MOSFET – Power, Single, N-Channel, DPAK/IPAK 30 V, 79 A

Features

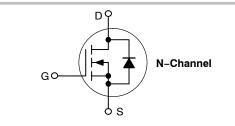
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These are Pb-Free Devices

Applications

- CPU Power Delivery
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

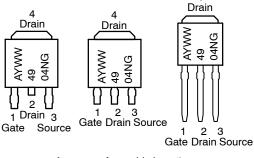
Parai	meter		Symbol	Value	Unit
Drain-to-Source Volta	age		V _{DSS}	30	V
Gate-to-Source Volta	ge		V_{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	17.8	Α
Current (R _{θJA}) (Note 1)		T _A = 100°C		12.6	
Power Dissipation $(R_{\theta JA})$ (Note 1)		T _A = 25°C	P _D	2.6	W
Continuous Drain		T _A = 25°C	I _D	13	Α
Current (R _{θJA}) (Note 2)	Steady State	T _A = 100°C		9.2	
Power Dissipation $(R_{\theta JA})$ (Note 2)	State	T _A = 25°C	P _D	1.4	W
Continuous Drain		T _C = 25°C	I _D	79	Α
Current (R _{θJC}) (Note 1)		T _C = 100°C		56	
Power Dissipation $(R_{\theta JC})$ (Note 1)		T _C = 25°C	P _D	52	W
Pulsed Drain Current	Pulsed Drain Current t _p =10μs		I _{DM}	316	Α
Current Limited by Pac	kage	T _A = 25°C	I _{DmaxPkg}	90	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			IS	47	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain-to- Energy (T _J = 25°C, V _D L = 0.1 mH, $I_{L(pk)}$ = 37	_D = 50 V, \	$I_{GS} = 10 \text{ V},$	E _{AS}	68.4	mJ
Lead Temperature for S (1/8" from case for 10 s		urposes	TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	3.7 m Ω @ 10 V	79 A
30 V	5.5 mΩ @ 4.5 V	797



CASE 369AA DPAK (Bent Lead) STYLE 2

CASE 369AD IPAK (Straight Lead)

CASE 369D IPAK (Straight Lead DPAK)

MARKING DIAGRAMS & PIN ASSIGNMENTS

A = Assembly Location Y = Year

Y = Year WW = Work Week 4904N = Device Code G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	2.9	°C/W
Junction-to-Tab (Drain)	$R_{ heta JC-TAB}$	4.3	
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	57	
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	108	

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Parameter	Symbol	Test Con	dition	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1.0	μΑ
		$V_{DS} = 24 V$	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{G}$	_S = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.0	1.6	2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		3.0	3.7	mΩ
			I _D = 15 A		3.0		1
		V _{GS} = 4.5 V	I _D = 30 A		4.0	5.5	1
			I _D = 15 A		4.0		1
Forward Transconductance	gFS	V _{DS} = 1.5 V,	I _D = 30 A		76		S
CHARGES AND CAPACITANCES			•				
Input Capacitance	C _{iss}				3052		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 0 \text{ V}$			976		1
Reverse Transfer Capacitance	C _{rss}	V _{DS} = 15 V			23		1
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 30 A			16.8		nC
Threshold Gate Charge	Q _{G(TH)}				4.4		1
Gate-to-Source Charge	Q _{GS}				8.2		1
Gate-to-Drain Charge	Q_{GD}				3.0		1
Total Gate Charge	$Q_{G(TOT)}$	V _{GS} = 10 V, V I _D = 30			41		nC
SWITCHING CHARACTERISTICS (Note	e 4)					•	
Turn-On Delay Time	t _{d(on)}				15.3		ns
Rise Time	t _r	V _{GS} = 4.5 V, V	'ns = 15 V.		19.8		1
Turn-Off Delay Time	t _{d(off)}	$I_{D} = 15 \text{ A}, R_{0}$			23.4		1
Fall Time	t _f		ŀ		7.5		1
Turn-On Delay Time	t _{d(on)}				10.3		ns
Rise Time	t _r	V _{GS} = 10 V, V	ns = 15 V.		20		1
Turn-Off Delay Time	t _{d(off)}	$I_D = 15 A, R_0$			28.7		1
	` '	ID = 15 A, nG = 3.0 52			8.0	-	4

^{3.} Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2%.

Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

^{4.} Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERI	STICS	•			•		
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.84	1.1	V
		I _S = 30 A	T _J = 125°C		0.7		
Reverse Recovery Time	t _{RR}		•		40.4		ns
Charge Time	ta	V_{GS} = 0 V, dls/dt= 100 A/ μ s, I_S = 30 A			20.5		
Discharge Time	tb				19.9		
Reverse Recovery Time	Q _{RR}				35		nC
PACKAGE PARASITIC VALUES							
Source Inductance (Note 5)	L _S				2.48		nH
Drain Inductance, DPAK	L _D	1			0.0164		
Drain Inductance, IPAK (Note 5)	L _D	$T_A = 3$	T _A = 25°C		1.88		
Gate Inductance (Note 5)	L _G	1			4.9		
Gate Resistance	R_{G}	1			1.0	2.0	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Assume terminal length of 110 mils.

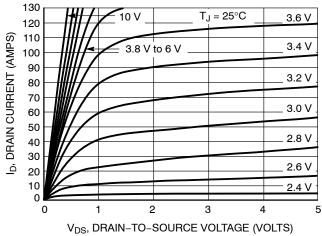
TYPICAL PERFORMANCE CURVES

130

120

110

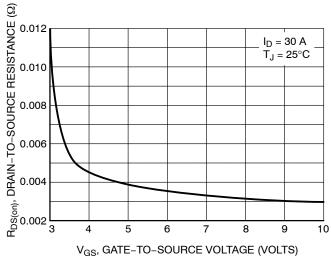
100


90

80

70

60


 $V_{DS} \ge 10 \text{ V}$

DRAIN CURRENT (AMPS) $T_J = 125^{\circ}C$ 50 40 $T_J = 25^{\circ}C$ 30 ے 20 $T_J = -55^{\circ}C$ 2.5 3 2 3.5

Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2. Transfer Characteristics

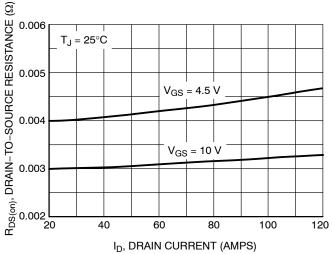


Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and **Gate Voltage**

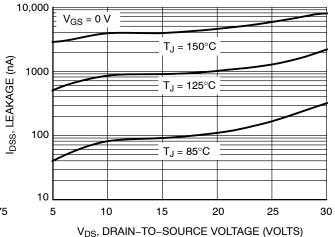


Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

TYPICAL PERFORMANCE CURVES

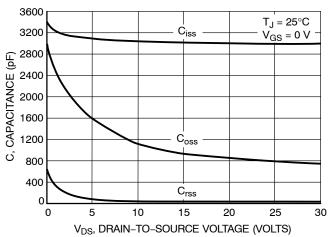


Figure 7. Capacitance Variation

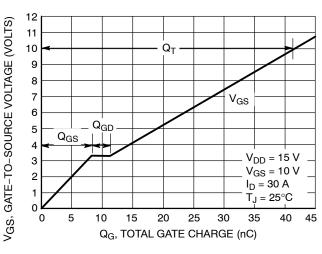


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

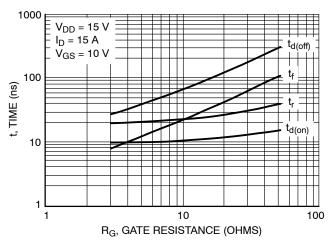


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

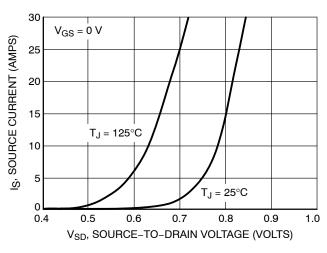


Figure 10. Diode Forward Voltage vs. Current

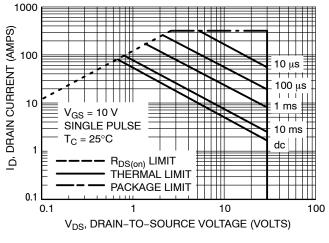


Figure 11. Maximum Rated Forward Biased Safe Operating Area

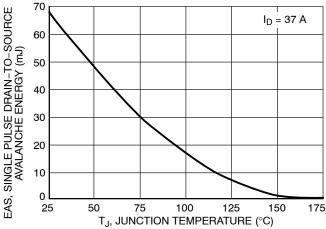


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CURVES

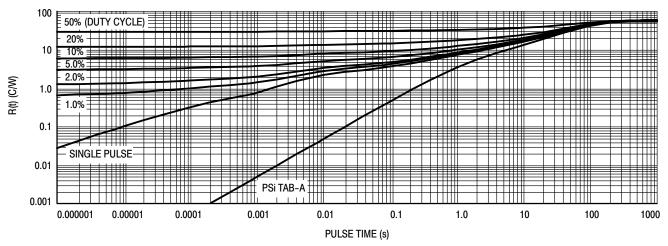


Figure 13. FET Thermal Response

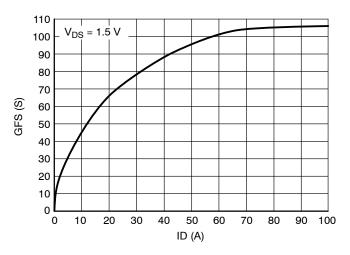
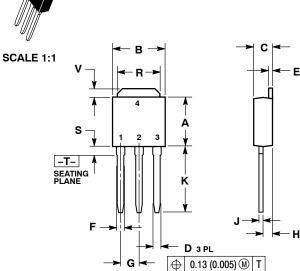


Figure 14. GFS vs ID

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTD4904NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4904N-1G	IPAK (Pb-Free)	75 Units / Rail
NTD4904N-35G	IPAK Trimmed Lead (Pb-Free)	75 Units / Rail


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

MT2

SOURCE

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR

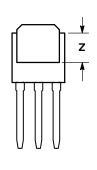
3. EMITTER

COLLECTOR

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

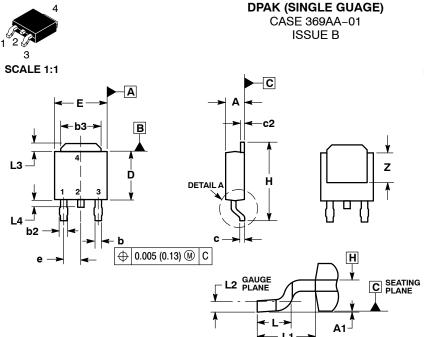
EMITTER

COLLECTOR

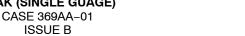
NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
V	0.035	0.050	0.89	1.27
Z	0.155		3.93	


MARKING DIAGRAMS

STYLE 4: PIN 1. CATHODE Integrated Circuits ANODE
 GATE **Discrete** 4. ANODE YWW XXXXX ALYWW XXXXXXXX

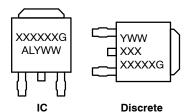

xxxxxxxxx = Device Code Α = Assembly Location IL = Wafer Lot Υ = Year WW = Work Week

BOOOMENT NOMBER	98AON10528D Electronic versions are uncontrolled except when accessed directly from printed versions are uncontrolled except when stamped "CONTROLLED to		COPY" in rea.
DESCRIPTION	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DETAIL A ROTATED 90° CW

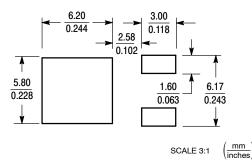
DATE 03 JUN 2010


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-
- MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
Е	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108 REF		2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 1: PIN 1. BASE STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. CATHODE 3. ANODE 2. DRAIN 3. SOURCE 4. COLLECTOR 4. DRAIN CATHODE STYLE 5: STYLE 6: STYLE 7: PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. GATE 2. COLLECTOR PIN 1. MT1 2. MT2 3. GATE 3. EMITTER 4. ANODE COLLECTOR


GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

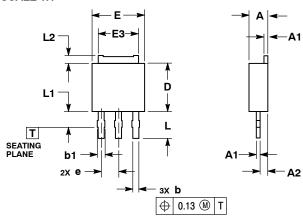
SOLDERING FOOTPRINT*

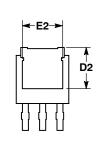
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

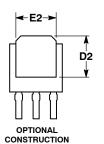
DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED"	
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

MECHANICAL CASE OUTLINE




3.5 MM IPAK, STRAIGHT LEAD


CASE 369AD **ISSUE B**

DATE 18 APR 2013

- NOTES:
 1.. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2.. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.19	2.38	
A1	0.46	0.60	
A2	0.87	1.10	
b	0.69	0.89	
b1	0.77	1.10	
D	5.97	6.22	
D2	4.80		
E	6.35	6.73	
E2	4.57	5.45	
E3	4.45	5.46	
е	2.28 BSC		
L	3.40	3.60	
L1		2.10	
L2	0.89	1.27	

GENERIC MARKING DIAGRAMS*

Integrated

Discrete

STYL	E 1	:
PIN	1.	ΒA

STYLE 5:

PIN 1. GATE

λSE

ANODE
 CATHODE

ANODE

COLLECTOR 3. **EMITTER** COLLECTOR

STYLE 2: PIN 1. GATE

STYLE 6:

PIN 1. MT1

MT2
 GATE

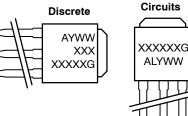
MT2

2. DRAIN 3. SOURCE DRAIN

STYLE 3: PIN 1. ANODE 2. CATHODE

STYLE 7:

3. ANODE CATHODE


PIN 1. GATE 2. COLLECTOR 3. EMITTER

COLLECTOR

STYLE 4: PIN 1. CATHODE

2. ANODE

XXXXXX = Device Code

Α = Assembly Location L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON23319D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	3.5 MM IPAK, STRAIGHT LEAD		PAGE 1 OF 1

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales