

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FAN48619 Fixed-Output Synchronous TinyBoost® Regulator

Features

Input Voltage Range: 2.7 V to 4.5 V

Output Voltage: 5.0 V

1000 mA Max. Load Capability

PWM Only

Up to 97% Efficient

Forced Pass-Through Operation via EN Pin

Internal Synchronous Rectification

True Load Disconnect

Short-Circuit Protection

 Three External Components: 2016 (Metric) 0.47 µH Inductor, 0402 Case Size Input / Output Capacitors

Applications

- Class-D Audio Amplifier
- Boost for Low-Voltage Li-Ion Batteries
- Smart Phones, Tablets, Portable Devices
- RF Applications
- NFC Applications

Description

The FAN48619 is a low-power PWM only boost regulator designed to provide a minimum voltage-regulated rail from a standard single-cell Li-lon battery and advanced battery chemistries. Even below the minimum system battery voltage, the device maintains the output voltage regulation for an output load current of 1000 mA. The combination of built-in power transistors, synchronous rectification, and low supply current suit the FAN48619 for battery-powered applications.

The FAN48619 is available in a 9-bump, 0.4 mm pitch, (1.215 x 1.215 mm) Wafer-Level Chip-Scale Package (WLCSP).

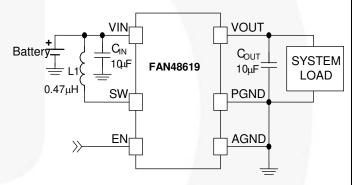


Figure 1. Typical Application

Ordering Information

Part Number	V _{OUT}	Operating Temperature	Package	Packing	Device Marking
FAN48619UC50X	5.0 V	-40°C to 85°C	9-Bump, 0.4 mm Pitch, WLCSP Package	Tape and Reel	KP

Note:

1. The FAN48619UC50X includes backside lamination.

Block Diagrams

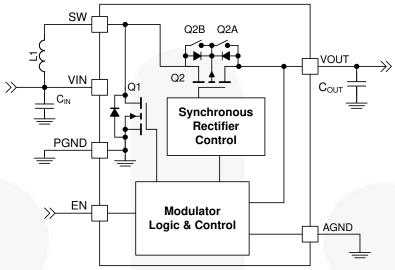


Figure 2. IC Block Diagram

Table 1. Recommended Components

Component	Description	Vendor	Parameter	Тур.	Unit
L1	200/ F 2A 2016 1 0mm Height	DFE201610E-R47M TOKO	Inductance	470	nH
	20%, 5.3A, 2016, 1.0mm Height		DCR (Series R)	26	mΩ
C _{IN}	20%, 6.3 V, X5R, 0402 (1005)	C1005X5R0J106M050BC TDK	Capacitance	10	μF
C _{OUT}	20%, 6.3 V, X5R, 0402 (1005)	C1005X5R0J106M050BC	Capacitance 10		μι

Pin Configuration

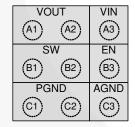


Figure 3. Top View

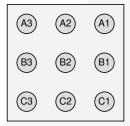


Figure 4. Bottom View

Pin Definitions

Pin#	Name	Description			
A1, A2	VOUT	tput Voltage. This pin is the output voltage terminal; connect directly to C _{OUT} .			
A3	VIN	ut Voltage. Connect to Li-Ion battery input power source and C _{IN} .			
B1, B2	SW	Switching Node. Connect to inductor.			
В3	EN	Enable . When this pin is HIGH, the circuit is enabled. After part is engaged, pin forces part into Forced-Pass-Through Mode when EN pin is pulled LOW.			
C1, C2	PGND	Power Ground . This is the power return for the IC. C _{OUT} capacitor should be returned with the shortest path possible to these pins.			
C3	AGND	Analog Ground . This is the signal ground reference for the IC. All voltage levels are measured with respect to this pin – connect to PGND at a single point.			

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter				Max.	Unit
V _{IN}	Voltage on VIN Pin			-0.3	6.0	V
V _{OUT}	Voltage on VOUT Pin	Voltage on VOUT Pin			6.0	٧
V_{SW}	SW Node	DC Transient: 10 ns, 3 MHz		-0.3	6.0	V
VSW	SVV Node			-1.0	8.0	V
V_{CC}	Voltage on Other Pins			-0.3	6.0 ⁽²⁾	>
ESD	Electrostatic Discharge Protection Level JS-001-201		Model, ANSI/ESDA/JEDEC	2	.0	kV
			ce Model per JESD22-C101	1.0]
T _J	Junction Temperature			-40	+150	°C
T _{STG}	Storage Temperature			-65	+150	°C
TL	Lead Soldering Temperature, 10 Seconds				+260	ç

Note:

2. Lesser of 6.0 V or V_{IN} + 0.3 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	2.7	4.5	٧
I _{OUT}	Maximum Output Current	1000		mA
T _A	Ambient Temperature	-40	+85	°C
T_J	Junction Temperature	-40	+125	°C

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards with vias in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature, $T_{J(max)}$, at a given ambient temperature, T_A .

Symbol	Parameter	Typical	Unit
ӨЈА	Junction-to-Ambient Thermal Resistance	101	°C/W

Electrical Specifications

Recommended operating conditions, unless otherwise noted, circuit per Figure 1, $V_{OUT} = 5.0 \text{ V}$. Typical, minimum and maximum values are given at $V_{IN} = 3.6 \text{ V}$, $T_A = 25^{\circ}\text{C}$, -40°C , and $+85^{\circ}\text{C}$.

Symbol	Parameter	Conditions		Тур.	Max.	Units
Power Sup	oply		1			.1
	V Ouisesent Comment	I _{OUT} = 0 mA, EN = 1.8 V, No Switching		95		
lQ	V _{IN} Quiescent Current	Forced Pass-Through EN=0 V, V _{OUT} = V _{IN}		3.5		μA
V _{UVLO}	Under-Voltage Lockout	V _{IN} Rising		2.20		V
V _{UVLO_HYS}	Under-Voltage Lockout Hysteresis			150		mV
Inputs						
V _{IH}	Enable HIGH Voltage		1.05			V
V _{IL}	Enable LOW Voltage				0.4	V
Outputs						
V_{REG}	Output Voltage Accuracy DC(3)	2.7 V ≤ V _{IN} ≤ 4.5 V	-2		+2	%
Timing						
fsw	Switching Frequency	I _{OUT} = 300 mA	1.8	2.3	2.8	MHz
tss ⁽⁴⁾	EN HIGH to 95% of Regulation	I _{OUT} = 150 mA		425		μS
t _{RST} ⁽⁴⁾	FAULT Restart Timer			20	h	ms
Power S	tage		1			
R _{DS(ON)N}	N-Channel Boost Switch R _{DS(ON)}			63		mΩ
R _{DS(ON)P}	P-Channel Sync. Rectifier R _{DS(ON)}			52		mΩ

Notes:

- 3. DC I_{LOAD} from 0 to 1000 mA. V_{OUT} measured from mid-point of output voltage ripple. Effective capacitance of $C_{OUT} \ge 2 \mu F$.
- 4. Guaranteed by design and characterization; not tested in production.

Typical Performance Characteristics

Unless otherwise specified; V_{IN} = 3.6 V, V_{OUT} = 5.0 V, T_A = 25°C, and circuit according to Figure 1. Components: C_{IN} = C_{OUT} = 10 μ F (0402, X5R, 6.3 V, C1005X5R0J106M050BC), L1 = 470 nH (2016, 26 m Ω , DFE201610E-R47M).

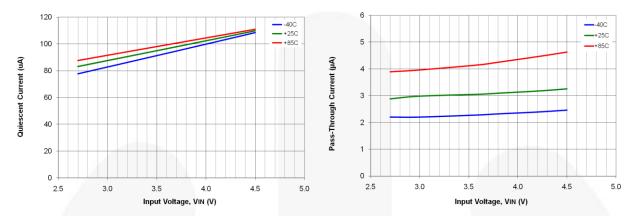
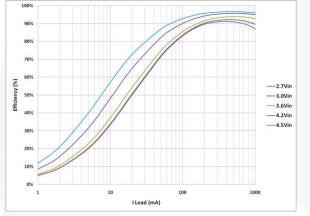
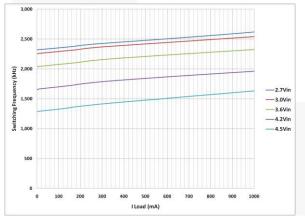



Figure 5. Quiescent Current (No Switching) vs. Input Voltage and Temperature


Figure 6. Pass-Through Current vs. Input Voltage and Temperature

100%
90%
80%
70%
60%
50%
40%
30%
20%
100
100
1000
1000

Figure 7. Efficiency vs. Load Current and Input Voltage

Figure 8. Efficiency vs. Load Current and Temperature

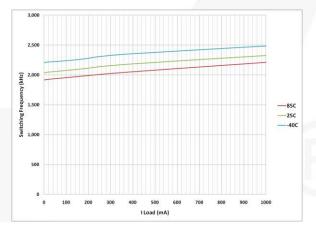
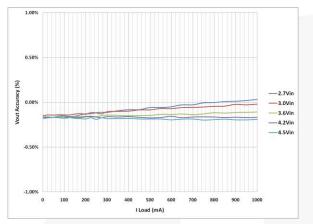



Figure 9. Switching Frequency vs. Load Current and Input Voltage

Figure 10. Switching Frequency vs. Load Current and Temperature

Typical Performance Characteristics

Unless otherwise specified; V_{IN} = 3.6 V, V_{OUT} = 5.0 V, T_A = 25°C, and circuit and components according to Figure 1. Components: C_{IN} = C_{OUT} = 10 μ F (0402, X5R, 6.3 V, C1005X5R0J106M050BC), L1 = 470nH (2016, 26 m Ω , DFE201610E-R47M).

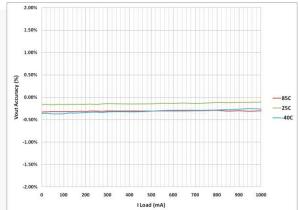
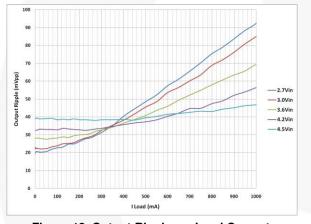



Figure 11. Output Regulation vs. Load Current and Input Voltage

Figure 12. Output Regulation vs. Load Current and Temperature

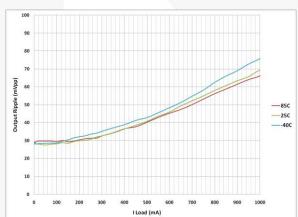
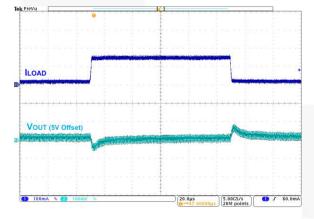



Figure 13. Output Ripple vs. Load Current and Input Voltage

Figure 14. Output Ripple vs. Load Current and Temperature

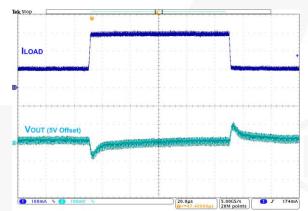


Figure 15. Load Transient, 20 <-->150 mA, 1 μs Edge

Figure 16. Load Transient, 100 <--> 300 mA, 1 μs Edge

Typical Performance Characteristics

Unless otherwise specified; V_{IN} = 3.6 V, V_{OUT} = 5.0 V, T_A = 25°C, and circuit and components according to Figure 1. Components: C_{IN} = C_{OUT} = 10 μ F (0402, X5R, 6.3 V, C1005X5R0J106M050BC), L1 = 470nH (2016, 26 m Ω , DFE201610E-R47M).

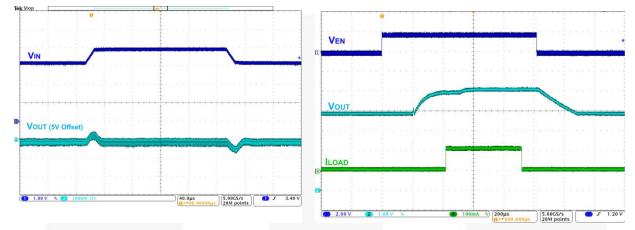


Figure 17. Line Transient, 3.2 V <-->3.9 V, 10 µs Edge, Figure 18. Pass-Through Mode <--> Boost Mode with 150 mA Load Load Transient , 10 <-->150 mA, 1 µs Edge

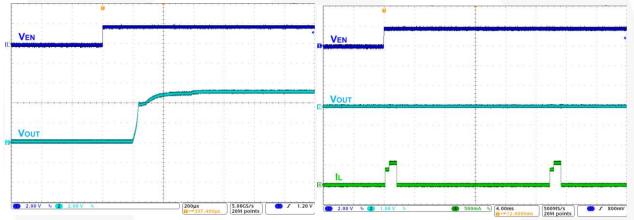


Figure 19. Startup, 150 mA Load

Figure 20. Fault Restart

Circuit Description

FAN48619 is a synchronous PWM Only boost regulator. The regulator's Pass-Through Mode automatically activates when V_{IN} is above the boost regulator's set point.

Table 2. Operating Modes

Mode	Description	Invoked When:
LIN	Linear Startup	$V_{IN} > V_{OUT}$
SS	Boost Soft-Start	V _{IN} < V _{OUT} < V _{OUT} (TARGET)
BST	Boost Operating Mode	V _{OUT} = V _{OUT(TARGET)}
PT	Pass-Through Mode	V _{IN} > V _{OUT(TARGET)} or when EN is pulled LOW after initial startup

Boost Mode Regulation

The FAN48619 uses a current-mode modulator to achieve excellent transient response.

Table 3. Boost Startup Sequence

Start Mode	Entry	Exit	End Mode	Timeout (µs)
	V _{IN} >	$V_{OUT} > V_{IN}$ -300 mV	SS	
LIN1	V _{UVLO} , EN=1	Timeout	LIN2	512
LIN2	LIN1 Exit	$V_{OUT} > V_{IN}$ -300 mV	SS	
LINZ		Timeout	FAULT	1024
SS	LIN1 or	V _{OUT} =V _{OUT} (TARGET)	BST	
33	LIN2 Exit	Overload Timeout	FAULT	64

LIN Mode

When EN is HIGH and $V_{\text{IN}} > V_{\text{UVLO}}$, the regulator first attempts to bring V_{OUT} within 300 mV of V_{IN} by using the internal fixed-current source from VIN (Q2). The current is limited to the LIN1 set point.

If V_{OUT} reaches $V_{\text{IN}}\text{-}300$ mV during LIN1 Mode, the SS Mode is initiated. Otherwise, LIN1 times out after 512 μs and LIN2 Mode is entered.

In LIN2 Mode, the current source is incremented. If V_{OUT} fails to reach V_{IN} -300 mV after 1024 μs , a fault condition is declared and the device waits 20 ms to attempt an automatic restart.

Soft-Start (SS) Mode

Upon the successful completion of LIN Mode ($V_{OUT} \ge V_{IN}$ -300 mV), the regulator begins switching with boost pulses current limited to 50% of nominal level.

During SS Mode, if V_{OUT} fails to reach regulation during the SS ramp sequence for more than 64 μ s, a fault is declared. If large C_{OUT} is used, the reference is automatically stepped slower to avoid excessive input current draw.

Boost (BST) Mode

This is a normal operating mode of the regulator.

Pass-Through (PT) Mode

The device allows the user to force the device in Forced Pass-Through Mode through the EN pin. If the EN pin is pulled HIGH, the device starts operating in Boost Mode. Once the EN pin is pulled LOW, the device is forced into Pass-Through Mode. To disable the device, the input supply voltage must be removed. The device cannot startup in Forced Pass-Through Mode (see Figure 21). During startup, keep the EN pulled HIGH for at least 350 µs before pulling it LOW in order to make sure that the device enters Pass-Through Mode realiably.

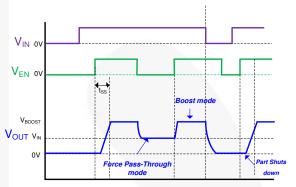


Figure 21. Pass-Through Profile

Current Limit Protection

The FAN48619 has valley current limit protection in case of overload situations. The valley current limit will prevent high current from causing damage to the IC and the inductor. The current limit is halved during soft-start.

When starting into a fault condition, the input current will be limited by LIN1 and Lin2 current threshold.

Fault State

The regulator enters Fault State under any of the following conditions:

- V_{OUT} fails to achieve the voltage required to advance from LIN Mode to SS Mode.
- V_{OUT} fails to achieve the voltage required to advance from SS Mode to BST Mode.
- Boost current limit triggers for 2 ms during BST Mode.
- V_{IN} V_{OUT} > 300 mV; this fault can occur only after successful completion of the soft-start sequence.
- \blacksquare $V_{IN} < V_{UVLO}$.

Once a fault is triggered, the regulator stops switching and presents a high-impedance path between VIN and VOUT. After waiting 20 ms, an automatic restart is attempted.

Over-Temperature

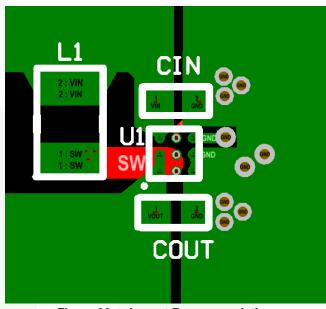
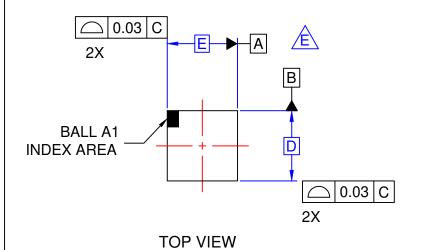
The regulator shuts down if the die temperature exceeds 150°C and restarts when the IC cools by ~20°C.

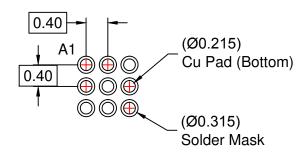
Layout Recommendations

The layout recommendations below highlight various top-copper pours by using different colors.

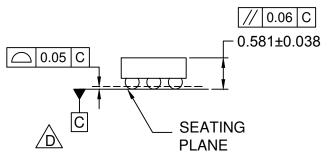
To minimize spikes at VOUT, C_{OUT} must be placed as close as possible to PGND and VOUT, as shown in Figure 22.

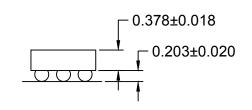
For best thermal performance, maximize the pour area for all planes other than SW. The ground pour, especially, should fill all available PCB surface area and be tied to internal layers with a cluster of thermal vias.

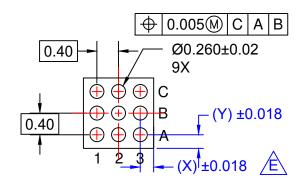

Figure 22. Layout Recommendation

The following information applies to the WLCSP package dimensions on the next page:


Product-Specific Package Dimensions


Product	D	E	X	Y
FAN48619UC50X	1.215 ±0.030 mm	1.215 ±0.030 mm	0.2075 mm	0.2075 mm

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)



SIDE VIEWS

NOTES

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 2009.
- D. DATUM C IS DEFINED BY THE
 SPHERICAL CROWNS OF THE BALLS.
 E. FOR DIMENSIONS D,E,X, AND Y SEE
 - PRODUCT DATASHEET.

 F. DRAWING FILNAME: MKT-UC009Ak rev3

BOTTOM VIEW

ON Semiconductor

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative