

DockPort Controller

Check for Samples: HD3SS2521

FEATURES

- Ideal for DockPort Applications
 - Bi-Directional 2:1 Switch for USB 2.0 (HS/FS/LS) and HPD Signals
 - Bi-Directional 2:1 Switch for SuperSpeed USB and DisplayPort Signals
 - Integrated DockPort Controller Manages DockPort Detection, Signal Switching and Power Switching
- Supports Host-and Dock-side Applications
- VCC Operating Range 3.3V ± 10%
- SuperSpeed USB I/O Supports Common Mode Voltage from 0V to 2.2V
- USB 2.0 I/O Supports Signal Up to 3.6V
- Wide –3dB Differential BW on High-bandwidth Path of over 6 GHz
- Excellent High-bandwidth Path Dynamic Characteristics on (at 2.5GHz)
 - Crosstalk = -39dB
 - Isolation = –22dB
 - Insertion Loss = -1.2dB
 - Return Loss = 12 dB
 - Max Bit-Bit Skew = 8 ps
- 5mm x11mm, 56-Pin WQFN Package (RHU)

ESD

HBM: 2000VCDM: 500V

APPLICATIONS

- Desktop PCs
- Notebook PCs
- Tablets
- Docking Station

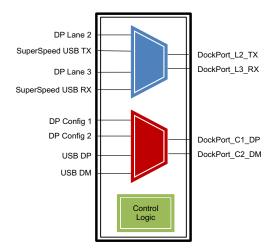


Figure 1. DockPort Functional Diagram

DESCRIPTION

The HD3SS2521 is an integrated DockPort switch solution. It provides independent 2:1 passive switching for the SuperSpeed USB and Display Port signals as well as for the USB 2.0 (HS/FS/LS) and I2C necessary to support DockPort applications. In addition, a firmware upgradable integrated DockPort controller is provided to manage host and dock side DockPort detection, signal switch and power configuration.

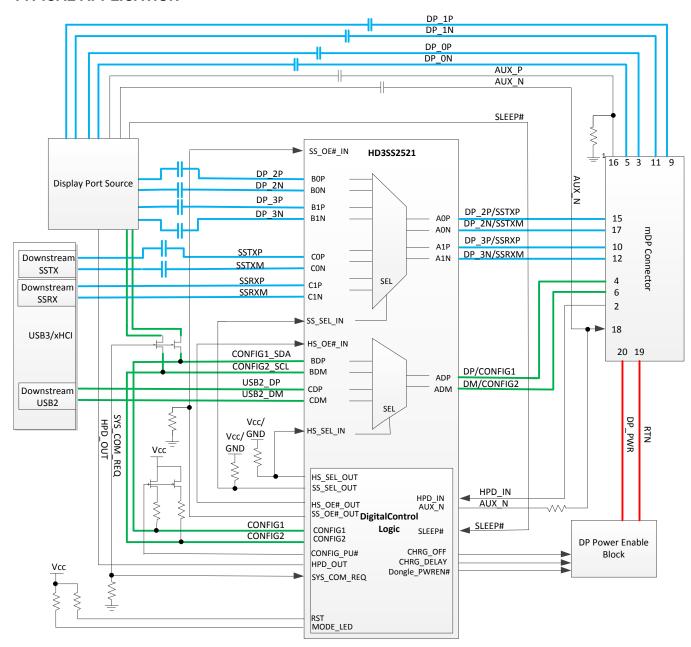
The HD3SS2521 is offered in 56-pin WQFN package and is specified to operate from a single supply voltage of 3.3V over the temperature range of 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

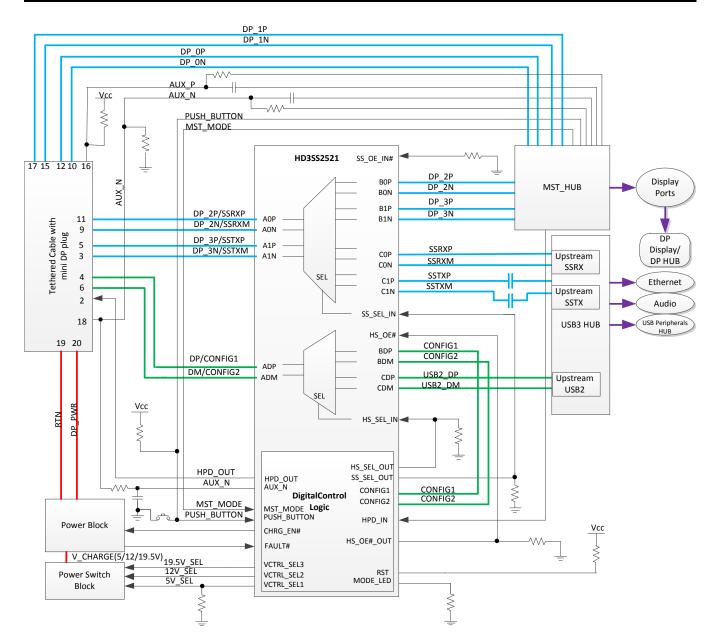
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION


PART NUMBER	PART MARKING	PACKAGE		
HD3SS2521RHUR	HD3S2521	56-Pin WQFN (Reel Large)		
HD3SS2521RHUT	HD3S2521	56-Pin WQFN (Reel Small)		

Submit Documentation Feedback

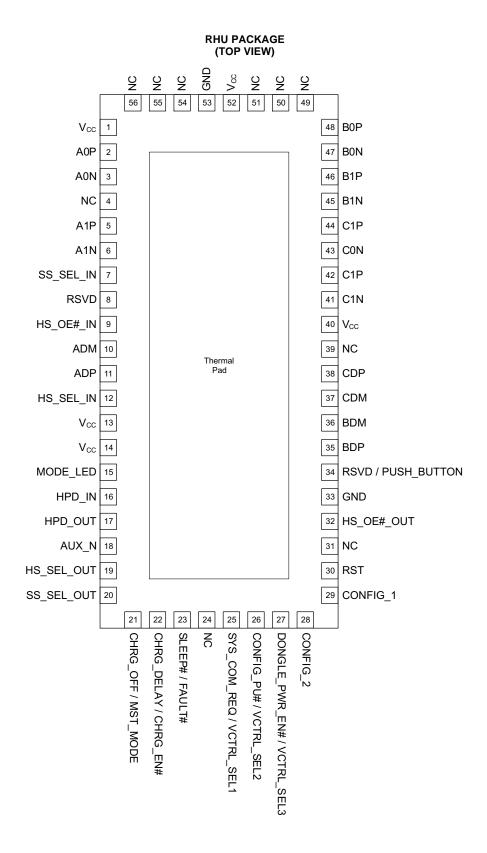
Copyright © 2013, Texas Instruments Incorporated



TYPICAL APPLICATION

NOTE: Refer to the implementation guide for details on design considerations and configuration options

Figure 2. DockPort Host Implementation



NOTE: Refer to the implementation guide for details on design considerations and configuration options

Figure 3. DockPort Hub Implementation

PRODUCT PREVIEW

PIN FUNCTIONS

PIN FUNCTIONS							
PIN	I/O	PIN NAME	DockPort HOST (SIGNAL MUX)	DockPort DEVICE (SIGNAL DE-MUX)	SIGNAL SPEED (MAX)		
2	I/O	A0P	DockPort Lane 2, Positive Signal (DockPort cable between DockPort host a	OockPort Lane 2, Positive Signal DockPort cable between DockPort host and DockPort device)			
3	I/O	AON	DockPort Lane 2, Negative Signal (DockPort cable between DockPort host a	nd DockPort device)	5.4Gbps)		
5	I/O	A1P	DockPort Lane 3, Positive Signal (DockPo DockPort device)	rt cable between DockPort host and			
6	I/O	A1N	DockPort Lane 3, Negative Signal (DockPort DockPort device)	ort cable between DockPort host and			
48	I/O	B0P	DisplayPort Lane 2, Positive Signal		Fast Lane		
47	I/O	B0N	DisplayPort Lane 2, Negative Signal		(Up to		
46	I/O	B1P	DisplayPort Lane 3, Positive Signal		5.4Gbps)		
45	I/O	B1N	DisplayPort Lane 3, Negative Signal				
44	I/O	COP	SuperSpeed USB TX, Positive Signal	SuperSpeed USB RX, Positive Signal	Fast Lane (Up to		
43	I/O	CON	SuperSpeed USB TX, Negative Signal	SuperSpeed USB RX, Negative Signal	5.4Gbps)		
42	I/O	C1P	SuperSpeed USB RX, Positive Signal	SuperSpeed USB TX, Positive Signal			
41	I/O	C1N	SuperSpeed USB RX, Negative Signal	SuperSpeed USB TX, Negative Signal			
11	I/O	ADP	DockPort Config1 (DockPort cable betwee	DockPort Config1 (DockPort cable between DockPort host and DockPort device)			
10	I/O	ADM	DockPort Config2 (DockPort cable betwee	DockPort Config2 (DockPort cable between DockPort host and DockPort device)			
35	I/O	BDP	CONFIG 1				
36	I/O	BDM	CONFIG 2				
37	I/O	CDP	High-speed USB D+				
38	I/O	CDM	High-speed USB D-				
7	1	SS_SEL_IN	DisplayPort / SuperSpeed USB Mux Select	t (Connect to SS_SEL_OUT - Pin 20)			
12	1	HS_SEL_IN	DisplayPort / HighSpeed USB Mux Select	(Connect to HS_SEL_OUT - Pin 19)			
8	-	RSVD (SS_OE#_IN)	N/C For future compatibility (Connect to RSVD [SS_OE#_OUT] signal - Pin 34)	N/C Requires external 10 kΩ Pull-down.			
9	1	HS_OE#_IN	DisplayPort / HighSpeed USB Mux Enable	(Connect to HS_OE#_OUT - Pin 32)			
15	I/O	MODE_LED	This signal is sampled at power on or reset to determine the mode of operation: Pulled High for DockPort host operation. (Optionally through LED for debug purposes)	This signal is sampled at power on or reset to determine the mode of operation: Pulled Low for DockPort hub (dock/dongle) operation. (Optionally through LED for debug purposes)			
16	I	HPD_IN	Hot Plug Detect from DockPort device	Hot Plug Detect from MST Hub/DP Device			
17	0	HPD_OUT	Hot Plug Detect to System Graphics	Hot Plug Detect to DockPort host.			
18	I/O	AUX_N	AUX Negative Pull-Up to DockPort device (Output) This signal indicates a connection event to a DockPort device.	AUX Negative from DockPort host (Input) This signal is used to detect a connection event from a DockPort host.			

Submit Documentation Feedback

PIN FUNCTIONS (continued)

	The Fortonore (continued)						
PIN	I/O	PIN NAME	DockPort HOST (SIGNAL MUX)	DockPort DEVICE (SIGNAL DE-MUX)	SIGNAL SPEED (MAX)		
19	0	HS_SEL_OUT	This signal in conjunction with SS_SEL_O determine the voltage level supplied to a D	DisplayPort / High-speed USB Mux Select (Connect to HS_SEL_IN - Pin 12) This signal in conjunction with SS_SEL_OUT is sampled at power-on or reset to determine the voltage level supplied to a DockPort host and must be strapped to correct logic level for the corresponding voltage level: 5 V, 12 V or 19 V.			
			Refer to the Power Delivery Voltage Selec	ction table for strapping options.			
			After power-on/reset, this signal is driven to operation between DisplayPort and High-s				
			0 = DisplayPort				
			1 = High-speed USB				
20	0	SS_SEL_OUT	DisplayPort / SuperSpeed USB Mux Select This signal in conjunction with HS_SEL_O determine the voltage level to be supplied strapped to correct logic level for the correct 19 V.	OUT is sampled at power-on or reset to to a DockPort host and must be			
			Refer to the Power Delivery Voltage Selec	ction table for strapping options.			
			After power-on/reset, this signal is driven to operation between DisplayPort and Superstand				
			0 = DisplayPort				
			1 = SuperSpeed USB				
28	I/O	CONFIG_2	DisplayPort CONFIG2/CEC				
29	I/O	CONFIG_1	DisplayPort CONFIG1/CAD				
21	0	CHRG_OFF	This signal controls the power delivery circuit.	_			
		MST_MODE	_	MST Mode Input from MST HUB which indicates 2/4 DisplayPort lane switch. $0 = 2$ -lane (external 10 k Ω Pull-down) $1 = 4$ -lane (external 10 k Ω Pull-up)			
22	0	CHRG_DELAY	This signal controls the power delivery circuit.	_			
		CHRG_EN#	_	This signal is the power delivery enable for a DockPort hub.			
23	I	SLEEP#	Connect to the DockPort host sleep state signal.	_			
		FAULT#	_	Connect to the fault indicator of the power management circuit			
25	I	SYS_COM_REQ	External 100K Pull—down required. This signal is a sampled at power on or reset to determine if the system is in a FW update mode.				
			After power on reset, the signal is used for communication request via a GPIO in a DockPort host for communication request				
	0	VCTRL_SEL1		Power enable for 5 V power delivery In additon, this signal is sampled at power on or reset to determine the mode of operation: $0 = DockPort \ hub \ (external \ 10 \ k\Omega \ Pull-down)$			
				1 = DockPort dongle (external 10 kΩ Pull-up)			

PIN FUNCTIONS (continued)

	The Follows (continues)						
PIN	I/O	PIN NAME	DockPort HOST (SIGNAL MUX)	DockPort DEVICE (SIGNAL DE-MUX)	SIGNAL SPEED (MAX)		
26	0	CONFIG_PU#	Connect to FET switch to control pull-up option on DisplayPort CONFIG1/CONFIG2 for DockPort communication.	_			
		VCTRL_SEL2	_	Power enable for 12 V power delivery			
27	0	Dongle_PWREN#	Power enable for 5 V DockPort dongle power circuitry	_			
		VCTRL_SEL3	_	Power enable for 19 V power delivery	7		
34	0	RSVD (SS_OE#_OUT)	N/C For future compatibility (Connect to RSVD [SS_OE#_IN] signal - Pin 8)	_			
	I	PUSH_BUTTON	_	External 5.6 kΩPull-up required. Push button input to DockPort hub and MST HUB for 2-lane/4-lane switching			
32	0	HS_OE#_OUT	DisplayPort / High-speed USB Mux Enabl An external 10 kΩ Pull-down to ground is				
30	I/O	RST	Reset				
33 39 53	GND	GND	Connect to Supply Ground				
24 31 49 50 51 54 55 56	NC	NC	No Connect				
1 4 13 14 40 52	Supply	VCC	3.3V Positive power supply voltage				

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Table 1. Power Delivery Voltage Selection

VOLTAGE	HS_SEL_OUT	SS_SEL_OUT
0 V	0	0
12 V	0	1
19 V	1	0
5 V	1	1

ABSOLUTE MAXIMUM RATINGS(1) (2)

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply Voltage Range ⁽²⁾	VCC	-0.3	4	V
	Differential I/O (High bandwidth signal path, AxP/N, BxP/N, CxP/N)	-0.5	4	V
Voltage Range	Differential I/O (Low bandwidth signal path, ADP/M, BDP/M, CDP/M)	-0.5	7	V
	Control Pin and Single Ended I/O	-0.3	$V_{CC} + 0.3$	V
Floatroatatia dia aharaa	Human body model ⁽³⁾		±2000	V
Electrostatic discharge	Charged-device model (4)		±500	V
Continuous power dissipa	ous power dissipation See Thermal Table			

Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Product Folder Links: HD3SS2521

Submit Documentation Feedback

All voltage values, except differential voltages, are with respect to network ground terminal.

Tested in accordance with JEDEC Standard 22, Test Method A114-B Tested in accordance with JEDEC Standard 22, Test Method C101-A

THERMAL INFORMATION

	THERMAL METRIC ⁽¹⁾	HD3SS2521	LIMITE
	I TERMAL METRIC	RHU (56 PIN)	UNITS
θ_{JA}	Junction-to-ambient thermal resistance	31.6	
θ_{JCtop}	Junction-to-case (top) thermal resistance	15.9	
θ_{JB}	Junction-to-board thermal resistance	8.5	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.5	
ΨЈВ	Junction-to-board characterization parameter	8.5	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

RECOMMENDED OPERATING CONDITIONS

(Typical values for all parameters are at Vcc = 3.3V and T_A = 25°C. All temperature limits are specified by design)

			MIN	TYP	MAX	UNITS
V_{CC}	Supply voltage		3	3.3	3.6	V
V _{IH}	Input high voltage	Control/Status Pins	2		V_{CC}	V
V_{IL}	Input low voltage	Control/Status Pins	-0.1		8.0	V
V_{I/O_Diff}	Differential voltage	Switch I/O diff voltage (High-bandwidth path AxP/N, BxP/N, CxP/N)	0		1.8	Vpp
V _{I/O_CM}	Common voltage	Switch I/O common mode voltage (High-bandwidth path AxP/N, BxP/N, CxP/N)	0		2	V
V _{I/O}	Input/ouput voltage	Data input/output voltage (Low-bandwidth path ADP/M, BDP/M, CDP/M)	0		5.5	V
T _A	Operating free-air t	Operating free-air temperature			70	°C

ELECTRICAL CHARACTERISTICS – DEVICE PARAMETERS

(under recommended operating conditions)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
I _{CC}	Supply Current	VCC = 3.6V, HS_SEL_IN/SS_SEL_IN = VCC/GND; HS_OE#_IN = GND; Outputs Floating		4.5		mA
AUX_N	I, CONFIG_1, CONFIG_2, FAULT#,	HPD_IN, MODE_LED, PUSH_BUTTON, RST, SI	EEP#, SYS_C	OM_REQ	, TEST	
V _{IT+}	Positive-going input threshold voltage		0.45 V _{CC}		0.75 V _{CC}	V
V _{IT}	Negative-going input threshold voltage		0.25 V _{CC}		0.55 V _{CC}	V
V _{hys}	Input voltage hysteresis (V _{IT+} – V _{IT} –)	V _{CC} = 3V	0.3		1	V
R _{PULL}	Pullup/pulldown resistor	Pullup: $V_{IN} = GND$, Pulldown: $V_{IN} = V_{CC}$, $V_{CC} = 3V$	20	35	50	kΩ
C _I	Input capacitance	$V_{IN} = GND \text{ or } V_{CC}$		5		рF
I _{LK}	High-impedance leakage current	$V_{IN} = GND$ or V_{CC} , $V_{CC} = 3V$, Pullup/Pulldown disabled			±50	nA
		S_OFF, CONFIG_1, CONFIG_2, CONFIG_PU#, C SS_SEL_OUT, RST, TEST, VCTRL_SEL1, VCTF				E#_OUT,
V _{OH}	High-level ouptut voltage	$I_{OHmax} = -6 \text{ mA}^{(1)}$	\	√ _{CC} - 0.3		V
V_{OL}	Low-level ouptut voltage	I _{OLmax} = 6 mA ⁽¹⁾	GI	ND + 0.3		V
SS_SE	L_IN				<u>.</u>	
I _{IH}	Input High Current	V _{CC} = 3.6V, V _{IN} = VCC			95	μΑ
I _{IL}	Input Low Current	V _{CC} = 3.6V, V _{IN} = GND			1	

⁽¹⁾ The maximum total current, I_{OHmax} and I_{OLmax}, for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS – DEVICE PARAMETERS (continued)

(under recommended operating conditions)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
HS_C	DE#_IN , HS_SEL_IN					
I _{IH}	Input High Current	$V_{CC} = 3.6V, V_{IN} = VCC$			1	μΑ
I _{IL}	Input Low Current	V _{CC} = 3.6V, V _{IN} = GND			1	μΑ
AxP/I	N, BxP/N, CxP/N					
	High impedance leglage surrent	$V_{CC} = 3.6V, V_{IN} = 0V, V_{OUT} = 2V$ (I_{LK} on open outputs Port B and C)			130	
I _{LK}	High-impedance leakage current	$V_{CC} = 3.6V$, $V_{IN} = 0V$, $V_{OUT} = 2V$ (I_{LK} on open outputs Port A)			4	μΑ
ADP/	DM, BDP/DM, CDP/DM					
I _{LK}	High-impedance leakage current	V_{CC} = 3.6V, V_{IN} = 0V, V_{OUT} = 0V to 4V, HS_OE#_IN = GND			1	μΑ

ELECTRICAL CHARACTERISTICS – SIGNAL SWITCH PARAMETERS

(under recommended operating conditions; RL, Rsc = 50Ω , CL = 10pF unless otherwise noted)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
AxP/N, B	xP/N, CxP/N HIGH-BANDWIDTH SIGNAL PAT	H			· ·	
t _{PD}	Switch Propagation Delay	Rsc and RL = 50 Ω, See Figure 5			85	ps
T _{on}	SS_SEL_IN -to-Switch Ton	Pagend PL - FO O. See Figure 4		70	250	no
T_{off}	SS_SEL_IN -to-Switch Toff	Rsc and RL = 50 Ω , See Figure 4		70	250	ns
T _{SK(O)}	Inter-Pair Output Skew (CH-CH)	Rsc and RL = 50 Ω , See Figure 5			20	ps
T _{SK(b-b)}	Intra-Pair Output Skew (bit-bit)	RSC and RE = 50 Ω, See Figure 5			8	ps
C _{ON}	Outputs ON Capacitance	V _{IN} = 0V, Outputs Open, Switch ON		1.5		pF
C _{OFF}	Outputs OFF Capacitance	V _{IN} = 0V, Outputs Open, Switch OFF		1		pF
R _{ON}	Output ON resistance	$V_{CC} = 3.3V, V_{CM} = 0.5V - 1.5V,$ $I_{O} = -8 \text{ mA}$		5	8	Ω
	On resistance match between channels	$V_{CC} = 3.3V; -0.35V \le VIN \le 1.2V;$			2	
ΔR _{ON}	On resistance match between pairs of the same channel	$I_{O} = -8 \text{ mA}$			0.7	Ω
R _{FLAT_ON}	On resistance flatness [R _{ON(MAX)} – R _{ON(MIN)}]	$V_{CC} = 3.3V; -0.35V \le V_{IN} \le 1.2V$			1.15	Ω
DI	Differential Return Loss (VCM = 0V)	f = 2.5 GHz		-12		dB
RL		f = 4.0 GHz		-11		иь
V	Differential Crosstalk (VCM = 0V)	f = 2.5 GHz		-39		٩D
X _{TALK}		f = 4.0 GHz		-35		dB
0	Differential Off location (VCM – 0V)	f = 2.5 GHz	-	-22		dB
O _{IRR}	Differential Off-Isolation (VCM = 0V)	f = 4.0 GHz		-19		иь
	Differential Insertion Loss (VCM = 0V)	f = 2.5 GHz		-1.1		dB
IL	Differential insertion Loss (VCIVI = 0V)	f = 4.0 GHz		-1.5		иь
BW	Bandwidth	At -3 dB		6		GHz
ADP/DM,	BDP/DM, CDP/DM SIGNAL PATH					
t _{PD}	Switch Propagation Delay	Rsc and RL = 50Ω , See Figure 5		250		20
т	HS_SEL_IN -to-Switch Ton	Rsc and RL = 50 Ω , See Figure 4			30	ps
T _{on}	HS_OE#_IN -to-Switch Ton	RSC and RL = 50 Ω, See Figure 4			17	
-	HS_SEL_IN Toff	Pagend PL - FO O. See Figure 4			12	ns
T _{off}	HS_OE#_IN -to-Switch Toff	Rsc and RL = 50Ω , See Figure 4			10	
T _{SK(O)}	Inter-Pair Output Skew (CH-CH)	Rsc and RL = 50Ω , See Figure 5		10	20	ps
T _{SK(b-b)}	Intra-Pair Output Skew (bit-bit)	NSC and RL = 30 12, See Figure 5		10	20	ps
C _{ON}	Outputs ON Capacitance	V _{IN} = V _{CC} or 0V, Outputs Open, Switch ON		6	7.5	pF

ELECTRICAL CHARACTERISTICS - SIGNAL SWITCH PARAMETERS (continued)

(under recommended operating conditions; RL, Rsc = 50Ω , CL = 10pF unless otherwise noted)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
C _{OFF}	Outputs OFF Capacitance	$V_{IN} = V_{CC}$ or 0V, Outputs Open, Switch OFF		3.5	6	pF
В	Output ON registeres	$V_{CC} = 3V$, $V_{IN} = 0V$, $I_{O} = 30$ mA		3	6	Ω
R _{ON}	Output ON resistance	$V_{CC} = 3V$, $V_{IN} = 2.4V$, $I_{O} = -15$ mA		3.4	6	12
A.D.	On resistance match	$V_{CC} = 3V, V_{IN} = 0V, I_{O} = 30 \text{ mA}$		0.2		0
ΔR_{ON}		$V_{CC} = 3V$, $V_{IN} = 1.7V$, $I_{O} = -15$ mA		0.2		Ω
D	On resistance flatness	$V_{CC} = 3V$, $V_{IN} = 0V$, $I_{O} = 30$ mA		1		W
R _{FLAT_ON}	$[R_{ON(MAX)} - R_{ON(MIN)}]$	$V_{CC} = 3V$, $V_{IN} = 1.7V$, $I_{O} = -15$ mA		1		
X _{TALK}	Differential Crosstalk (VCM = 0V)	RL = 50 W, f = 250 MHz		-40		dB
O _{IRR}	Differential Off-Isolation (VCM = 0V)	RL = 50 W, f = 250 MHz		-41		dB
BW	Bandwidth	RL = 50 W		0.9		GHz

TEST TIMING DIAGRAMS

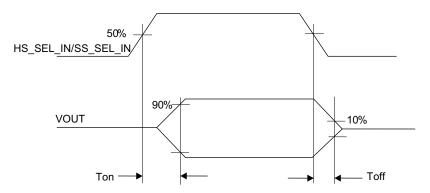
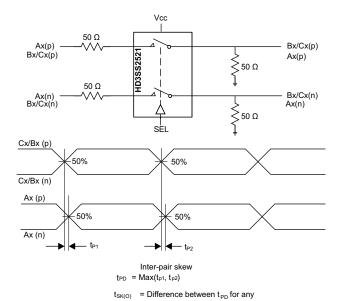
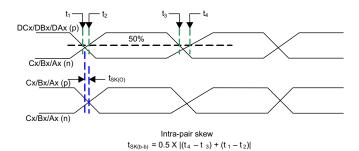




Figure 4. Select to Switch T_{on} and T_{off}

two pairs of outputs

NOTES:

- Measurements based on an ideal input with zero intra-pair skew on the input, i.e. the input at A to B/C or the input at B/C to A
- 2. Inter-pair skew is measured from lane to lane on the same channel, e.g. ${\rm C0}$ to ${\rm C1}$
- Intra-pair skew is defined as the relative difference from the p and n signals of a single lane

Figure 5. Propagation Delay and Skew

www.ti.com 7-Oct-2021

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
HD3SS2521RHUR	ACTIVE	WQFN	RHU	56	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	0 to 70	HD3S2521	Samples
HD3SS2521RHUT	PREVIEW	WQFN	RHU	56	250	TBD	Call TI	Call TI	0 to 70		

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

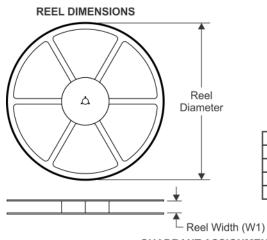
OBSOLETE: TI has discontinued the production of the device.

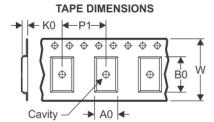
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

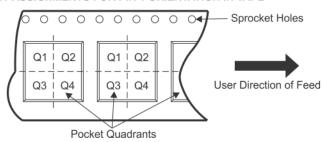
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

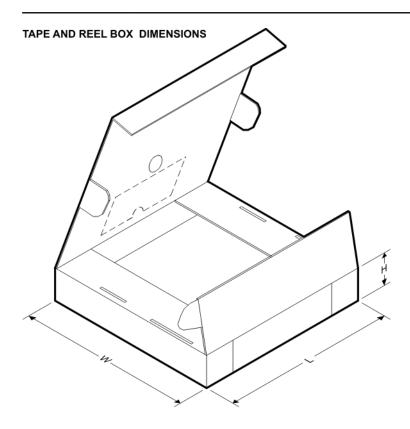

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 30-Aug-2018


TAPE AND REEL INFORMATION

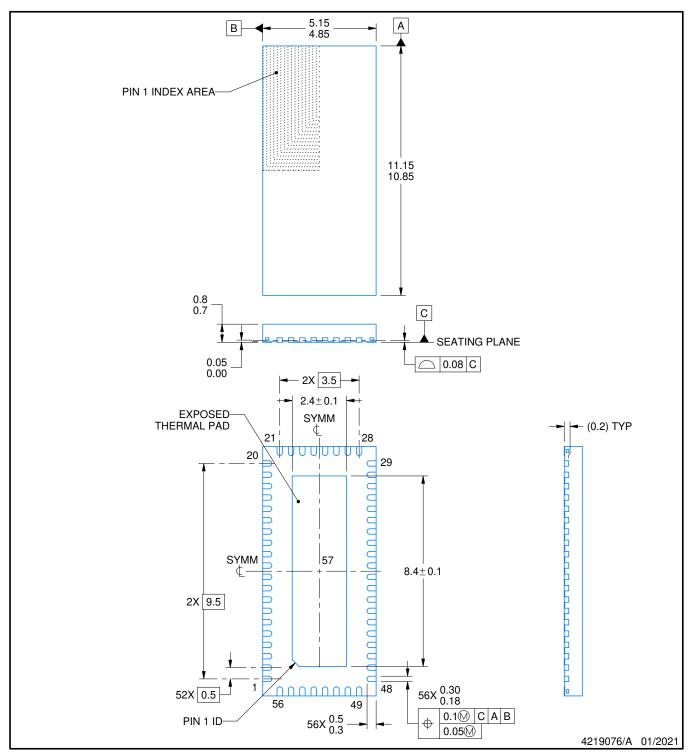
		Dimension designed to accommodate the component width
		Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
HD3SS2521RHUR	WQFN	RHU	56	2000	330.0	24.4	5.3	11.3	1.0	8.0	24.0	Q1

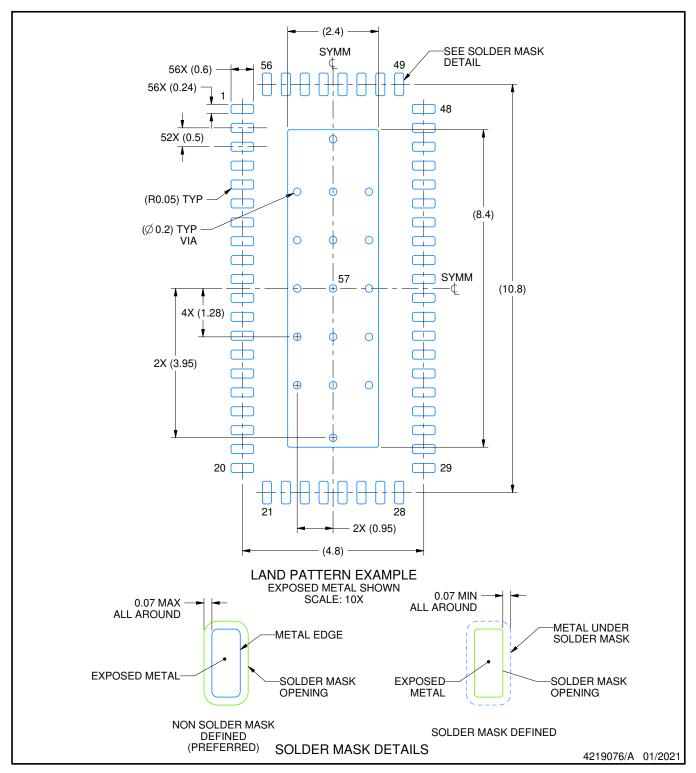
www.ti.com 30-Aug-2018



*All dimensions are nominal

Device	Package Type	Package Drawing	ge Drawing Pins		Length (mm)	Width (mm)	Height (mm)	
HD3SS2521RHUR	WQFN	RHU	56	2000	367.0	367.0	45.0	

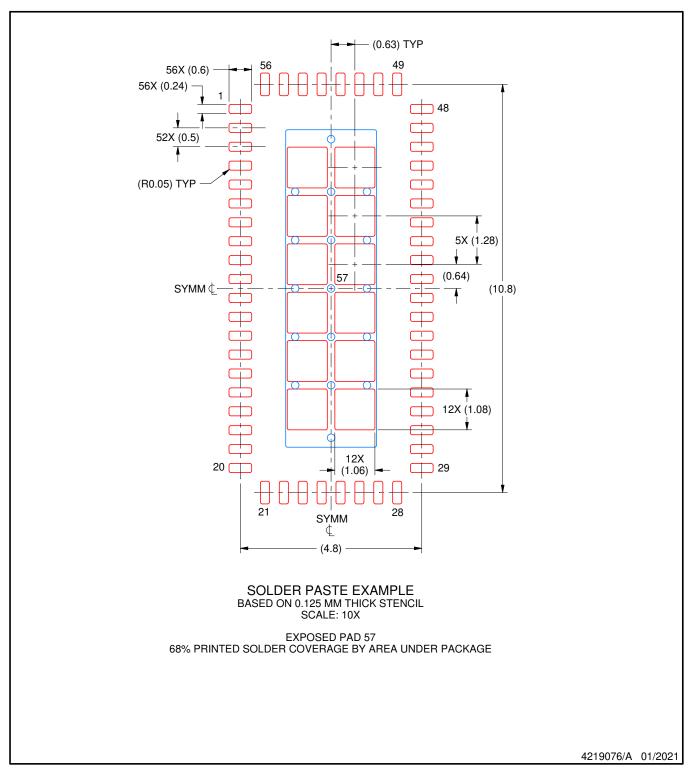
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated