

4-Pin Full Pitch Mini-Flat Package Random-Phase Triac Driver Output Optocouplers

FODM3011, FODM3012, FODM3022, FODM3052, FODM3053

Description

The FODM301X, FODM302X, and FODM305X series consists of a GaAs infrared emitting diode driving a silicon bilateral switch housed in a compact 4-pin mini-flat package. The lead pitch is 2.54 mm. They are designed for interfacing between electronic controls and power triacs to control resistive and inductive loads for 115 V/240 V operations.

Features

- Compact 4-pin Surface Mount Package (2.4 mm Maximum Standoff Height)
- Peak Blocking Voltage
 - 250 V (FODM301X)
 - 400 V (FODM302X)
 - ◆ 600 V (FODM305X)
- Safety and Regulatory Approvals:
 - ◆ UL1577, 3,750 VAC_{RMS} for 1 Minute
 - ◆ DIN-EN/IEC60747-5-5, 565 V Peak Working Insulation Voltage
- These are Pb-Free Devices

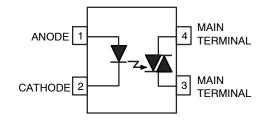
Applications

- Industrial Controls
- Traffic Lights
- Vending Machines
- Solid State Relay
- Lamp Ballasts
- Solenoid/Valve Controls
- Static AC Power Switch
- Incandescent Lamp Dimmers
- Motor Control

MFP-4 CASE 100AP

MARKING DIAGRAM

3011 = Specific Device Code


V = DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)

X = One Digit Year Code, e.g., "6"

YY = Digit Work Week, Ranging from "01" to "53"

R = Assembly Package Code

FUNCTIONAL SCHEMATIC

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter		Characteristics
Installation Classifications per DIN VDE	<150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	<300 V _{RMS}	I–III
Climatic Classification		40/100/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V_{PR}	Input–to–Output Test Voltage, Method A, V_{IORM} x 1.6 = V_{PR} , Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC	904	V _{peak}
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1060	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	565	V_{peak}
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}
	External Creepage	≥5	mm
	External Clearance	≥5	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥0.4	mm
T _S	Case Temperature (Note 1)	150	°C
I _{S,INPUT}	Input Current (Note 1)	200	mA
P _{S,OUTPUT}	Output Power (Note 1)	300	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹	Ω

^{1.} Safety limit values – maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C, unless otherwise noted)

Symbol	Parameter	Value	Unit	
TOTAL PAG	CKAGE			
T _{STG}	Storage Temperature	-55 to +150	°C	
T _{OPR}	Operating Temperature		-40 to +100	°C
T_J	Junction Temperature		-40 to +125	°C
T _{SOL}	Lead Solder Temperature		260 for 10 s	°C
EMITTER				
I _{F(avg)}	Continuous Forward Current	60	mA	
V _R	Reverse Input Voltage	3	V	
P_{D}	Power Dissipation (No Derating Required over Operating Temp.	100	mW	
DETECTOR	1			
I _{TSM}	Peak Non-Repetitive Surge Current (Single Cycle 60 Hz Sine Wave)		1	A _(PEAK)
I _{TM(RMS)}	On-State RMS Current	70	mA _(RMS)	
V_{DRM}	Off-State Output Terminal Voltage FODM3011, FODM3012		250	V
		FODM3022, FODM3023	400	
		FODM3052, FODM3053	600	1
P_{D}	Power Dissipation (No Derating Required over Operating Temp. Range)		300	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
EMITTER							
V _F	Input Forward Voltage	All	I _F = 10 mA	_	1.20	1.50	V
I _R	Reverse Leakage Current	All	V _R = 3 V, T _A = 25°C	_	0.01	100	μΑ
DETECTOR	3						
I _{DRM}	Peak Blocking Current Either Direction	All	Rated V _{DRM} , I _F = 0 (Note 2)	_	2	100	nA
dV/dt	Critical Rate of Rise of Off-State Voltage	FODM3011, FODM3012, FODM3022, FODM3023	I _F = 0 (Note 3)	-	10	-	V/μs
		FODM3052, FODM3053		1,000	_	-	

TRANSFER CHARACTERISTICS

Symbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
I _{FT}	LED Trigger Current	FODM3011, FODM3022, FODM3052	Main Terminal Voltage = 3 V (Note 4)	-	-	10	mA
		FODM3012, FODM3023, FODM3053		-	-	5	
lΗ	Holding Current, Either Direction	All		-	450	-	μΑ
V_{TM}	Peak On-State Voltage Either Direction	All	I _{TM} = 100 mA peak	-	2.2	3	V

ISOLATION CHARACTERISTICS

Syn	nbol	Parameter	Device	Test Conditions	Min	Тур	Max	Unit
VI	ISO	Steady State Isolation Voltage	All	1 Minute, R.H. = 40% to 60%	3,750	ı	İ	VAC _{RMS}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Test voltage must be applied within dv/dt rating.

^{3.} This is static dv/dt. Commutating dv/dt is function of the load-driving thyristor(s) only.

^{4.} All devices are guaranteed to trigger at an I_F value of less than or equal to the max I_{FT} specification. For optimum operation over temperature and lifetime of the device, the LED should be biased with an I_F that is at least 50% higher than the maximum I_{FT} specification. The I_{FT} should not exceed the absolute maximum rating of 60 mA. Example: For FODM3053M, the minimum I_F bias should be 5 mA x 150% = 7.5 mA.

TYPICAL PERFORMANCE CHARACTERISTICS

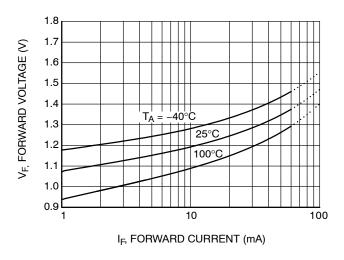


Figure 1. LED Forward Voltage vs. Forward Current

Figure 2. Leakage Current vs. Ambient Temperature

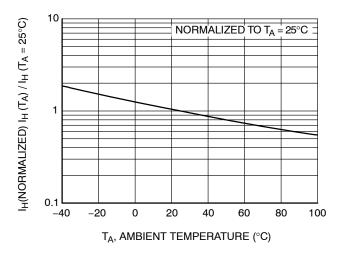


Figure 3. Normalized Holding Current vs. Ambient Temperature

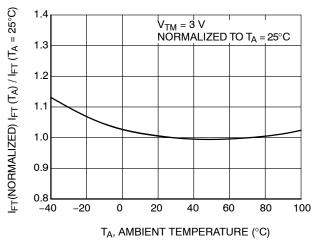


Figure 4. Normalized Trigger Current vs. Ambient Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

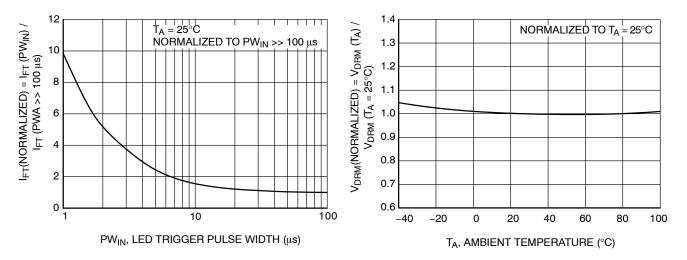


Figure 5. LED Current Required to Trigger vs. LED Pulse Width

Figure 6. Normalized Off-State Output Terminal Voltage vs. Ambient Temperature

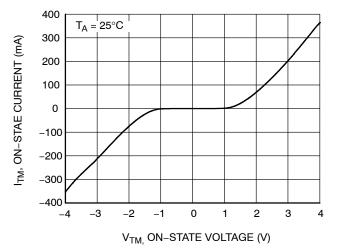


Figure 7. On-State Characteristics

TYPICAL APPLICATION INFORMATION

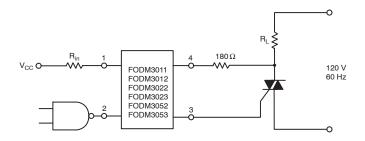


Figure 8. Resistive Load

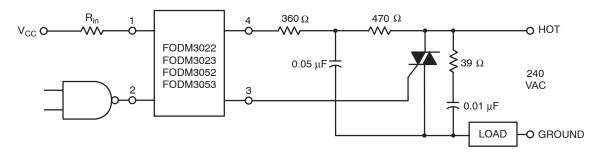



Figure 9. Inductive Load with Sensitive Gate Triac (IGT ≤ 15 mA)

In this circuit the "hot" side of the line is switched and the load connected to the cold or ground side. The 39 Ω resistor and 0.01 μ F capacitor are for snubbing of the trisc, and the 470 Ω resistor and 0.05 μ F capacitor are for snubbing the coupler. These components may or may not be necessary depending upon the particular and load used.

Figure 10. Typical Application Circuit

REFLOW PROFILE

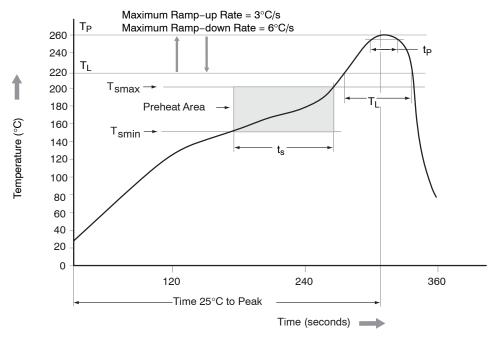


Figure 11. Reflow Profile

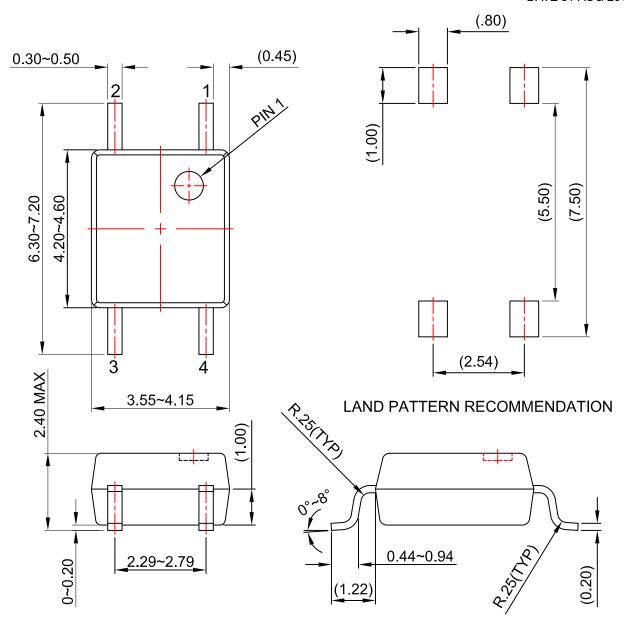
Table 1. REFLOW PROFILE

Profile Freature	Pb-Free Assembly Profile
Temperature Minimum (T _{smin})	150°C
Temperature Maximum (T _{smax})	200°C
Time (t _S) from (T _{smin} to T _{smax})	60 – 120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

ORDERING INFORMATION (Note 5)

Part Number	Package	Shipping [†]
FODM3011-NF098	Full Pitch Mini-Flat 4-Pin	100 Units / Tube
FODM3011R2-NF098	Full Pitch Mini-Flat 4-Pin	2500 / Tape & Reel
FODM3011V-NF098	Full Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	100 Units / Tube
FODM3011R2V-NF098	Full Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging


Specifications Brochure, BRD8011/D.

5. The product orderable part number system listed in this table also applies to the FODM3012, FODM3023, FODM3052, and FODM3053 products.

ON

MFP4 3.85X4.4, 2.54P CASE 100AP ISSUE O

DATE 31 AUG 2016

NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13488G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	MFP4 3.85X4.4, 2.54P		PAGE 1 OF 1		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales