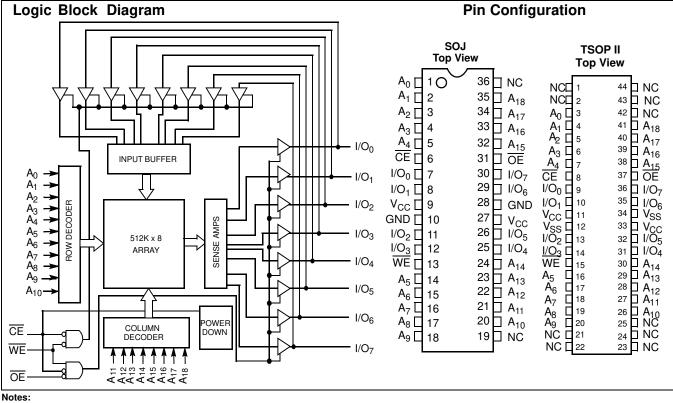


4-Mbit (512K x 8) Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: –40°C to 85°C
 - Automotive: -40°C to 125°C
- High speed
- t_{AA} = 10 ns
- Low active power
 324 mW (max.)
- 2.0V data retention
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features


Functional Description^[1]

The CY7C1049CV33 is a high-performance CMOS Static RAM organized as 524,288 words by 8 bits. Easy <u>memory</u> expansion is provided by an active LOW Chip Enable (\overline{CE}), an active LOW Output Enable (\overline{OE}), and three-state drivers. <u>Writing to the device is accomplished by taking Chip Enable</u> (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (\overline{OE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (\overline{CE} HIGH), the <u>outputs</u> are disabled (\overline{OE} HIGH), or during a Write operation (\overline{CE} LOW, and WE LOW).

The CY7C1049CV33 is available in standard 400-mil-wide 36-pin SOJ package and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

1. For guidelines on SRAM system design, please refer to the System Design Guidelines Cypress application note, available on the internet at www.cypress.com.

Selection Guide

		-8	-10	-12	-15	-20	Unit
Maximum Access Time		8	10	12	15	20	ns
Maximum Operating Current	Commercial	100	90	85	80	80	mA
	Industrial	110	100	95	90	90	mA
	Automotive	-	-	-	95	-	mA
Maximum CMOS Standby Current	Commercial / Industrial	10	10	10	10	10	mA
	Automotive	-	-	-	15	-	mA

Shaded areas contain advance information.

Pin Definitions

Pin Name	36-SOJ Pin Number	44 TSOP-II Pin Number	I/О Туре	Description
A ₀ -A ₁₈	1–5,14–18, 20–24,32–35	3–7,16–20, 26–30,38–41	Input	Address Inputs used to select one of the address locations.
I/O ₀ -I/O ₇	7,8,11,12,25, 26,29,30	9,10,13,14, 31,32,35,36	Input/Output	Bidirectional Data I/O lines. Used as input or output lines depending on operation
NC ^[2]	19,36	1,2,21,22,23, 24,25,42,43, 44	No Connect	No Connects. This pin is not connected to the die
WE	13	15	Input/Control	Write Enable Input, active LOW. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted.
CE	6	8	Input/Control	Chip Enable Input, active LOW. When LOW, selects the chip. When HIGH, deselects the chip.
OE	31	37	Input/Control	Output Enable, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins.
V _{SS} , GND	10,28	12,34	Ground	Ground for the device. Should be connected to ground of the system.
V _{CC}	9,27	11,33	Power Supply	Power Supply inputs to the device.

Notes: 2. NC pins are not connected on the die.

CY7C1049CV33

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature	with
Davyar Ameliad	EE0C to 10E0C

Power Applied.....-55°C to +125°C

Supply Voltage on V_{CC} to Relative GND^[3]–0.5V to +4.6VDC Voltage Applied to Outputs

Voltage Applied to Outputs in High-Z State $^{[3]}$ -0.5V to V_{CC} + 0.5V

Electrical Characteristics Over the Operating Range

Input Voltage^[3]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)...... 20 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	$3.3V\pm0.3V$
Industrial	-40°C to +85°C	
Automotive	-40°C to +125°C	

				-	8	-	10	-	12	
Parameter	Description	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.; I_{OH} = -4.0 m$	A	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,; I_{OL} = 8.0 mA$	Ą		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[3]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC},$ Output Disabled	Com'l/Ind'l	-1	+1	-1	+1	-1	+1	μA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		100		90		85	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		110		100		95	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH}; \\ V_{IN} \geq V_{IH} \text{ or } \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$	Com'l/Ind'l		40		40		40	mA
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{l} \underline{\text{Max}}. \ \text{V}_{\text{CC}}, \\ \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{or} \ \text{V}_{\text{IN}} \leq 0.3\text{V}, \ \text{f} = 0 \end{array}$	Com'l/Ind'l		10		10		10	mA

Electrical Characteristics Over the Operating Range

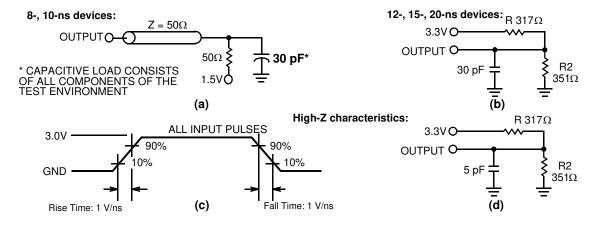
					-15		-20	
Parameter	Description	Test Condit	tions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min.; I _{OH} = -4.0 n	/ _{CC} = Min.; I _{OH} = -4.0 mA			2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min.,; I _{OL} = 8.0 m	A		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.0	$V_{CC} + 0.3$	2.0	$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage ^[3]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	Com'l / Ind'l	-1	+1	-1	+1	μA
			Automotive	-20	+20	-	-	μA
I _{OZ}	Output Leakage	$GND \leq V_{OUT} \leq V_{CC}$,	Com'l / Ind'l	-1	+1	-1	+1	μA
	Current	Output Disabled	Automotive	-20	+20	-	-	μA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		80		80	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		90		90	mA
			Automotive		95		-	mA

Note:

3. V_{IL} (min.) = -2.0V and V_{IH} (max) = V_{CC} + 0.5V for pulse durations of less than 20 ns.

Electrical Characteristics Over the Operating Range (continued)

				-	15	-20		
Parameter	Description	Test Condit	Test Conditions		Max.	Min.	Max.	Unit
I _{SB1}		Max. V _{CC} , <u>CE</u> ≥ V _{IH} ;	Com'l / Ind'l		40		40	mA
	$ \begin{array}{ll} \mbox{Power-down Current} & V_{IN} \geq V_{IH} \mbox{ or} \\ \mbox{TTL Inputs} & V_{IN} \leq V_{IL}, \mbox{ f} = \mbox{f}_{MAX} \end{array} $	Automotive		45		-	mA	
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l/Ind'l		10		10	mA
	Power-down Current —CMOS Inputs	$\label{eq:central_constraint} \begin{split} \overline{CE} &\geq V_{CC}^{-} - 0.3V, \\ V_{IN} &\geq V_{CC}^{-} - 0.3V, \\ \text{or } V_{IN} &\leq 0.3V, \ f = 0 \end{split}$	Automotive		15		-	mA


Thermal Resistance^[4]

Parameter	Description	Test Conditions	36-pin SOJ (Non Pb-Free)	36-pin SOJ (Pb-Free)		44-TSOP-II (Pb-Free)	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods	46.51	46.51	41.66	41.66	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)	and procedures for measuring thermal impedance, per EIA / JESD51.	18.8	18.8	10.56	10.56	°C/W

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 3.3V$	8	pF

AC Test Loads and Waveforms^[5]

Notes:

4. Tested initially and after any design or process changes that may affect these parameters.

5. AC characteristics (except High-Z) for all 8-ns and 10-ns parts are tested using the load conditions shown in Figure (a). All other speeds are tested using the Thevenin load shown in Figure (b). High-Z characteristics are tested for all speeds using the test load shown in Figure (d).

AC Switching Characteristics Over the Operating Range [6]

			-8	-1	0		-12	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•				•	•		1
t _{power} [7]	V _{CC} (typical) to the first access	1		1		1		μS
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		8		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		4		5		6	ns
t _{LZOE}	OE LOW to Low-Z	0		0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		4		5		6	ns
t _{LZCE}	CE LOW to Low-Z ^[9]	3		3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		4		5		6	ns
t _{PU}	CE LOW to Power-up	0		0		0		ns
t _{PD}	CE HIGH to Power-down		8		10		12	ns
Write Cycle [[]	10, 11]							
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	CE LOW to Write End	6		7		8		ns
t _{AW}	Address Set-up to Write End	6		7		8		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		ns
t _{SD}	Data Set-up to Write End	4		5		6		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		4		5		6	ns

Shaded areas contain advance information.

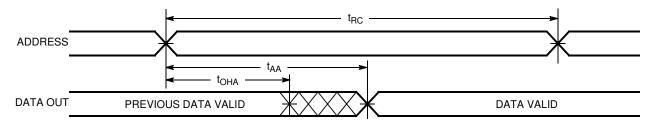
AC Switching Characteristics Over the Operating Range [6]

		-	-15		20		
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
Read Cycle							
t _{power} ^[7]	V _{CC} (typical) to the first access	1		1		μS	
t _{RC}	Read Cycle Time	15		20		ns	
t _{AA}	Address to Data Valid		15		20	ns	
t _{OHA}	Data Hold from Address Change		3		3	ns	
t _{ACE}	CE LOW to Data Valid		15		20	ns	
t _{DOE}	OE LOW to Data Valid		7		8	ns	

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.

fest conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V.
 t_{POWER} gives the minimum amount of time that the power supply should be at stable, typical V_{CC} values until the first memory access can be performed.
 t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (d) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 The internal Write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a Write, and the transition of either of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the Write.
 The minimum Write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

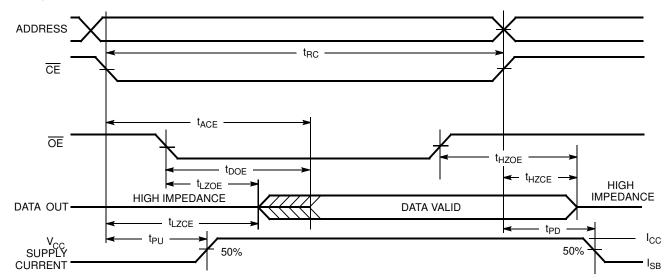


AC Switching Characteristics Over the Operating Range (continued)^[6]

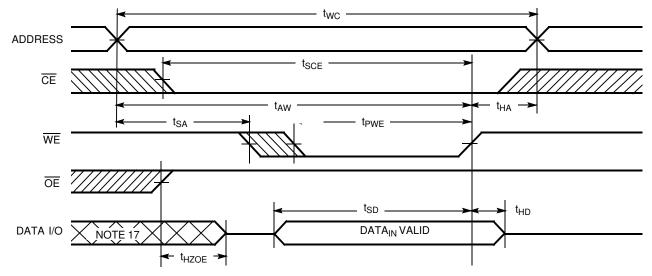
		-15		-	20	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
t _{LZOE}	OE LOW to Low-Z	0		0		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		7		8	ns
t _{LZCE}	CE LOW to Low-Z ^[9]	3		3		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		7		8	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		15		20	ns
Write Cycle [[]	10, 11]	ŀ		•	•	•
t _{WC}	Write Cycle Time	15		20		ns
t _{SCE}	CE LOW to Write End	10		10		ns
t _{AW}	Address Set-up to Write End	10		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	10		10		ns
t _{SD}	Data Set-up to Write End	7		8		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[9]	3		3		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		7		8	ns

Switching Waveforms

Read Cycle No. 1^[12, 13]

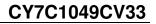


Notes: 12. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 13. WE is HIGH for Read cycle.

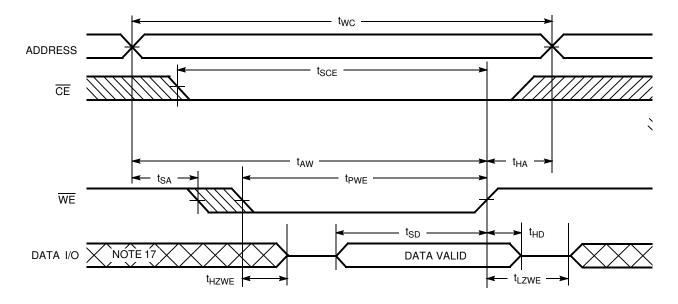


Switching Waveforms (continued)

Read Cycle No. 2 (OE Controlled)^[13, 14]


Write Cycle No. 1(WE Controlled, OE HIGH During Write)^[15, 16]

Notes:


14. Address valid prior to or coincident with CE transition LOW.
15. Data I/O is high-impedance if OE = V_{IH}.
16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
17. During this period the I/Os are in the output state and input signals should not be applied.

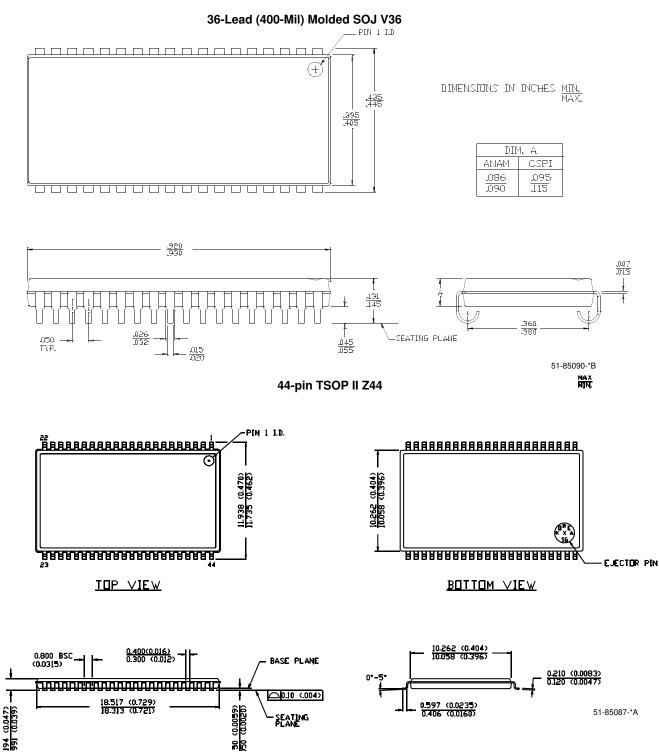
Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)^[16]

Truth Table

CE	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	High-Z	Power-down	Standby (I _{SB})
L	L	Н	Data Out	Read	Active (I _{CC})
L	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C1049CV33-10VC	V36	36-lead (400-Mil) Molded SOJ	Commercial
	CY7C1049CV33-10ZC	Z44	44-pin TSOP II	
	CY7C1049CV33-10VI	V36	36-lead (400-Mil) Molded SOJ	Industrial
	CY7C1049CV33-10ZI	Z44	44-pin TSOP II	
12	CY7C1049CV33-12VC	V36	36-lead (400-Mil) Molded SOJ	Commercial
	CY7C1049CV33-12ZC	Z44	44-pin TSOP II	
	CY7C1049CV33-12VI	V36	36-lead (400-Mil) Molded SOJ	Industrial
	CY7C1049CV33-12ZI	Z44	44-pin TSOP II	
15	CY7C1049CV33-15VC	V36	36-lead (400-Mil) Molded SOJ	Commercial
	CY7C1049CV33-15ZC	Z44	44-pin TSOP II	
	CY7C1049CV33-15VI	V36	36-lead (400-Mil) Molded SOJ	Industrial
	CY7C1049CV33-15ZI	Z44	44-pin TSOP II	
	CY7C1049CV33-15VE	V36	36-lead (400-Mil) Molded SOJ	Automotive
	CY7C1049CV33-15ZSE	Z44	44-pin TSOP II	
20	CY7C1049CV33-20VC	V36	36-lead (400-Mil) Molded SOJ	Commercial
	CY7C1049CV33-20VI	V36	36-lead (400-Mil) Molded SOJ	Industrial
10	CY7C1049CV33-10VXC	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1049CV33-10ZXC	Z44	44-pin TSOP II (Pb-Free)	
	CY7C1049CV33-10VXI	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1049CV33-10ZXI	Z44	44-pin TSOP II (Pb-Free)	Industrial
12	CY7C1049CV33-12VXC	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1049CV33-12ZXC	Z44	44-pin TSOP II (Pb-Free)	
	CY7C1049CV33-12VXI	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1049CV33-12ZXI	Z44	44-pin TSOP II (Pb-Free)	
15	CY7C1049CV33-15VXC	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1049CV33-15ZXC	Z44	44-pin TSOP II (Pb-Free)	
	CY7C1049CV33-15VXI	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C1049CV33-15ZXI	Z44	44-pin TSOP II (Pb-Free)	
	CY7C1049CV33-15VXE	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Automotive
	CY7C1049CV33-15ZSXE	Z44	44-pin TSOP II	Automotive
20	CY7C1049CV33-20VXC	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Commercial
	CY7C1049CV33-20VXI	V36	36-lead (400-Mil) Molded SOJ (Pb-Free)	Industrial

Shaded areas contain advance information. Please contact your local Cypress Sales representative for availability of these parts.

Package Diagrams

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05006 Rev. *E

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	112569	03/06/02	HGK	New data sheet
*A	114091	04/25/02	DFP	Changed Tpower unit from ns to µs
*В	116479	09/16/02	CEA	Add applications foot note to data sheet, page 1.
*C	262949	See ECN	RKF	Added Automotive Specs Added Θ_{JA} and Θ_{JC} values on Page #3.
*D	300091	See ECN	RKF	Added -20-ns Speed bin
*E	344595	See ECN	SYT	Added Pb-Free package on page #8 Removed shading for CY7C1049CV33-15ZSXE in the ordering Informatior on page 9