16 Vcc

15 MR

14 CP

13 CE

12 TC

11 9

10 4

9 8

F PACKAGE (TOP VIEW)

5

1 12

2

7 6

3 17

GND 8

0 🛚 з

6 **[**5

Π4

- 4.5-V to 5.5-V Operation
- Fully Static Operation
- Buffered Inputs
- Common Reset
- Positive-Edge Clocking
- Balanced Propagation Delay and Transition Times
- Direct LSTTL Input Logic Compatibility
 V_{IL} = 0.8 V Maximum; V_{IH} = 2 V Minimum
- CMOS Input Compatibility – I_I \leq 1 μ A at V_{OL}, V_{OH}
- Packaged in Ceramic (F) DIP Packages and Also Available in Chip Form (H)

descri	ption

The CD54HCT4017 is a high-speed silicon-gate CMOS 5-stage Johnson counter with ten decoded outputs. Each decoded output normally is low and sequentially goes high on the low-to-high transition of the clock (CP) input. Each output stays high for one clock period of the ten-clock-period cycle. The terminal count (TC) output transitions low to high after output ten (9) goes low, and can be used in conjunction with the clock enable (\overline{CE}) input to cascade several stages. \overline{CE} disables counting when in the high state. The master reset (MR) input, when taken high, sets all the decoded outputs, except 0, to low.

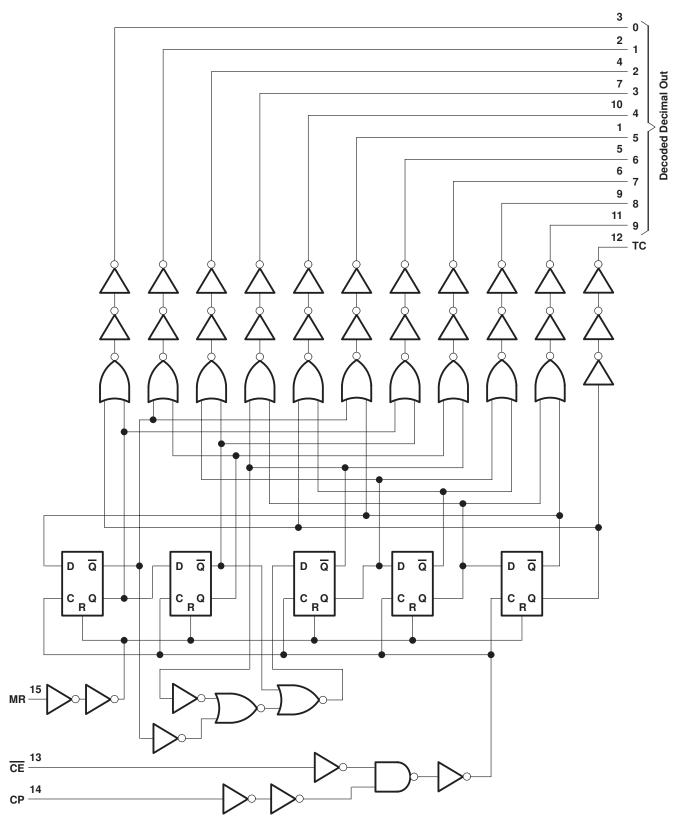
The CD54HCT4017 is characterized for operation over the full military temperature range of -55°C to 125°C.

FUNCTION TABLE

	INPUTS							
СР	CE	MR	OUTPUT STATE†					
L	Х	L	No change					
Х	Н	L	No change					
х	Х	Н	0 = H 1–9 = L					
\uparrow	L	L	Increments counter					
\downarrow	Х	L	No change					
Х	\uparrow	L	No change					
Н	\downarrow	L	Increments counter					
+ 16		Le sub-survey	LA TO I					

[†] If n < 5, TC = H; otherwise, TC = L.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1999, Texas Instruments Incorporated

SGDS012 - MAY 1999

logic diagram (positive logic)

SGDS012 - MAY 1999

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{CC}	0.5 V to 7 V
Input clamp current, I_{IK} (V _I < 0 V or V _I > V _{CC})	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ V or $V_O > V_{CC}$)	±20 mA
Continuous output current, each output pin, $I_O (V_O > 0 V \text{ or } V_O < V_{CC})$	±25 mA
V _{CC} or ground current, I _{CC}	
Storage temperature range, T _{stg}	-65°C to 150°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		4.5	5.5	V
VIH	High-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2		V
VIL	Low-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		0.8	V
VI	Input voltage		0	VCC	V
Vo	Output voltage		0	VCC	V
		$V_{CC} = 2 V$	0	1000	
tt	Input transition (rise and fall) time	V _{CC} = 4.5 V	0	500	ns
	V _{CC} = 6 V		0	400	
ТА	Operating free-air temperature		-55	125	°C

NOTE 1: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SGDS012 - MAY 1999

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

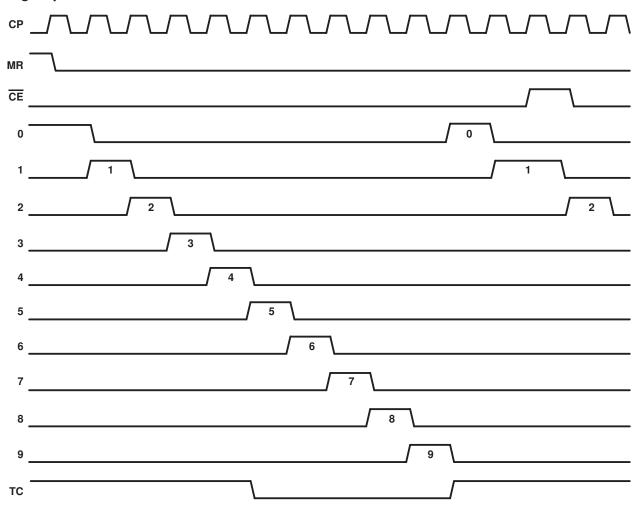
PARAMETER		TEST CONDITIONS		Vee	T _A = 25°C				МАХ	UNIT
F7		TEST C	TEST CONDITIONS V _{CC}		MIN TYP MA		MAX			UNIT
Vou	CMOS loads	$V_I = V_{IH} \text{ or } V_{IL},$	I _O = -0.02 mA	4.5 V	4.4			4.4		V
VOH	TTL loads	$V_I = V_{IH} \text{ or } V_{IL},$	I _O = -4 mA	4.5 V	3.98			3.7		v
Val	CMOS loads	$V_I = V_{IH} \text{ or } V_{IL},$	I _O = 0.02 mA	4.5 V			0.1		0.1	V
VOL	TTL loads	$V_I = V_{IH} \text{ or } V_{IL}$	$I_{O} = 4 \text{ mA}$	4.5 V			0.26		0.4	v
Ц		VI = ACC to 0		5.5 V			±100		±1000	nA
ICC		AI = ACC or 0		5.5 V			8		160	μA
∆lcc†		$V_{I} = V_{CC}$ to 2.1 V,	$I_{O} = 0$	4.5 to 5.5 V		100	360		490	μA
Ci							10		10	pF

[†] For dual-supply systems, theoretical worst case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

INPUT LOADING

INPUT	UNIT LOAD				
CP	0.15				
CE	0.25				
MR 0.3					

Unit load is ΔI_{CC} limit, e.g., 360 μ A MAX at T_A = 25°C.


timing requirements over recommended operating free-air temperature range (unless otherwise noted)

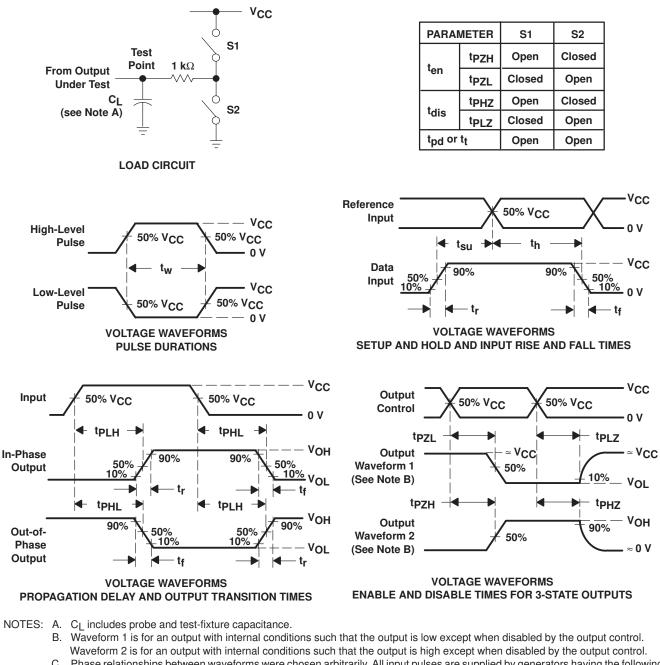
	PARAMETER				T _A = 25°C		MIN MAX	
					MAX		WIAA	UNIT
fclock	Maximum clock frequency		4.5 V		25		17	MHz
+	Pulse duration	СР	4.5 V		16		24	20
tw		MR	4.5 V		16		24	ns
t _{su}	Setup time, CE to CP		4.5 V	15		22		ns
t _h	Hold time, CE to CP		4.5 V	0		0		ns
t _{rem}	Removal time, MR		4.5 V	5		5		ns

SGDS012 - MAY 1999

timing requirements

SGDS012 - MAY 1999

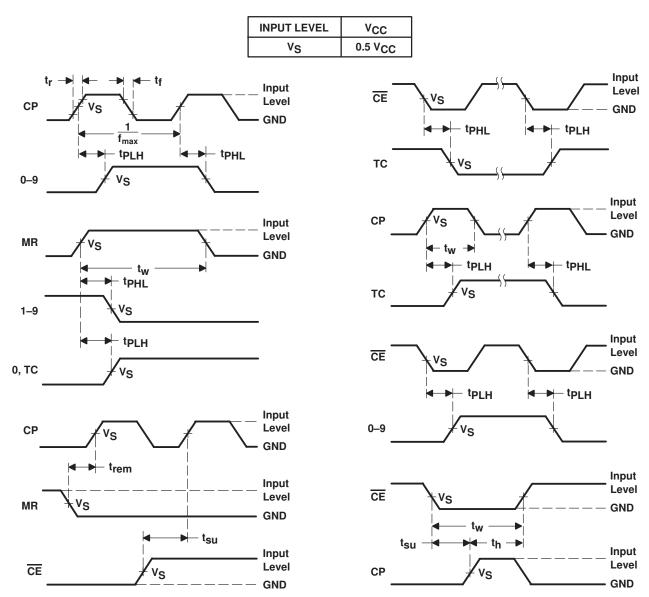
switching characteristics, C_L = 50 pF, T_A = 25°C (see Figures 1 and 2)


PARAMETER	FROM (INPUT)			T _A = 2	25°C	T _A = - TO 12		UNIT
	(INPOT)	(001401)	Vcc	MIN	MAX	MIN	MAX	
fmax			4.5 V	25		17		MHz
^t PLH	CP	Any output	4.5 V		46		69	ns
^t PHL	0F	TC	4.5 V		46		69	115
^t PLH	CE	Any output	4.5 V		50		75	20
^t PHL	CE	TC	4.5 V		50		75	ns
^t PLH	MR	Any output	4.5 V		46		69	20
^t PHL	IVIN	TC	4.5 V		46		69	ns
^t THL		Any output	4.5 V		15		22	ns
^t TLH		TC	4.5 V		15		22	115

operating characteristics

	PARAMETER		TYP	UNIT
Cpd	Power dissipation capacitance	No load	39	pF

PARAMETER MEASUREMENT INFORMATION



- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_Q = 50 Ω , t_f = 6 ns, t_f = 6 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tPZL and tPZH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

SGDS012 - MAY 1999

PARAMETER MEASUREMENT INFORMATION

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
CD54HCT4017F3A	OBSOLETE	CDIP	J	16	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

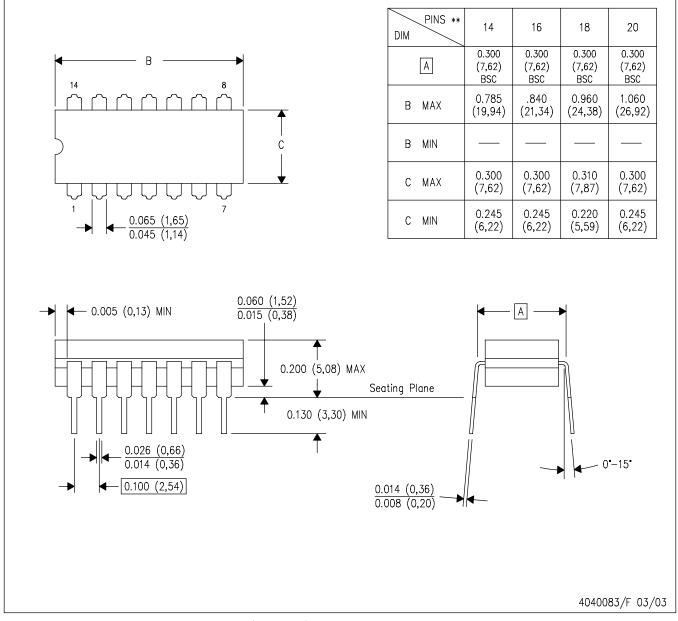
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated