

30 V Zero-Drift, Rail-to-Rail Output Precision Amplifier

FEATURES

Single supply operation: 4.5 V to 30 V Dual supply operation: ±2.25 V to ±15 V Low offset voltage: 4 µV maximum Input offset voltage drift: 0.05 µV/°C maximum High gain: 130 dB minimum High PSRR: 120 dB minimum High CMRR: 130 dB minimum Input common-mode range includes lower supply rail Rail-to-rail output Low supply current: 0.95 mA maximum

APPLICATIONS

Electronic weigh scale Pressure and position sensors Strain gage amplifiers Medical instrumentation Thermocouple amplifiers

GENERAL DESCRIPTION

The [ADA4638-1](http://www.analog.com/ADA4638-1) is a high voltage, high precision, zero-drift amplifier featuring rail-to-rail output swing. It is guaranteed to operate from 4.5 V to 30 V single supply or ±2.25 V to ±15 V dual supplies while consuming less than 0.95 mA of supply current at ±5 V.

With an offset voltage of 4 μV, offset drift less than 0.05 μ V/°C, no 1/f noise, and input voltage noise of only 1.2 μV p-p (0.1 Hz to 10 Hz), the [ADA4638-1](http://www.analog.com/ADA4638-1) is suited for high precision applications where large error sources cannot be tolerated. Pressure sensors, medical equipment, and strain gage amplifiers benefit greatly from nearly zero drift over the wide operating temperature range. Many applications can take advantage of the rail-to-rail output swing provided by the ADA4638-1 to maximize the signalto-noise ratio (SNR).

The [ADA4638-1](http://www.analog.com/ADA4638-1) is specified for the extended industrial (−40°C to +125°C) temperature range and is available in 8-lead LFCSP (3 mm × 3 mm) and SOIC packages.

Data Sheet **[ADA4638-1](http://www.analog.com/ada4638-1)**

10072-002

PIN CONFIGURATIONS

Figure 2. 8-Lead LFCSP

Table 1. Analog Devices, Inc., Zero-Drift Op Amp Portfolio

TABLE OF CONTENTS

REVISION HISTORY

10/11-Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—30 V OPERATION

 $\rm V_S$ = 30 V, $\rm V_{\rm CM}$ = $\rm V_{\rm SY}/2$ V, $\rm T_A$ = 25°C, unless otherwise specified.

ELECTRICAL CHARACTERISTICS—10 V OPERATION

 $V_s = 10$ V, $V_{CM} = V_{SY}/2$ V, $T_A = 25$ °C, unless otherwise specified.

Table 3.

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 $V_s = 5$ V, $V_{CM} = V_{SY}/2$ V, $T_A = 25$ °C, unless otherwise specified.

Table 4.

ABSOLUTE MAXIMUM RATINGS

Table 5.

¹ Input voltage should always be limited to less than 30 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for a device soldered on a 4-layer JEDEC standard board with zero airflow. For LFCSP packages, the exposed pad is soldered to the board.

Table 6. Thermal Resistance

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted.

Figure 5. Input Offset Voltage Drift Distribution

Figure 8. Input Offset Voltage Drift Distribution

Figure 15. Output Voltage (V_{OL}) to Supply Rail vs. Load Current

Figure 16. Output Voltage (V_{OH}) to Supply Rail vs. Load Current

Figure 17. Output Voltage (V_{OL}) to Supply Rail vs. Temperature

100 <u> Timor</u> OUTPUT VOLTAGE (V_{OL}) TO SUPPLY RAIL (V) **OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (V) VSY = ±15V** ╈╈╈╫ ╤ ┯╈╈╈╫ **10** ╤╤╤╤╤ **ñ40°C** ╥╥ TTTTTT \perp **+25°C +85°C 1 +125°C** ╤ TTTTT 11111 --------**0.1** \top \top \top **0.01** 10072-014 **0.001 0.001 0.01 0.1 1 10 100 LOAD CURRENT (mA)**

Figure 18. Output Voltage (V_{OL}) to Supply Rail vs. Load Current

Figure 19. Output Voltage (V_{OH}) to Supply Rail vs. Load Current

Figure 20. Output Voltage (V_{OL}) to Supply Rail vs. Temperature

Figure 34. Large Signal Transient Response

Figure 35. Small Signal Transient Response

Figure 36. Closed-Loop Output Impedance vs. Frequency

Figure 50. Voltage Noise Density vs. Frequency

APPLICATIONS INFORMATION

The [ADA4638-1,](http://www.analog.com/ADA4638-1) with its wide supply voltage range of 4.5 V to 30 V, is a precision, rail-to-rail output, zero-drift operational amplifier that features a patented combination of auto-zeroing and chopping technique. This unique topology allows the [ADA4638-1](http://www.analog.com/ADA4638-1) to maintain its low offset voltage over a wide temperature range and over its operating lifetime. This amplifier offers ultralow input offset voltage of 4.5 μV maximum and an input offset voltage drift of 80 nV/°C maximum. Offset voltage errors due to common-mode voltage swings and power supply variations are also corrected by the auto-zeroing and chopping technique, resulting in a superb typical CMRR figure of 142 dB and a PSRR figure of 143 dB at a ±15 V supply voltage. With ultrahigh dc accuracy and no 1/f noise component, the [ADA4638-1](http://www.analog.com/ADA4638-1) is ideal for high gain amplification of low level signals in dc or low frequency applications without the risk of excessive output voltage errors.

DIFFERENTIATION

Traditionally, zero-drift amplifiers are designed using either the auto-zeroing or chopping technique. Each technique has its benefits and drawbacks. Auto-zeroing usually results in low noise energy at the auto-zeroing frequency, at the expense of higher low frequency noise due to aliasing of wideband noise into the auto-zeroed frequency band. Chopping results in lower low frequency noise at the expense of larger noise energy at the chopping frequency. The [ADA4638-1](http://www.analog.com/ADA4638-1) uses both auto-zeroing and chopping in a patented ping-pong arrangement to obtain lower low frequency noise together with lower energy at the chopping and auto-zeroing frequencies, maximizing the signalto-noise ratio for the majority of applications. The relatively high chopping frequency of 16 kHz and auto-zeroing frequency of 8 kHz simplifies filter requirements for a wide, useful bandwidth.

THEORY OF OPERATION

[Figure 57](#page-16-1) shows the [ADA4638-1](http://www.analog.com/ADA4638-1) amplifier block diagram. The noninverting and inverting amplifier inputs are +IN and –IN, respectively. The transconductance amplifiers, A1 and A2, are the two input gain stages; the A3 and A4 transconductance amplifiers are the nulling amplifiers used to correct the offsets of A1 and A2, and Aout is the output amplifier. A four-phase cycle (φ 1 to φ 4) controls the switches. In Phase 1 (φ 1), A1 is auto-zeroed where both the inputs of A1 are connected to +IN. A1 produces a differential output current of $V_{OS1} \times gm1$, where V_{OS1} is the input offset voltage of A1, and gm1 is the differential transconductance of A1. The outputs of A1 are then connected to the inputs and outputs of A3. A3 is designed to have an equivalent resistance of 1/gm3, where gm3 is the transconductance of A3. The amplified version of V_{OS1}, which is V_{OS1} \times gm1/gm3, is stored on Capacitors C1 and C2. These capacitors, together with A3, are used to null out the offset of A1 when A1 amplifies the signal during the φ3 and φ4 phases.

While A1 is being auto-zeroed, A2 (nulled by A4, C3, and C4) is used for signal amplification. The [ADA4638-1](http://www.analog.com/ADA4638-1) differs from traditional auto-zero amplifiers in that the input offset voltage is also chopped during signal amplification. During φ1, +IN and −IN are applied to the noninverting and inverting inputs, respectively, of A2. However, during φ2, both the inputs and outputs of A2 are inverted, and the input offset voltage of A2 is chopped.

The combination of auto-zeroing and chopping offers two major benefits. First, any residual offset following the auto-zeroing process is reduced. During φ1, the output offset voltage of A2 is $+V_{OSAZ2}$ and during φ 2, it is $-V_{OSAZ2}$, producing a theoretical average of zero. Second, the aliased noise spectrum density at dc due to auto-zeroing is modulated up to the chopping frequency, and the prechopped noise spectrum density at the chopping frequency is modulated down to dc. This noise transformation lowers the noise spectrum density at dc, thus making zero-drift amplifiers ideal for low frequency signal amplification.

During φ3 and φ4, the roles of A1 and A2 are reversed. A2 offset is nulled, and the input signal is chopped and amplified using A1.

Figure 57. [ADA4638-1](http://www.analog.com/ADA4638-1) Amplifier Block Diagram

INPUT PROTECTION

The [ADA4638-1](http://www.analog.com/ADA4638-1) has internal ESD protection diodes that are connected between the inputs and each supply rail. These diodes protect the input transistors in the event of electrostatic discharge and are reverse-biased during normal operation. However, if either input exceeds one of the supply rails, these ESD diodes become forward-biased and large amounts of current begin to flow through them. Without current limiting, this excessive fault current causes permanent damage to the device. If the inputs are expected to be subject to overvoltage conditions, insert a resistor in series with each input to limit the input current to 10 mA maximum. However, consider the resistor thermal noise effect on the entire circuit.

NO OUTPUT PHASE REVERSAL

An undesired phenomenon, phase reversal (also known as phase inversion) occurs in many amplifiers when one or both of the inputs are driven beyond the specified input common-mode voltage range, in effect reversing the polarity of the output. In some cases, phase reversal can induce lockups and cause equipment damage as well as self destruction.

The [ADA4638-1](http://www.analog.com/ADA4638-1) has been carefully designed to prevent any output phase reversal, provided that both inputs are maintained within the supply voltages. If either one or both inputs may exceed either supply voltage, place resistors in series with the inputs to limit the current to less than 10 mA.

The [ADA4638-1](http://www.analog.com/ADA4638-1) features rail-to-rail output with a supply voltage from 4.5 V to 30 V. [Figure 58](#page-17-1) shows the input and output waveforms of the [ADA4638-1](http://www.analog.com/ADA4638-1) configured as a unity-gain buffer with a supply voltage of $±15$ V and a resistive load of 10 kΩ. The [ADA4638-1](http://www.analog.com/ADA4638-1) does not exhibit phase reversal.

NOISE CONSIDERATIONS

1/f Noise

1/f noise, also known as pink noise or flicker noise, is inherent in semiconductor devices and increases as frequency decreases. At low frequency, 1/f noise is a major noise contributor and causes a significant output voltage offset when amplified by the noise gain of the circuit. However, the [ADA4638-1](http://www.analog.com/ADA4638-1) eliminates the 1/f noise internally, thus making it an excellent choice for dc or low frequency high precision applications. The 0.1 Hz to 10 Hz voltage noise is only 1.2 μV p-p at \pm 15 V of supply voltage.

The low frequency 1/f noise appears as a slow varying offset to the [ADA4638-1](http://www.analog.com/ADA4638-1) and is greatly reduced by the combination of auto-zeroing and chopping technique. This allows the [ADA4638-1](http://www.analog.com/ADA4638-1) to have a much lower noise at dc and low frequency in comparison to standard low noise amplifiers that are susceptible to 1/f noise. [Figure 47](#page-13-0) and [Figure 50](#page-13-1) show the voltage noise density of the [ADA4638-1](http://www.analog.com/ADA4638-1) with no 1/f noise.

COMPARATOR OPERATION

Op amps are designed to operate in a closed-loop configuration with feedback from its output to its inverting input. [Figure 59](#page-17-2) shows the [ADA4638-1](http://www.analog.com/ADA4638-1) configured as a voltage follower with an input voltage, which is kept at midpoint of the power supplies. A1 and A2 indicate the placement of ammeters to measure supply currents. I_{SY}+ refers to the current flowing into the positive supply pin of the op amp, and I_{SY}− refers to the current flowing out of the negative supply pin of the op amp. From [Figure 60,](#page-17-3) as expected in normal operating condition, the current flowing into the op amp is equivalent to the current flowing out of the op amp, where I_{SY} + = I_{SY} -.

Figure 60. Supply Current vs. Supply Voltage (Voltage Follower)

In contrast to op amps, comparators are designed to work in an open-loop configuration and to drive logic circuits. Although op amps are different from comparators, occasionally an unused section of a dual op amp is used as a comparator to save board space and cost; however, this is not recommended.

[Figure 61](#page-17-4) and [Figure 62](#page-18-0) show the [ADA4638-1](http://www.analog.com/ADA4638-1) configured as a comparator, with resistors R_{IN1} and R_{IN2} in series with the input pins.

Figure 61. Comparator A

[Figure 63](#page-18-1) and [Figure 64](#page-18-2) show the total supply current of the system, ITOTAL, and the actual currents, Isy, that flow into and out of the supply pins of the [ADA4638-1.](http://www.analog.com/ADA4638-1) With $R_{IN1} = R_{IN2} =$ 100 kΩ and supply voltage of 30 V, the total supply current of the system is 800 μA to 900 μA.

With smaller input series resistors, total supply current of the system increases much more. [Figure 65](#page-18-3) and [Figure 66](#page-18-4) show the supply currents with $R_{IN1} = R_{IN2} = 0 \Omega$. The total current of the system increases to 10 mA.

 $I_{TOTAL} = I_{SY} + I_{INV}$

Note that, at 30 V of supply voltage, 8 mA to 9 mA of current flows through the input pins. This is undesirable. The [ADA4638-1](http://www.analog.com/ad4638-1) is not recommended to be used as a comparator. If absolutely necessary, place resistors in series with the inputs of the amplifier to limit input current to less than 10 mA.

For more details on op amps as comparators, refer to the [AN-849 Application Note,](http://www.analog.com/AN-849) Using Op Amps as Comparators.

Figure 66. Supply Current vs. Supply Voltage (Comparator B, $R_{IN1} = R_{IN2} = 0 \text{ k}\Omega$)

Data Sheet **ADA4638-1**

PRECISION LOW-SIDE CURRENT SHUNT SENSOR

Many applications require the sensing of signals near the positive or negative rails. Current shunt sensors are one such application and are mostly used for feedback control systems. They are also used in a variety of other applications, including power metering, battery fuel gauging and feedback controls in electrical power steering. In such application, it is desirable to use a shunt with very low resistance to minimize series voltage drop. This not only minimizes wasted power, but also allows the measurement of high currents while saving power. A typical shunt may be 100 m Ω . At a measured current of 1 A, the voltage produced from the shunt is 100 mV, and the amplifier error sources are not critical. However, at low measured current in the 1 mA range, the 100 µV generated across the shunt demands a very low offset voltage and drift amplifier to maintain absolute accuracy. The unique attributes of a zerodrift amplifier provides a solution. The [ADA4638-1](http://www.analog.com/ADA4638-1), with its input common-mode voltage that includes the lower supply rail, can be used for implementing low-side current shunt sensors.

[Figure 67](#page-19-1) shows a low-side current sensing circuit using the [ADA4638-1.](http://www.analog.com/ADA4638-1) The [ADA4638-1](http://www.analog.com/ADA4638-1) is configured as a difference amplifier with a gain of 1000. Although the [ADA4638-1](http://www.analog.com/ADA4638-1) has high common-mode rejection, the CMR of the system is limited by the external resistors. Therefore, the key to high CMR for the system are resistors that are well matched from both the resistive ratio and relative drift, where R1/R2 = R3/R4. The resistors are important in determining the performance over manufacturing tolerances, time, and temperature.

PRINTED CIRCUIT BOARD LAYOUT

The [ADA4638-1](http://www.analog.com/ADA4638-1) is a high precision device with ultralow offset voltage and offset voltage drift. Therefore, care must be taken in the design of the printed circuit board (PCB) layout to achieve optimum performance of the [ADA4638-1](http://www.analog.com/ADA4638-1) at board level.

To avoid leakage currents, keep the surface of the board clean and free of moisture. Coating the board surface creates a barrier to moisture accumulation and reduces parasitic resistance on the board.

Properly bypassing the power supplies and keeping the supply traces short minimizes power supply disturbances caused by output current variation. Connect bypass capacitors as close as possible to the device supply pins. Stray capacitances are a concern at the outputs and the inputs of the amplifier. It is recommended that signal traces be kept at a distance of at least 5 mm from supply lines to minimize coupling.

A potential source of offset error is the Seebeck voltage on the circuit board. The Seebeck voltage occurs at the junction of two dissimilar metals and is a function of the temperature of the junction. The most common metallic junctions on a circuit board are solder-to-board trace and solder-to-component lead. [Figure 68](#page-19-2) shows a cross section of a surface-mount component soldered to a PCB. A variation in temperature across the board (where $T_{A1} \neq T_{A2}$) causes a mismatch in the Seebeck voltages at the solder joints thereby resulting in thermal voltage errors that degrade the performance of the ultralow offset voltage of the [ADA4638-1.](http://www.analog.com/ADA4638-1)

Figure 68. Mismatch in Seebeck Voltages Causes Seebeck Voltage Error

To minimize these thermocouple effects, orient resistors so that heat sources warm both ends equally. Where possible, the input signal paths should contain matching numbers and types of components to match the number and type of thermocouple junctions. For example, dummy components, such as zero value resistors, can be used to match the thermoelectric error source (real resistors in the opposite input path). Place matching components in close proximity and orient them in the same manner to ensure equal Seebeck voltages, thus cancelling thermal errors. Additionally, use leads that are of equal length to keep thermal conduction in equilibrium. Keep heat sources on the PCB as far away from amplifier input circuitry as is practical.

It is highly recommended to use a ground plane. A ground plane helps distribute heat throughout the board, maintains a constant temperature across the board, and reduces EMI noise pickup.

OUTLINE DIMENSIONS

Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

1 Z = RoHS Compliant Part.

NOTES

NOTES

NOTES

©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10072-0-10/11(0)

www.analog.com

Rev. 0 | Page 24 of 24