SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

features

- **Analog Input Range** - TLC5510 . . . 2 V Full Scale - TLC5510A ... 4 V Full Scale
- 8-Bit Resolution
- Integral Linearity Error ±0.75 LSB Max (25°C) \pm 1 LSB Max (–20°C to 75°C)
- **Differential Linearity Error** ±0.5 LSB Max (25°C) ±0.75 LSB Max (-20°C to 75°C)
- **Maximum Conversion Rate** 20 Mega-Samples per Second (MSPS) Max

description

The TLC5510 and TLC5510A are CMOS, 8-bit, 20 MSPS analog-to-digital converters (ADCs) that utilize a semiflash architecture. The TLC5510 and TLC5510A operate with a single 5-V supply and typically consume only 130 mW of power. Included is an internal sample-and-hold circuit, parallel outputs with high-impedance mode, and internal reference resistors.

The semiflash architecture reduces power consumption and die size compared to flash converters. By implementing the conversion in a 2-step process, the number of comparators is significantly reduced. The latency of the data output valid is 2.5 clocks.

The TLC5510 uses the three internal reference resistors to create a standard, 2-V, full-scale

conversion range using VDDA. Only external jumpers are required to implement this option and eliminates the need for external reference resistors. The TLC5510A uses only the center internal resistor section with an externally applied 4-V reference such that a 4-V input signal can be used. Differential linearity is 0.5 LSB at 25°C and a maximum of 0.75 LSB over the full operating temperature range. Typical dynamic specifications include a differential gain of 1% and differential phase of 0.7 degrees.

The TLC5510 and TLC5510A are characterized for operation from -20°C to 75°C.

AVAILABLE OPTIONS

	Р	MAXIMUM FULL-SCALE			
T _A TSSOP (PW)		SOP (NS) (TAPE AND REEL ONLY)	INPUT VOLTAGE		
-20°C to 75°C	TLC5510IPW	TLC5510INSLE	2 V		
-20 0 10 75 0	_	TLC5510AINSLE	4 V		

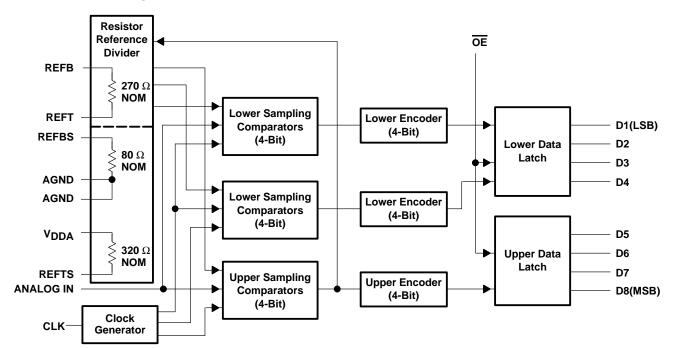
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

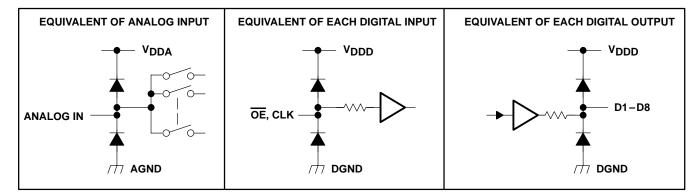
1

- 5-V Single-Supply Operation
- Low Power Consumption TLC5510 . . . 127.5 mW Typ TLC5510A . . . 150 mW Typ (includes reference resistor dissipation)
- TLC5510 is Interchangeable With Sony CXD1175

applications


- **Digital TV**
- Medical Imaging
- Video Conferencing
- **High-Speed Data Conversion**
- **QAM** Demodulators

PW OR NS PACKAGE [†] (TOP VIEW)							
OE		24	DGND				
DGND [2	23] REFB				
D1(LSB) [3	22] REFBS				
D2 [4	21	AGND				
D3 [5	20	AGND				
D4 [6	19] ANALOG IN				
D5 [7	18] V _{DDA}				
D6 [8	17] REFT				
D7 [9	16] REFTS				
D8(MSB) [10	15] V _{DDA}				
V _{DDD} [11	14] V _{DDA}				
CLK [12	13] V _{DDD} V [


[†] Available in tape and reel only and ordered as the shown in the Available Options table below.

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

functional block diagram

schematics of inputs and outputs

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

Terminal Functions

TERM	INAL	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
AGND	20, 21		Analog ground
ANALOG IN	19	I	Analog input
CLK	12	I	Clock input
DGND	2, 24		Digital ground
D1-D8	3-10	0	Digital data out. D1 = LSB, D8 = MSB
OE	1	Ι	Output enable. When \overline{OE} = low, data is enabled. When \overline{OE} = high, D1–D8 is in high-impedance state.
V _{DDA}	14, 15, 18		Analog supply voltage
VDDD	11, 13		Digital supply voltage
REFB	23	I	Reference voltage in bottom
REFBS	22		Reference voltage in bottom. When using the TLC5510 internal voltage divider to generate a nominal 2-V reference, REFBS is shorted to REFB (see Figure 3). When using the TLC5510A, REFBS is connected to ground.
REFT	17	Ι	Reference voltage in top
REFTS	16		Reference voltage in top. When using the TLC5510 internal voltage divider to generate a nominal 2-V reference, REFTS is shorted to REFT (see Figure 3). When using the TLC5510A, REFTS is connected to $^{ m V}$ DDA.

absolute maximum ratings[†]

Supply voltage, V _{DDA} , V _{DDD}	7 V
Reference voltage input range, V _{REFT} , V _{REFB}	. AGND to V _{DDA}
Analog input voltage range, V _{I(ANLG)}	. AGND to V _{DDA}
Digital input voltage range, V _{I(DGTL)}	. DGND to V _{DDD}
Digital output voltage range, V _{O(DGTL)}	. DGND to V _{DDD}
Operating free-air temperature range, T _A	−20°C to 75°C
Storage temperature range, T _{stg}	. −55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		MIN	NOM	MAX	UNIT
	V _{DDA} -AGND	4.75	5	5.25	V
Supply voltage	V _{DDD} -AGND	4.75	5	5.25	v
	AGND-DGND	-100	0	100	mV
Reference input voltage (top), V _{ref(T)} ‡	TLC5510A	V _{REFB} +2		4	V
Reference input voltage (bottom), $V_{ref(B)}$ ‡	TLC5510A	0		V _{REFT} -4	V
Analog input voltage range, VI(ANLG)		VREFB		V _{REFT}	V
High-level input voltage, VIH		4			V
Low-level input voltage, VIL				1	V
Pulse duration, clock high, $t_{W(H)}$ (see Figure 1)		25			ns
Pulse duration, clock low, $t_{W(L)}$ (see Figure 1)		25			ns

[‡] The reference voltage levels for the TLC5510 are derived through an internal resistor divider between V_{DDA} and ground and therefore are not derived from a separate external voltage source (see the electrical characteristics and text). For the 4 V input range of the TLC5510A, the reference voltage is externally applied across the center divider resistor.

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

electrical characteristics at V_{DD} = 5 V, V_{REFT} = 2.5 V, V_{REFB} = 0.5 V, $f_{(CLK)}$ = 20 MHz, T_A = 25°C (unless otherwise noted)

digital I/O

	PARAMETER	TEST CONDITIONS [†]			MIN	TYP	MAX	UNIT
Чн	High-level input current	$V_{DD} = MAX,$	$V_{IH} = V_{DD}$				5	
۱ _{IL}	Low-level input current	$V_{DD} = MAX,$	$V_{IL} = 0$				5	μA
IОН	High-level output current	$\overline{OE} = GND,$	$V_{DD} = MIN,$	$V_{OH} = V_{DD} - 0.5 V$	-1.5			mA
IOL	Low-level output current	$\overline{OE} = GND,$	$V_{DD} = MIN,$	$V_{OL} = 0.4 V$	2.5			IIIA
IOZH	High-level high-impedance-state output leakage current	$\overline{OE} = V_{DD},$	V _{DD} = MAX	$V_{OH} = V_{DD}$			16	۵
I _{OZL}	Low-level high-impedance-state output leakage current	$\overline{OE} = V_{DD},$	V _{DD} = MIN	$V_{OL} = 0$			16	μA

[†]Conditions marked MIN or MAX are as stated in recommended operating conditions.

power

	PARAMETER	TES	MIN	TYP	MAX	UNIT	
IDD	Supply current	f _(CLK) = 20 MHz, National ramp wave input, reference		18	27	mA	
	Poforonoo voltago gurrant	TLC5510	$V_{ref} = REFT - REFB = 2 V$	5.2	7.5	10.5	mA
Iref	Reference voltage current	TLC5510A	$V_{ref} = REFT - REFB = 4 V$	10.4	15	21	mA

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

static performance

	PARAMETER		TEST CO	MIN	TYP	MAX	UNIT	
	Self-bias (1), at REFB	at REFB		Short REFT to REFTS	0.57	0.61	0.65	
	Self-bias (2), REFT – REFB		Short REFB to REFBS,	Short REFT to REFTS	1.9	2.02	2.15	V
	Self-bias (3), at REFT		Short REFB to AGND,	Short REFT to REFTS	2.18	2.29	2.4	
R _{ref}	Reference voltage resistor		Between REFT and REF	В	190	270	350	Ω
Ci	Analog input capacitance		VI(ANLG) = 1.5 V + 0.07	V _{rms}		16		pF
		TLC5510	f _(CLK) = 20 MHz,	T _A = 25°C		±0.4	±0.75	
	Integral nonlinearity (INL)	1105510	$V_{I} = 0.5$ V to 2.5 V	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±1	
			TLC5510A $\begin{cases} f(CLK) = 20 \text{ MHz}, \\ V_I = 0 \text{ to } 4 \text{ V} \end{cases}$	$T_A = 25^{\circ}C$		±0.4	±0.75	
		TLC55TUA		$T_A = -20^{\circ}C$ to $75^{\circ}C$			±1	LSB
		TLC5510	f(CLK) = 20 MHz,	T _A = 25°C		±0.3	±0.5	LOD
	Differential poplingerity (DNIL)	1205510	f(CLK) = 20 MHz, VI = 0.5 V to 2.5 V	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±0.75	
	Differential nonlinearity (DNL)	TLC5510A	f _(CLK) = 20 MHz,	$T_A = 25^{\circ}C$		±0.3	±0.5	
		TLC55TUA	$\dot{V}_{I} = 0$ to 4 V	$T_A = -20^{\circ}C$ to $75^{\circ}C$			±0.75	
F =0	7010 00010 01101	TLC5510	V _{ref} = REFT – REFB = 2	2 V	-18	-43	-68	mV
Ezs	Zero-scale error	TLC5510A	V_{ref} = REFT – REFB = 4	V	-36	-86	-136	mV
Ero	Full-scale error	TLC5510	$V_{ref} = REFT - REFB = 2$	2 V	-20	0	20	mV
EFS		TLC5510A	V _{ref} = REFT – REFB = 4	V	-40	0	40	mV

[†] Conditions marked MIN or MAX are as stated in recommended operating conditions.

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

operating characteristics at $V_{DD} = 5 V$, $V_{REFT} = 2.5 V$, $V_{REFB} = 0.5 V$, $f_{(CLK)} = 20 MHz$, $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER		TEST	MIN	TYP	MAX	UNIT	
£	Maximum conversion rate		fi = 1-kHz ramp	V _{I(ANLG)} = 0.5 V – 2.5 V			20	MSPS
f _{conv}	Maximum conversion rate	TLC5510A	II = 1-кнz татпр	$V_{I(ANLG)} = 0 V - 4 V$			20	MSPS
BW	Analog input bandwidth		At – 1 dB			14		MHz
^t d(D)	Digital output delay time		$C_L \le 10 \text{ pF}$ (see Note	1 and Figure 1)		18	30	ns
	Differential gain		NTSC 40 Institute of F	Radio Engineers (IRE)		1%		
	Differential phase		modulation wave,	f _{conv} = 14.3 MSPS		0.7		degrees
t _A J	Aperture jitter time					30		ps
^t d(s)	Sampling delay time					4		ns
t _{en}	en Enable time, $\overline{OE}\downarrow$ to valid data		C _L = 10 pF			5		ns
^t dis	Disable time, \overline{OE} to high in	npedance	C _L = 10 pF			7		ns
				T _A = 25°C		45		
			Input tone = 1 MHz	Full range		43		
			Input topo – 2 MHz	$T_A = 25^{\circ}C$		45		
	Spurious free dynamic range		Input tone = 3 MHz	Full range	46		ЧD	
	Spundus nee uynamic rangi	e (SPDR)	Input tone = 6 MHz	$T_A = 25^{\circ}C$	43			dB
				Full range		42		
			Input tone = 10 MHz	$T_A = 25^{\circ}C$		39		
				Full range		39		
SNR	Signal to poigo ratio		T _A = 25°C			46		dB
SINK	Signal-to-noise ratio		Full range			44		uD

NOTE 1: CL includes probe and jig capacitance.

Figure 1. I/O Timing Diagram

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

PRINCIPLES OF OPERATION

functional description

The TLC5510 and TLC5510A are semiflash ADCs featuring two lower comparator blocks of four bits each.

As shown in Figure 2, input voltage $V_1(1)$ is sampled with the falling edge of CLK1 to the upper comparators block and the lower comparators block(A), S(1). The upper comparators block finalizes the upper data UD(1) with the rising edge of CLK2, and simultaneously, the lower reference voltage generates the voltage RV(1) corresponding to the upper data. The lower comparators block (A) finalizes the lower data LD(1) with the rising edge of CLK3. UD(1) and LD(1) are combined and output as OUT(1) with the rising edge of CLK4. As shown in Figure 2, the output data is delayed 2.5 clocks from the analog input voltage sampling point.

Input voltage $V_1(2)$ is sampled with the falling edge of CLK2. UD(2) is finalized with the rising edge of CLK3, and LD(2) is finalized with the rising edge of CLK4 at the lower comparators block(B). OUT(2) data appears with the rising edge of CLK5.

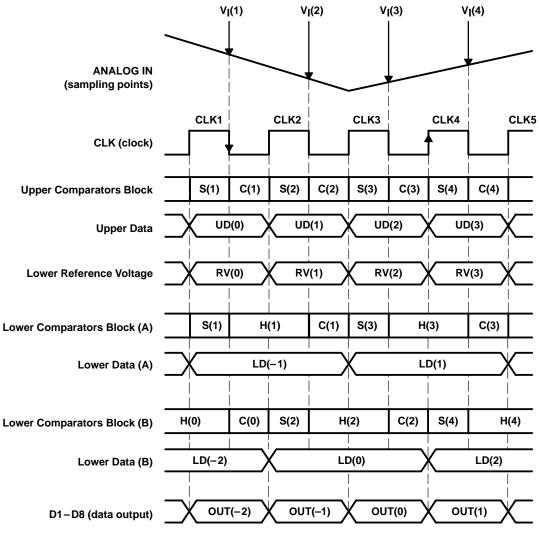
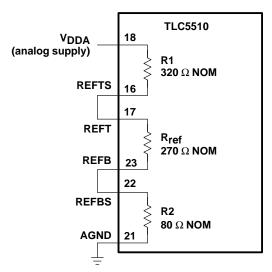


Figure 2. Internal Functional Timing Diagram

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003


PRINCIPLES OF OPERATION

internal referencing

TLC5510

The three internal resistors shown with V_{DDA} can generate a 2-V reference voltage. These resistors are brought out on V_{DDA}, REFTS, REFT, REFB, REFBS, and AGND.

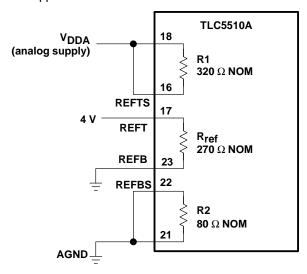

To use the internally generated reference voltage, terminal connections should be made as shown in Figure 3. This connection provides the standard video 2-V reference for the nominal digital output.

Figure 3. External Connections for a 2-V Analog Input Span Using the Internal-Reference Resistor Divider

TLC5510A

For an analog input span of 4 V, 4 V is supplied to REFT, and REFB is grounded and terminal connections should be made as shown in Figure 4. This connection provides the 4-V reference for the nominal zero to full-scale digital output with a 4 V_{DD} analog input at ANALOG IN.

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

PRINCIPLES OF OPERATION

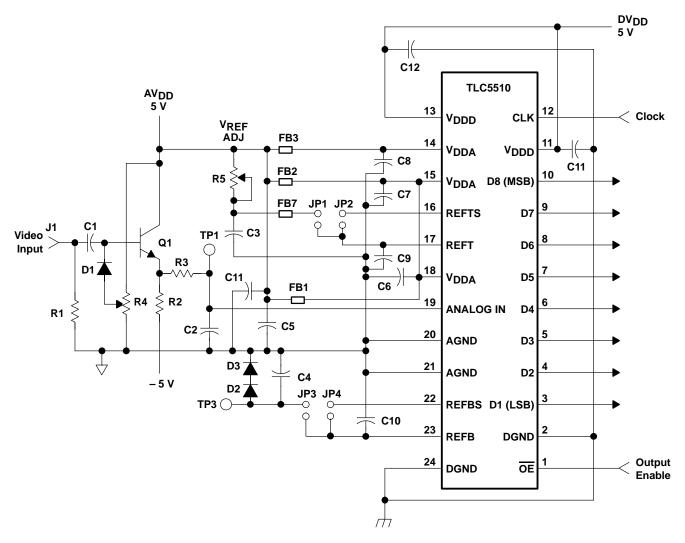
functional operation

The output code change with input voltage is shown in Table 1.

INPUT SIGNAL	STEP			DIG	TAL OU	TPUT C	ODE		
VOLTAGE	SIEF	MSB							LSB
V _{ref(B)}	255	0	0	0	0	0	0	0	0
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	128	0	1	1	1	1	1	1	1
•	127	1	0	0	0	0	0	0	0
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
Vref(T)	0	1	1	1	1	1	1	1	1

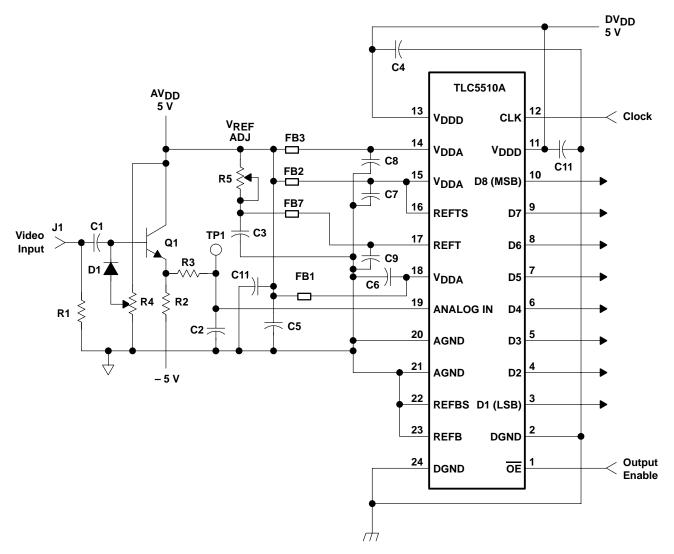
Table 1. Functional Operation

APPLICATION INFORMATION


The following notes are design recommendations that should be used with the device.

- External analog and digital circuitry should be physically separated and shielded as much as possible to reduce system noise.
- RF breadboarding or printed-circuit-board (PCB) techniques should be used throughout the evaluation and production process. Breadboards should be copper clad for bench evaluation.
- Since AGND and DGND are connected internally, the ground lead in must be kept as noise free as possible. A good method to use is twisted-pair cables for the supply lines to minimize noise pickup. An analog and digital ground plane should be used on PCB layouts when additional logic devices are used. The AGND and DGND terminals of the device should be tied to the analog ground plane.
- V_{DDA} to AGND and V_{DDD} to DGND should be decoupled with 1-μF and 0.01-μF capacitors, respectively, and placed as close as possible to the affected device terminals. A ceramic-chip capacitor is recommended for the 0.01-μF capacitor. Care should be exercised to ensure a solid noise-free ground connection for the analog and digital ground terminals.
- V_{DDA}, AGND, and ANALOG IN should be shielded from the higher frequency terminals, CLK and D0–D7. When possible, AGND traces should be placed on both sides of the ANALOG IN traces on the PCB for shielding.
- In testing or application of the device, the resistance of the driving source connected to the analog input should be 10 Ω or less within the analog frequency range of interest.

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003


NOTE A: Shorting JP1 and JP3 allows adjustment of the reference voltage by R5 using temperature-compensating diodes D2 and D3 which compensate for D1 and Q1 variations. By shorting JP2 and JP4, the internal divider generates a nominal 2-V reference.

LOCATION	DESCRIPTION
C1, C3-C4, C6-C12	0.1-μF capacitor
C2	10-pF capacitor
C5	47-μF capacitor
FB1, FB2, FB3, FB7	Ferrite bead
Q1	2N3414 or equivalent
R1, R3	75- Ω resistor
R2	500- Ω resistor
R4	10-k Ω resistor, clamp voltage adjust
R5	300- Ω resistor, reference-voltage fine adjust

Figure 5. TLC5510 Evaluation and Test Schematic

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

APPLICATION INFORMATION

NOTE A: R5 allows adjustment of the reference voltage to 4 V. R4 adjusts for the desired Q1 quiescent operating point.

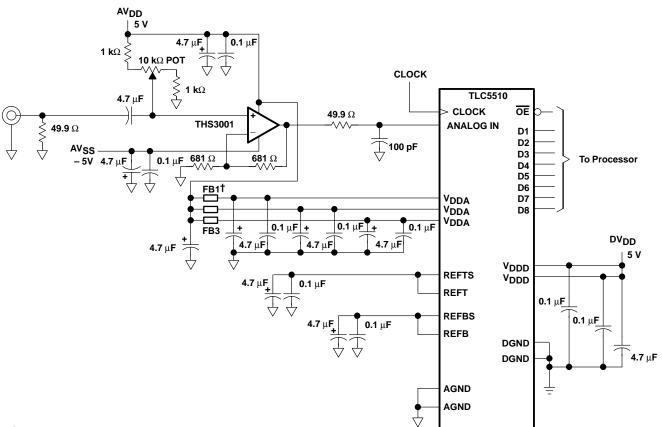

LOCATION	DESCRIPTION
C1, C3-C4, C6-C11	0.1-μF capacitor
C2	10-pF capacitor
C5	47-μF capacitor
FB1, FB2, FB3, FB7	Ferrite bead
Q1	2N3414 or equivalent
R1, R3	75- Ω resistor
R2	500- Ω resistor
R4	10-k Ω resistor, clamp voltage adjust
R5	300- Ω resistor, reference-voltage fine adjust

Figure 6. TLC5510A Evaluation and Test Schematic

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

APPLICATION INFORMATION

[†]FB – Ferrite Bead

Figure 7. TLC5510 Application Schematic

SLAS095L - SEPTEMBER 1994 - REVISED JUNE 2003

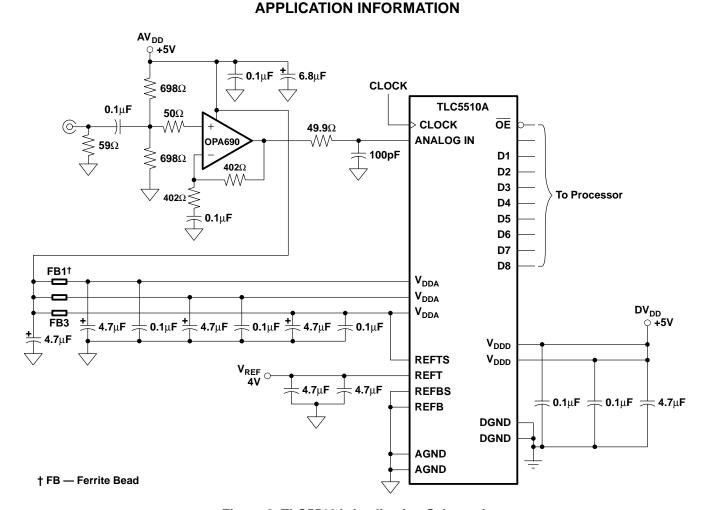


Figure 8. TLC5510A Application Schematic

26-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC5510AINS	ACTIVE	SO	NS	24	34	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510AI	Samples
TLC5510AINSLE	OBSOLETE	SO	NS	24		TBD	Call TI	Call TI	-20 to 75		
TLC5510AINSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510AI	Samples
TLC5510INS	ACTIVE	SO	NS	24	34	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510I	Samples
TLC5510INSLE	OBSOLETE	SO	NS	24		TBD	Call TI	Call TI	-20 to 75		
TLC5510INSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-20 to 75	TLC5510I	Samples
TLC5510IPW	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-20 to 75	Y5510	Samples
TLC5510IPWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-20 to 75	Y5510	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

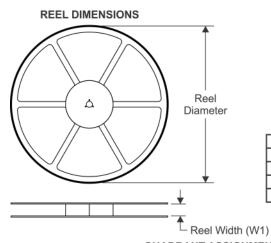
www.ti.com

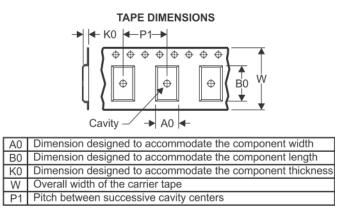
26-Oct-2016

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

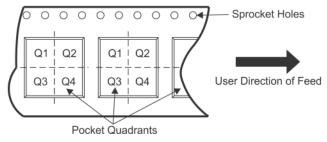
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

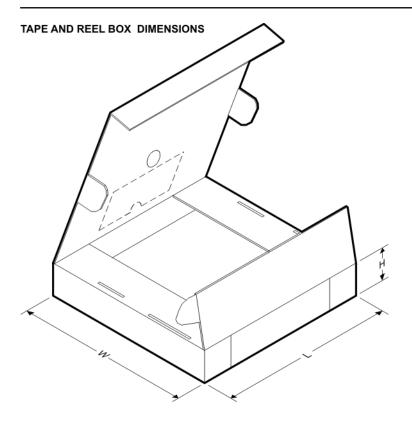

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*Al	*All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TLC5510AINSR	SO	NS	24	2000	330.0	24.4	8.5	15.3	2.6	12.0	24.0	Q1
	TLC5510INSR	SO	NS	24	2000	330.0	24.4	8.5	15.3	2.6	12.0	24.0	Q1
	TLC5510IPWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

13-May-2015

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC5510AINSR	SO	NS	24	2000	367.0	367.0	45.0
TLC5510INSR	SO	NS	24	2000	367.0	367.0	45.0
TLC5510IPWR	TSSOP	PW	24	2000	367.0	367.0	38.0

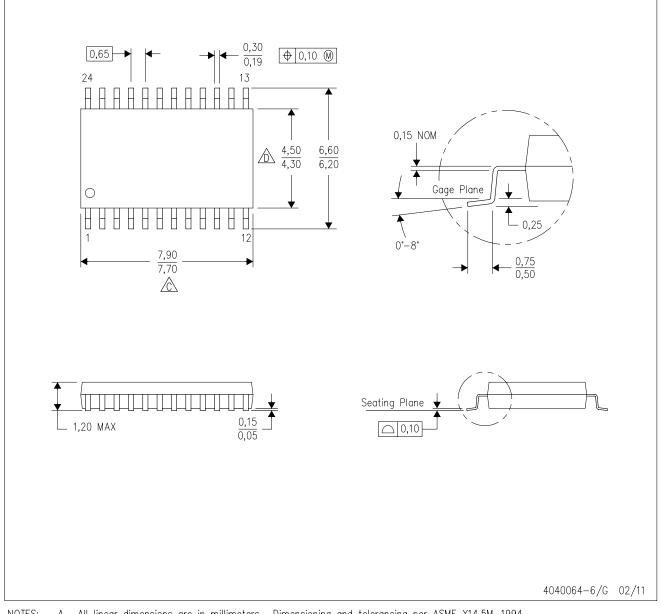
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)


14-PINS SHOWN

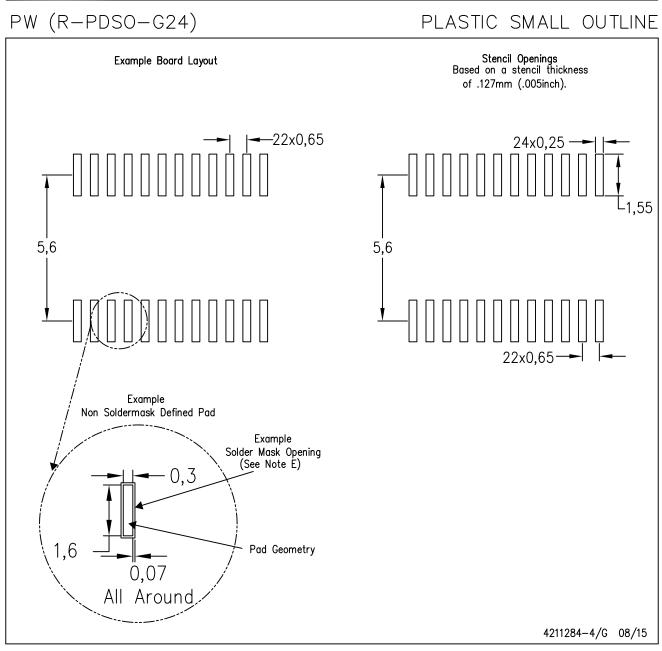
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: Α. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
 C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated