to enable hardware volume inputs on the DSP serial port pins. Do not enable both XTRA XTRA HV and I^2SO HV. Program to zero to enable the XTRA device DMA or the DSP serial port. The three MSBs in the first byte of the AD1816A EEPROM are used to verify that the EEPROM data is valid. The bits are com-

pared to the values shown; if a mismatch is found, the EEPROM will be ignored. The internal ROM will be used to perform PnP enumeration, and the MODEM and XTRA logical devices will not be available. Hardware volume will be enabled on the I²S0 port. The SPORT is disabled.

Byte 1

7	6	4	3	2	1	0	
	RESERVED		0	0	RSTB_EN	IRQSEL3_9	IRQSEL12_13

IRQSEL12_13 Program to one to enable IRO 13. Program to zero to enable IRQ 12. IRQ_EN must be one and MODEM_EN must be zero, or this bit has no effect. IRQSEL3_9 Program to one to enable IRQ 9.

- Program to zero to enable IRQ 3. (*) MODEM_EN or IRQ_EN must be one, or this bit has no effect. RSTB EN Program to one to enable an active-low RESET output on the XCTRLO pin.
- Program to zero to enable XCTRL0/PCLKO. (*)

Byte 2

Byte 2							
7	6	5	4	3	2	1	0
IRQSEL4_9_11	IRQSEL9_14	IRQSEL11_15	IRQSEL4_10		XTRAS	Z0[3:0]	
TRASZ0[3:0]		A device I/O ra nge as follows:	nge 0 length. Th	ne XTRASZ0 b	its set the length	of the first XT	`RA
	XTR	ASZ0 I	O Range Leng	th			
	0000	1					
	1000	8					
	1100 1110	4 2					
\frown	1110	1					
I other combin	ations should b	be avoided.					
RQSEL4_10			Q 10. (*, if MOI				
	$r r \sim$		Q4. (*, if MOD	DEM_EN is one)		
RQSEL11/15		ne to enable IR					
		erd to enable TR		$ \setminus \setminus $	Т		
RQSEL9_14		ne to enable IR ero to enable IB					
IRQSEL4_9_11	÷	ne to enable IR					
(· <u>-</u> / <u>-</u> · - ·			Q 4 (if MODEN	I_EN is one) o	r IRQ 9 (if MOI	HEM EN is zer	
Byte 3				~ [L	/		
7	6	5	4	3		\sim 1 /	
	XTRAS	Z1[3:0]		XTRA_CS	IRQ_EN	MRQINV	
						L_	
XIRQINV			IRQ active-low.				
	e		_IRQ active-higl				
MIRQINV			M_IRQ active-le M_IRQ active-l				
IRQ_EN							then two IRQs are
			ne, this bit is igno	ored. Program t	o zero to enable	I ² S port 1 (SU	PER_EN and
		N must also be z					
XTRA_CS	the first I/O r	ange, except its	econd I/O range size is controlled onsidered to be z	d by XTRASZ1	[3:0]. Program		
XTRASZ1[3:0]	Sets the XTR range as follo		nge one length.	The XTRASZ1	bits set the leng	gth of the secon	d XTRA device I/O
	XTR	ASZ1 I	O Range Leng	th			

16
8
4
2
1

All other combinations should be avoided.

USING THE AD1816A WITHOUT AN EEPROM

If the EEPROM is absent (EE_CLK pin = GND), then the flags are set as shown below:

MODEM_EN = XTRA_EN = SUPER_EN = XTRA_HV = RSTB_EN = IRQ_EN = 0 IRQSEL9_14 = MIRQINV = XIRQINV = 0 IRQSEL4_10 = IRQSEL11_15 = IRQSEL4_9_11 = 1

 $I^2SO_HV = EE_DATA pin$

MAPPING THE AD1816 EEPROM INTO THE AD1816A EEPROM

The equations below map AD1816 flags onto AD1816A flags:

MODEM_EN = MODEM_EN XTRA EN = XTRA EN SUPER EN = 0 $I^2S0_HV = VOL_EN * \overline{VOL_SEL}$ XTRA_HV = VOL_EN * VOL_SEL $IRQSEL12_{13} = X$ (don't care) IRQSEL3_9 = 0 $RSTB_EN = 0$ $XTRASZ0[3] = \overline{XTRA SIZE}$ XTRASZ0[2:0] = 000 $IRQSEL4_{10} = \overline{MODEM_{EN}}$ $IRQSEL11_{15} = 1$ 14 = 0**%** 11 = IROSEL4 \mathbf{X} IRQIN $\mathbf{V} = 0$ MIRQINV = 0IRQ EN = 0<u>CS</u> XT R A 60 TRASZ1[3:0 XXXX (don't car

PIN MUXING IN THE AD 1816 AND AD 1816A

Some AD1816 and AD1816A options are mutually exclusive because there are a limited number of pins on the device to support them all. The tables below map functions to pin, and show how the flags must be set to assign functions to pins. For each pin, the first function listed is the default; that function is used if the EEPROM is absent or invalid.

		Table XIII	I. AD1816 Pin Mux	
PQFP	TQFP	Pin Function	I/O	Flags Required
1	99	I ² S0_DATA	I	VOL_EN + (XTRA_EN * VOL_SEL)
		VOL_UP	I	VOL_EN * (XTRA_EN + VOL_SEL)
2	100	I ² S0_LRCLK	Ι	$\overline{\text{VOL}_\text{EN}}$ + ($\overline{\text{XTRA}_\text{EN}}$ *VOL_SEL)
		VOL_DN	I	$VOL_EN * (XTRA_EN + VOL_SEL)$
3	1	I ² S0_BCLK	Ι	$\overline{\text{VOL}_{\text{EN}}} + (\overline{\text{XTRA}_{\text{EN}}} * \text{VOL}_{\text{SEL}})$
		GND	I	VOL_EN * $(XTRA_EN + \overline{VOL_SEL})$
77	75	IRQ(10)	0 (1)	MODEM_EN
		IRQ(4)	0 (1)	MODEM_EN
81	79	I ² S1_DATA	Ι	MODEM_EN
		IRQ(3)	0 (1)	MODEM_EN
82	80	I ² S1_BCLK	Ι	MODEM_EN
		MDM_IRQ	I	MODEM_EN
83	81	I ² S1_LRCLK	Ι	MODEM_EN
		MDM_SEL	O (2)	MODEM_EN
97	95	SPORT_SCLK	0	$\overline{\text{XTRA_EN}} * (\overline{\text{VOL_EN} * \text{VOL_SEL}})$
		LD_SEL	0	XTRA_EN
		No Connect	0	XTRA_EN * VOL_EN * VOL_SEL
98	96	SPORT_SDFS	O (2)	$\overline{\text{XTRA_EN}} * (\overline{\text{VOL_EN} * \text{VOL_SEL}})$
		LD_DRQ	I	XTRA_EN
		VOL_UP	1	XTRA_EN * (VOL_EN * VOL_SEL)
99	97	SPORT_SDO	0	XTRA_EN * (VOL_EN * VOL_SEL)
		LD_DACK	0	XTRA_EN
100		No Connect	0	XTRA_EN * VOL_EN * VOL_SEL
100	98	SPORT_SDI		XTRA_EN * (VOL_EN * VOL_SEL)
		LD_IRQ		XTRA_EN * XTRA_IRQ
		VOL_DN GND		XTRA_EN * (VOL_EN * VOL_SEL) XTRA_EN * XTRA_IRQ
		UND	1	ATKA_EN ' ATKA_IKQ

(1) IRQ pins are three-stated if not assigned to a logical device.

(2) A pull-up or pull-down resistor may be required if EEPROM is used, because this pin is three-stated while EEPROM is read.

Table XIV. AD1816A Pin Muxing

PQFP	TQFP	Pin Function	I/O	Flags Required
1	99	$\frac{I^2S0_DATA}{VOL_UP}$	I I	I ² S0_HV I ² S0_HV
2	100	I ² S0_LRCLK VOL_DN	I I	I ² S0_HV I ² S0_HV
3	1	I ² S0_BCLK GND	I	I ² S0_HV I ² S0_HV
68	66	XCTL0/PCLKO PNPRST	0	RSTB_EN RSTB_EN
69	67	XCTL1/RING LD_SEL1	0 (1) 0	XTRA_EN + XTRA_CS XTRA_EN * XTRA_CS
74		IRQ(15) IRQ(11)	O (2) O (2)	IRQSEL15_11 IRQSEL15_11
		$ \begin{array}{c} \text{IRQ}(1)\\ \text{IRQ}(9)\\ \text{IRQ}(4) \end{array} $	$ \begin{array}{c} 0 (2) \\ 0 (2) \\ 0 (2) \\ 0 (2) \end{array} $	IRQSEL4_9_11 IRQSEL4_9_11* MODEM_EN IRQSEL4_9_11* MODEM_EN
77		HRQ(10) IBQ(4)		IRQSHL4/10 IRQSEL4/10
78	76	IRQ(9) IRQ(14)		TROSEL9_14 TROSEL9_14
81	79	I ² S1_DATA IRQ(3)	I 0 (2)	MODEM_EN * SUPER_EN * IRQ_EN (MODEM_EN7+ SUPER_EN + IRQ_EN) * IRQSEL3_9
82	80	IRQ(9) I ² S1_BCLK MDM_IRQ	O (2) I I	(MODEM_EN + SUPER_EN IRQ_EN) * IRQSEL3_9 MODEM_EN MODEM_EN
83	81	I ² S1_LRCLK MDM_SEL IRQ(12)	I O (4) O (2)	MODEM_EN * SUPER_EN * IRQ_EN MODEM_EN *SUPER_EN (MODEM_EN + SUPER_EN) * IRQ_EN * IRQSEL12_13
		IRQ(13)	O (2)	(MODEM_EN + SUPER_EN) * IRQ_EN * IRQSEL12_13
97	95	SPORT_SCLK LD_SEL0 No Connect	0 0 0	XTRA_EN * XTRA_HV XTRA_EN XTRA_EN * XTRA_HV
98	96	SPORT_SDFS LD_DRQ VOL_UP	O (3) I I	XTRA_EN * XTRA_HV XTRA_EN * XTRA_HV XTRA_HV
99	97	SPORT_SDO LD_DACK VOL_DN GND	O (3) O (3) I I	XTRA_EN * XTRA_HV XTRA_EN * XTRA_HV (XTRA_EN + XTRA_CS) * XTRA_HV XTRA_EN * XTRA_CS
100	98	SPORT_SDI LD_IRQ VOL_DN GND	I I I I I	XTRA_EN * XTRA_HV XTRA_EN * XTRA_HV XTRA_EN * XTRA_HV * XTRA_CS XTRA_EN * XTRA_HV * XTRA_CS

(1) Open-drain driver with internal weak pull-up.

(1) per orden of the internal wear per up.
(2) PC_IRQ pins are three-stated if not assigned to a logical device.
(3) A pull-up or pull-down resistor may be required if EEPROM is used, because this pin is three-stated while EEPROM is read.

(4) An internal pull-up holds this pin deasserted until the EEPROM is read.

NOTE

The direction of some pins (input vs. output) depends on the flags. In order to prevent conflicts on pins that may be both inputs and outputs, the AD1816 and AD1816A disable the output drivers for those pins while the flags are being read from the EEPROM, and keep them disabled if the EEPROM data is invalid.

PROGRAMMING EXTERNAL EEPROMS

Below are the details for programming an external EEPROM or an ADI-supplied PC Program may be used. The PnP EEPROM can be written only in the "Alternate Key State"; this prevents accidental EEPROM erasure when using standard PnP setup. The procedure for writing an EEPROM is:

1) Enter PnP configuration state and fully reset the part by writing 0x07 to PnP register 0x02. This step can be eliminated if the part has not been accessed since power-up, a previous full PnP reset or assertion of the ISA bus RESET signal.

2)Send the alternate initiation key to the PnP address port. EEPROM writes are disabled if the standard PnP key is used.

3)Enter isolation state and write a CSN to enter configuration state. Do not perform any isolation reads.

4)Poll PnP register 0x05 until it equals 0x01 and wait at least 336 microseconds (ensures that EEPROM is idle).

5) Write the second byte of your serial identifier to PnP register 0x20.

6)Read PnP register 0x04.

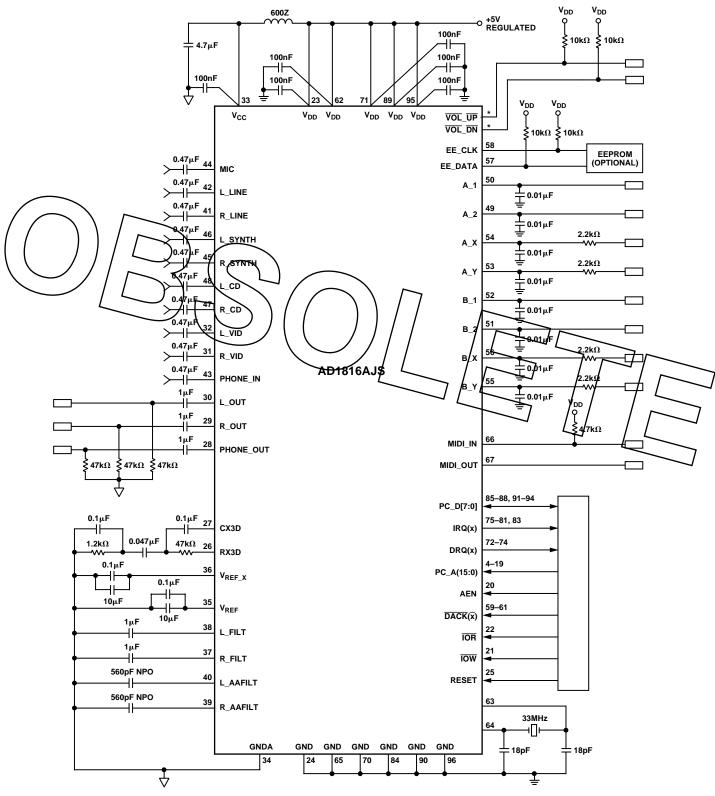
7) Wait for at least 464 microseconds, plus the EEPROM's write cycle time (up to 10 ms for a Xicor X24C02).

8) Repeat steps 4 through 7 for each byte in your PnP ROM, starting with the third byte of the serial identifier and ending with the fi-You must then continue to write filler bytes until 512 bytes, minus one more than the number of flag bytes, have nal checksum byt∉. write the flag byte(s) (described above) and the first byte of the serial identifier. been written. Finall

9) Fully riti g 0x07 to PnP segister 0x02. ese

D18 🖬 no according to the contents of the EEPROM. Τħ 6 act

NOTES


Programming will not work if more ban one part uses the same alternate initiation key in the system. Parts that use this alternate initiation key are the AD1816 and AD1816A If a 256-byte EEPROM is used, it is not necessary to wait 10 m aft writing bytes 55 to 511 because the EEPROM will ignore

them anyway. ROM read

You can skip over bytes that you don't care to write by just performing a ROM read in of a ROM write followed by a

REFERENCE DESIGNS AND DEVICE DRIVERS

Reference designs and device drivers for the AD1816A are available via the Analog Devices Home Page of the World Wide Web at http://www.analog.com. Reference designs may also be obtained by contacting your local Analog Devices Sales representative authorized distributor.

*LOCATION OF THIS PIN IS DETERMINED BY THE EEPROM

Figure 16. Recommended Application Circuit

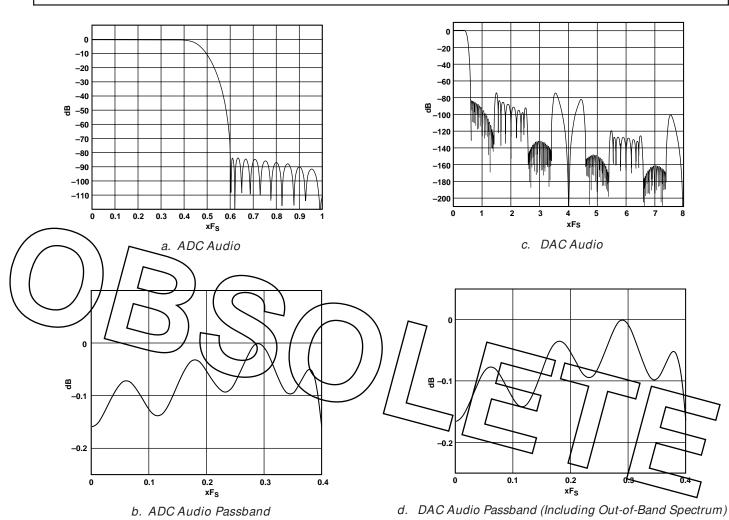
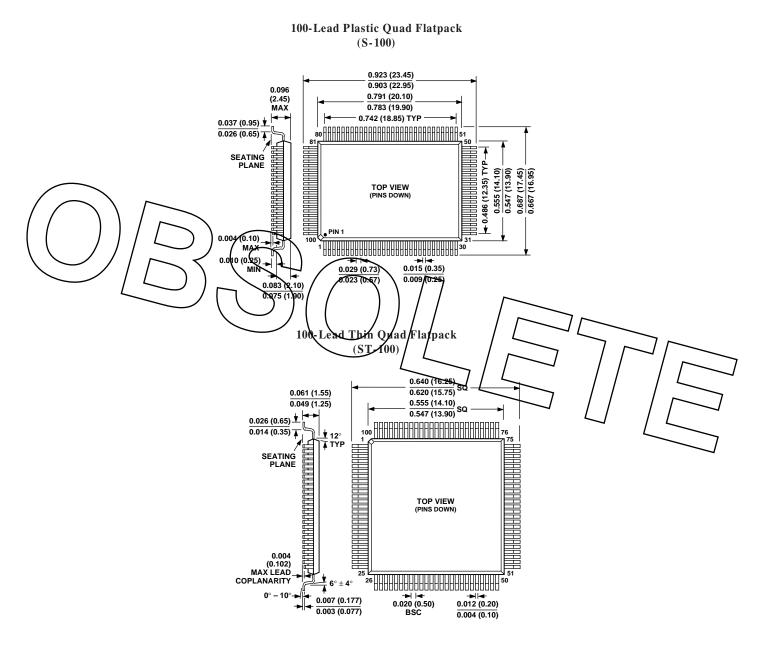



Figure 17. AD1816A Frequency Response Plots (Full-Scale Line-Level Input, 0 dB Gain). The Plots Do Not Reflect the Additional Benefits of the AD1816A Analog Filters. Out-of-Band Images Will Be Attenuated by an Additional 31.4 dB at 100 kHz.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

