

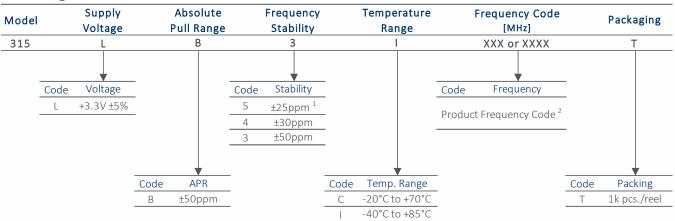
Model 315 HFF HCMOS VCXO

Features

- Ceramic Surface Mount Package
- Ultra-Low Phase Jitter Performance
- High Frequency Fundamental Crystal Design
- Frequency Range 100 170MHz *
- +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

Applications

- Small Cells
- Wireless Communication
- Broadband Access
- SONET/SDH/DWDM
- Base Stations
- Ethernet/GbE/SyncE
- Digital Video
- Test and Measurement


RoHS Compliant Connect
Part Dimensions: 5.0 × 3.2 × 1.2mm • 62.28mg

Standard Frequencies	
- 100.00MHz	- 144.00MHz
- 104.40MHz	- 153.60MHz
- 122.88MHz	- 155.52MHz
- 125.00MHz	- 156.25MHz
- 136.00MHz	- 166.00MHz
* Check factory for availabili	ty of frequencies not listed.

Description

CTS Model 315 is a low cost, small size, high performance VCXO. Employing the latest IC technology, coupled with a high frequency fundamental crystal, M315 has excellent stability and low jitter/phase noise performance.

Ordering Information

Notes:

1] Only available with "C" temperature range.

2] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC#008-0551-0 Rev. D

www.ctscorp.com

Page 1 of 7

Operating Conditions

SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT	
V _{CC}	-	-0.5	-	5.0	V	
V _C	-	-0.5	-	V _{CC}	V	
V _{CC}	±5%	3.14	3.3	3.47	V	
I _{CC}	Typical @ $C_L = 15 \text{ pF}$, $T_A = +25 ^{\circ}\text{C}$	-	20	30	mA	
CL	-	-	-	15	рF	
		-20	.25	+70	**	
١ _A	-	-40	+25	+85	°C	
T _{STG}	-	-40	-	+100	°C	
	V _{cc} V _c V _{cc} I _{cc} C _L T _A	V _{CC} - V _C - V _{CC} ±5% I _{CC} Typical @ C _L = 15 pF, T _A = +25°C C _L - T _A -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Frequency Stability

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT		
Frequency Range	cy Range f ₀ - 100 - 170							
Frequency Stability [Note 1]	$\Delta f/f_0$	±25ppm stability, -20°C to +70°C only		25, 30 or 50				
Absolute Pull Range [Note 2]	APR	-	50	-	-	±ppm		
ging $\Delta f/f_{25}$ First Year @ +25°C, nominal V _{CC} and V _C -3 -		-	3	ppm				

1.] Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and 1st year aging.

2.] Minimum guaranteed frequency shift from f $_{\text{O}}$ over variations in temperature, aging, power supply and load.

Output Parameters

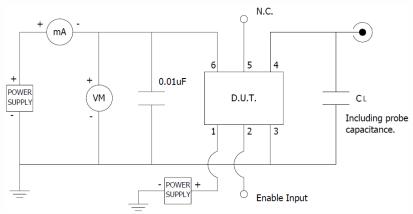
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
Output Type	-	-		HCMOS		-
Quitaut Valtaga Lovala	V _{OH}	Logic '1' Level, CMOS Load	$0.9V_{CC}$	-	-	V
Output Voltage Levels	V _{OL}	Logic 'O' Level, CMOS Load	-	-	$0.1 V_{CC}$	V
Output Duty Cycle			55	%		
Rise and Fall Time	T _r , T _f	@ 20%/80% Levels	-	1.5	3.0	ns
Start Up Time	Τ _s	Application of V_{CC}	-	-	5	ms
Enable Function						
Enable Input Voltage	V _{IH}	Pin 2 Logic '1', Output Enabled	$0.7V_{CC}$	-	-	V
Disable Input Voltage	V _{IL}	Pin 2 Logic '0', Output Standby	-	-	$0.3V_{CC}$	V
Standby Current	I _{STB}	Pin 2 Logic '0', Output Standby	-	-	10	μΑ
Enable Time	T _{PLZ}	Pin 2 Logic '1'	-	-	2	ms
Phase Jitter, RMS	tjrms	Bandwidth 12kHz - 20MHz	-	50	150	fs
Phase Noise	-	See Typical Plots	-	-	-	-

Enable Truth Table

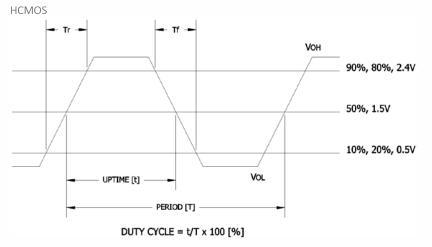
Pin 2	Pin 4
Logic '1'	Output
Open	Output
Logic 'O'	High Imp.

DOC#008-0551-0 Rev. D

www.ctscorp.com



Control Voltage

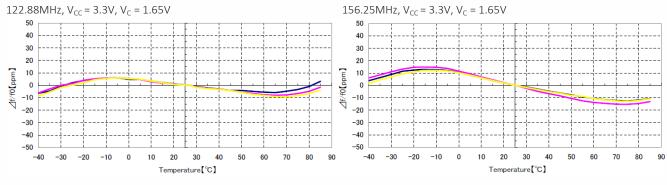

SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
V _C	-	0.00	1.65	3.30	V	
۵ <i>۲</i> /۲	$V_{C} = 0.0V$		-155 to -75			
Δt/t _o	V _C = 3.3V		ppm			
L	Best Straight Line Fit	- 5		10	%	
Kv	Pull Sensitivity; @ +1.65V, +25°C	-	65	-	ppm/V	
Z _{Vc}	-	100	-	-	kOhms	
-	@ -3dB	20	-	-	kHz	
-	-		Positive		-	
	V _c Δf/f _o L K _V Z _{Vc}	$\frac{V_{C}}{\Delta f/f_{O}} \frac{-}{V_{C} = 0.0V}$ $\frac{V_{C} = 3.3V}{V_{C} = 3.3V}$ $\frac{L}{K_{V}} \frac{\text{Pull Sensitivity; @ +1.65V, +25°C}}{Z_{VC}}$ $\frac{Z_{VC}}{-} \frac{-}{@ -3dB}$	$\begin{tabular}{ c c c c c } \hline V_{C} & - & 0.00 \\ \hline V_{C} & - & 0.00 \\ \hline V_{C} & = 0.0V \\ \hline V_{C} & = 3.3V \\ \hline L & Best Straight Line Fit & - \\ \hline K_{V} & Pull Sensitivity; @ +1.65V, +25°C & - \\ \hline Z_{VC} & - & 100 \\ \hline - & @ -3dB & 20 \\ \hline \end{tabular}$	$\frac{V_{C}}{V_{C}} = 0.0V + 0.00 + 0.0$	$\frac{V_{C}}{V_{C}} = 0.0V + 0.00 + 0.0$	

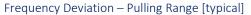
Test Circuit

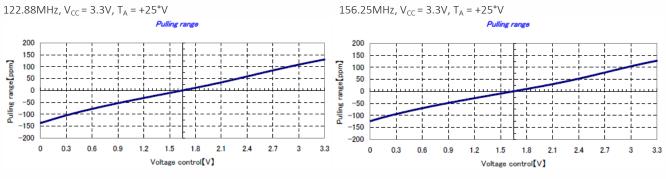
HCMOS

Output Waveform

DOC#008-0551-0 Rev.D

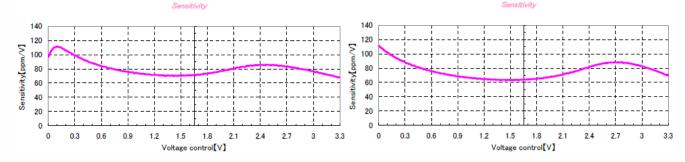

www.ctscorp.com


Page 3 of 7



Performance Data

Frequency Deviation - Over Temperature [typical]

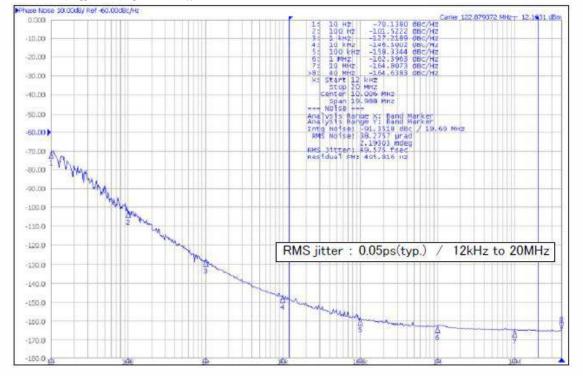


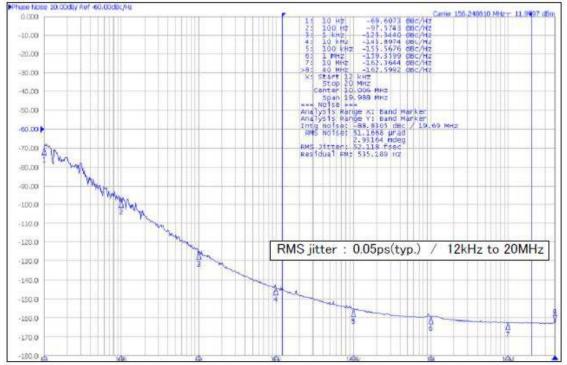
122.88MHz, V_{CC} = 3.3V, T_A = +25°V

156.25MHz, V_{CC} = 3.3V, T_A = +25°V

DOC#008-0551-0 Rev. D

www.ctscorp.com

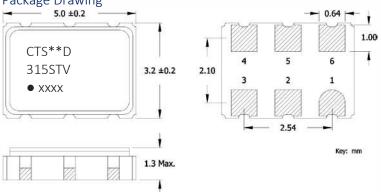

Page 4 of 7


Performance Data

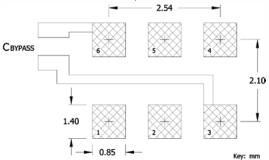
Phase Noise [typical]

122.88MHz, V_{CC} = 3.3V, V_{C} = 1.65V, T_{A} = +25°C

DOC#008-0551-0 Rev. D


www.ctscorp.com

Page 5 of 7



Mechanical Specifications

Recommended Pad Layout

Pin Assignments

ige
age
t
ge

Table I - Date Code

MONTH			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC		
	YEAR		JAN	FED	WAR	APR	WAT	JON	JUL	AUG	SEP	001	NUV	DEC		
2001	2005	2009	2013	2017	А	В	С	D	E	F	G	Н	J	К	L	Μ
2002	2006	2010	2014	2018	Ν	Р	Q	R	S	Т	U	V	W	Х	Y	Ζ
2003	2007	2011	2015	2019	а	b	С	d	е	f	g	h	j	k		m
2004	2008	2012	2016	2020	n	р	q	r	S	t	u	V	W	х	У	Z

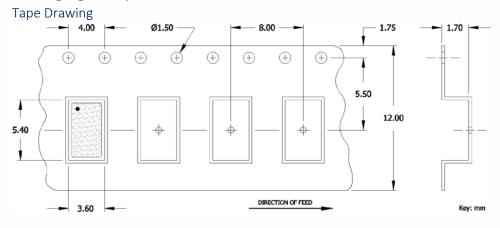
Marking Information

- 1. ** Manufacturing Site Code.
- 2. D Date Code. See Table I for codes.
- 3. ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 4. V Voltage Code. L = 3.3V
- 5. xxxx Frequency Code. 4-digits required for frequencies 100MHz and above.

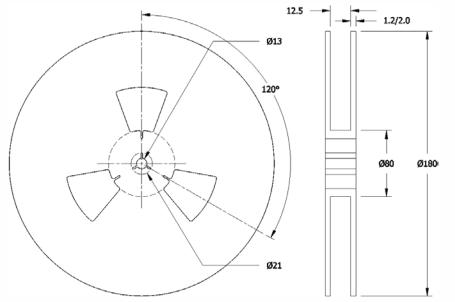
[See document 016-1454-0, Frequency Code Tables.]

Notes

- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.


DOC#008-0551-0 Rev. D

www.ctscorp.com


Page 6 of 7

Packaging - Tape and Reel

Reel Drawing

Notes

1. Device quantity is 1k pieces maximum per 180mm reel.

2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.