

General Description

The MAX682/MAX683/MAX684 charge-pump regulators generate 5V from a 2.7V to 5.5V input. They are specifically designed to serve as high-efficiency auxiliary supplies in applications that demand a compact design. The MAX682, MAX683, and MAX684 deliver 250mA, 100mA, and 50mA output current, respectively.

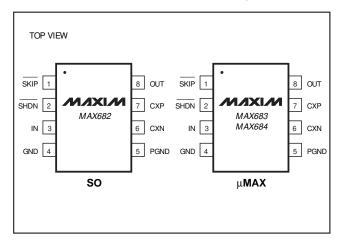
These complete 5V regulators require only one resistor and three external capacitors—no inductors are needed. High switching frequencies (externally adjustable up to 2MHz) and a unique regulation scheme allow the use of capacitors as small as $1\mu F$ per 100mA of output current. The MAX683/MAX684 are offered in a space-saving 8-pin μMAX package that is only 1.1mm high, while the MAX682 is available in an 8-pin SO.

Features

- ♦ Ultra-Small: 1µF Capacitors per 100mA of Output Current
- **♦ No Inductors Required**
- ↑ 1.1mm Height in µMAX Package (MAX683/MAX684)
- ♦ Up to 250mA Output Current (MAX682)
- ♦ Regulated ±4% Output Voltage
- **♦** 50kHz to 2MHz Adjustable Switching Frequency
- ♦ 2.7V to 5.5V Input Voltage
- ♦ 100µA Quiescent Current in Pulse-Skipping Mode
- ♦ 0.1µA Shutdown Current

Applications

Flash Memory Supplies
Battery-Powered Applications
Miniature Equipment
PCMCIA Cards
3.3V to 5V Local Conversion Applications
Backup-Battery Boost Converters
3V to 5V GSM SIMM Cards


Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX682ESA	-40°C to +85°C	8 SO
MAX683EUA	-40°C to +85°C	8 μΜΑΧ
MAX684EUA	-40°C to +85°C	8 μΜΑΧ

Typical Operating Circuit

INPUT 2.7V TO 5.5V REXT SHDN GND PGND PGND

Pin Configurations

NIXIN

Maxim Integrated Products 1

1

ABSOLUTE MAXIMUM RATINGS

IN, OUT, SHDN, SKIP to GND	
CXN to GND	
CXP to GND	\ ,
Continuous Output Current	, ,
MAX682	300mA
MAX683	150mA
MAX684	75mA
Output Short-Circuit Duration	5sec

Continuous Power Dissipation ($T_A = +70$ °C)	
8-Pin SO (derate 5.9mW/°C above +70°C)	471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C)	330mW
Operating Temperature Range	
MAX68_E_A	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range6	5°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

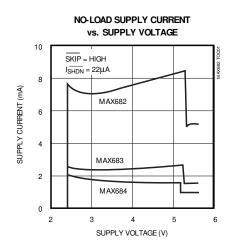
ELECTRICAL CHARACTERISTICS

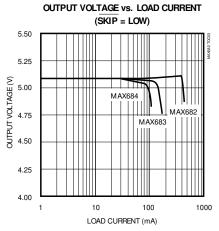
 $(V_{IN}=3V, V_{\overline{SKIP}}=0V, C_{IN}=1\mu F, C_X=0.47\mu F, C_{OUT}=2\mu F, I_{\overline{SHDN}}=22\mu A; I_{MAX}=250mA$ for MAX682, I_{MAX}= 100mA for MAX683, I_{MAX}= 50mA for MAX684; T_A= T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A= +25°C.) (Note 1)

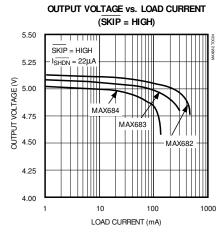
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}	Regulation with $V_{IN} > 3.6V$ requires $\overline{SKIP} = high$		2.7		5.5	V
Input Undervoltage Lockout Threshold					2.35	2.6	V
Input Undervoltage Lockout Hysteresis					100		mV
Output Voltage	Vour		$<$ ILOAD \le IMAX; $0V \le IN \le 3.6V$ for $\overline{SKIP} = 0$, $0V \le IN \le 5.5V$ for $\overline{SKIP} = IN$		5.05	5.20	V
		MAX682		250			
Maximum Output Current	I _{MAX}	MAX683		100			mA
		MAX684	MAX684				
		SKIP = 0, V _{IN} = 3.6V			0.1	0.18	
No-Load Input Current	IQ	I_Q $\overline{SKIP} = V_{IN} = 3.6V$	MAX682		7.5		mA
No-Load Input Current			MAX683		2.5		
			MAX684		1.7		
Load Regulation	ΔV_{LDR}	SKIP = high, 0 ≤ ILOAD) ≤ I _{MAX}		-3		%
SHDN Logic Low Input	VINL, SHON					0.35	V
SHDN On Bias Voltage	Von, SHDN	T _A = +25°C		630	690	750	mV
SHDN Input Current Range	ISHDN	(Note 2)		1		50	μΑ
		00 A	0°C < T _A < +85°C	850	1000	1200	- kHz
Switching Fraguency (Note 2)		$I_{SHDN} = 22\mu A$	-40°C < T _A < +85°C	750	1000	1300	
Switching Frequency (Note 2)		Ιαιναν 4.4υΔ	0°C < T _A < +85°C	160	200	250	
		$I_{SHDN} = 4.4 \mu A$ $-40^{\circ}C < T_A < +85^{\circ}C$		150	200	270	
Shutdown Supply Current	IQ, SHDN	SHDN = 0, V _{IN} = 5.5V, V _{OUT} = 0			0.1	5	μΑ
Shutdown Exit Time	tstart	$R_L = 5V/I_{MAX}$			50		μs

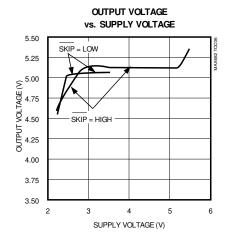
ELECTRICAL CHARACTERISTICS (continued)

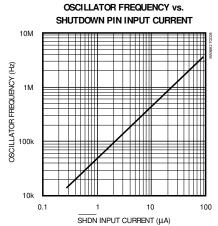
 $(V_{IN}=3V, V_{\overline{SKIP}}=0V, C_{IN}=1\mu F, C_X=0.47\mu F, C_{OUT}=2\mu F, I_{\overline{SHDN}}=22\mu A; I_{MAX}=250mA$ for MAX682, $I_{MAX}=100mA$ for MAX683, $I_{MAX}=50mA$ for MAX684; $I_{A}=T_{MIN}$ to I_{MAX} , unless otherwise noted. Typical values are at $I_{A}=+25^{\circ}C$.) (Note 1)

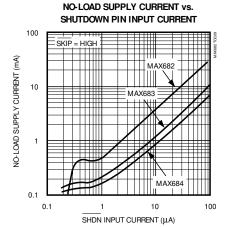

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SKIP Input Voltage Low	VINL, SKIP				0.8	V
SKIP Input Voltage High	VINH, SKIP	$V_{IN} = 5.5V$	2.4			, v
SKIP Input Leakage Current	ISKIP	$V_{IN} = 5.5V$, $V_{\overline{SKIP}} = 0V$ or $5.5V$	-1		1	μΑ

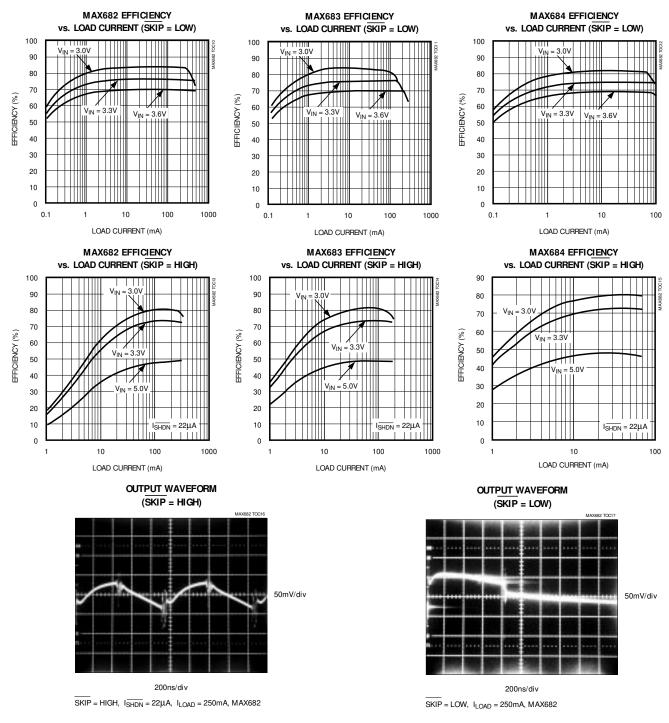

Note 1: Specifications to -40°C are guaranteed by design and not production tested.


Note 2: Current into \overline{SHDN} determines oscillator frequency: $R_{EXT}(k\Omega) = 45000 (V_{IN} - 0.69V) / f_{OSC}(kHz)$


Typical Operating Characteristics

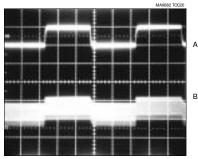

(Circuit of Figure 5, V_{IN} = 3.3V, component values from Tables 2 and 3, T_A = +25°C, unless otherwise noted.)





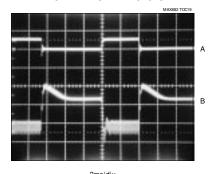
Typical Operating Characteristics (continued)

(Circuit of Figure 5, V_{IN} = 3.3V, component values from Tables 2 and 3, T_A = +25°C, unless otherwise noted.)


Typical Operating Characteristics (continued)

(Circuit of Figure 5, V_{IN} = 3.3V, component values from Tables 2 and 3, T_A = +25°C, unless otherwise noted.)

SHUTDOWN TIMING MASSEZ TOCHS A


 $\frac{100\mu s/div}{\text{A: OUTPUT VOLTAGE: SKIP = HIGH, }P_L = 5V / I_{MAX}, 2V/div}$ B: SHDN VOLTAGE: 1V/div

LINE-TRANSIENT RESPONSE

A: INPUT VOLTAGE: V_{IN} = 3.1V TO 3.6V, 500mV/div B: OUTPUT VOLTAGE: \overline{SKIP} = HIGH, $\overline{I_{SHDN}}$ = 22 μ A, I_{LOAD} = 250mA, 50mV/div, MAX682

LOAD-TRANSIENT RESPONSE

A: LOAD CURRENT: I_{LOAD} = 5mA TO 250mA, 500mA/div B: OUTPUT VOLTAGE: SKIP = HIGH, I_{SHDN} = 22μA, 100mV/div. MAX682

Pin Description

PIN	NAME	FUNCTION
1	SKIP	When \overline{SKIP} = low, the regulator operates in low-quiescent-current skip mode. When \overline{SKIP} = high, the regulator operates in constant-frequency mode, minimizing output ripple and noise. \overline{SKIP} must be tied high for input voltages above 3.6V.
2	SHDN	Shutdown Input. Drive \overline{SHDN} through an external resistor. When \overline{SHDN} = low, the device turns off. When current is sourced into \overline{SHDN} through R _{EXT} , the device activates, and the \overline{SHDN} pin input current sets the oscillator's switching frequency. R _{EXT} (k Ω) = 45000 (V _{IN} - 0.69V) / f _{OSC} (kHz).
3	IN	Input Supply Pin. Can range from 2.7V to 5.5V for \overline{SKIP} = high, and 2.7V to 3.6V for \overline{SKIP} = low. Bypass to PGND with a suitable value capacitor (see <i>Capacitor Selection</i> section).
4	GND	Ground Pin. Connect to PGND through a short trace.
5	PGND	Power Ground Pin
6	CXN	Negative Terminal of the Charge-Pump Transfer Capacitor
7	CXP	Positive Terminal of the Charge-Pump Transfer Capacitor
8	OUT	Fixed 5V Power Output. Bypass to PGND with output filter capacitor.

Detailed Description

The MAX682/MAX683/MAX684 charge pumps provide a regulated 5V output from a 2.7V to 5.5V input. They deliver a maximum of 250mA, 100mA, or 50mA load current, respectively. Designed specifically for compact applications, a complete regulator circuit requires only three small external capacitors and one resistor. An externally adjustable switching frequency and innovative control scheme allow the circuit to be optimized for efficiency, size, or output noise. The devices also contain a shutdown feature.

The MAX682/MAX683/MAX684 consist of an error amplifier, a 1.23V bandgap reference, an internal resistive feedback network, an oscillator, high-current MOS-FET switches, and shutdown and control logic (Figure 1). Figure 2 shows an idealized unregulated chargepump voltage doubler. The oscillator runs at a 50% duty cycle. During one half of the period, the transfer capacitor (Cx) charges to the input voltage. During the other half, the doubler stacks the voltage across Cx and the input voltage, and transfers the sum of the two voltages to the output filter capacitor (COUT). Rather than simply doubling the input voltage, the MAX682/MAX683/MAX684 provide a regulated fixed output voltage (5V) using either skip mode or constantfrequency mode. Skip mode and constant-frequency mode are externally selected via the SKIP input pin.

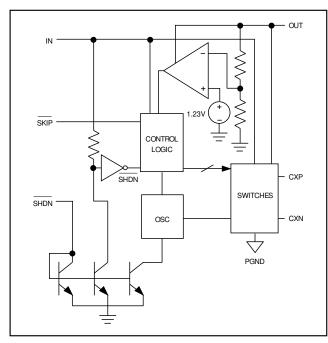


Figure 1. Functional Block Diagram

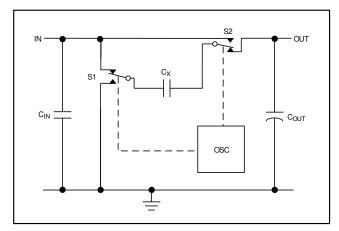


Figure 2. Unregulated Voltage Doubler

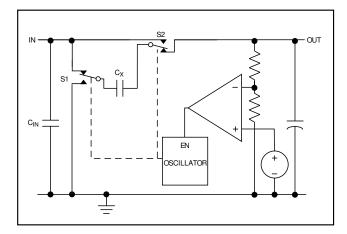


Figure 3. Skip-Mode Regulation

Skip Mode

In skip mode $(\overline{SKIP} = low)$, the error amplifier disables switching when it detects an output higher than 5V. The device then skips switching cycles until the output voltage drops. Then the error amplifier reactivates the oscillator. Figure 3 illustrates the regulation scheme. This regulation method minimizes operating current because the device does not switch continuously. \overline{SKIP} is a logic input and should not remain floating.

Constant-Frequency Mode

When SKIP is high, the charge pump runs continuously at the selected frequency. Figure 4 shows a block diagram of the device in constant-frequency mode. The error amplifier controls the charge on Cx by driving the gate of the N-channel FET. When the output voltage falls, the gate drive increases, resulting in a larger voltage across Cx. This regulation scheme minimizes output ripple. Since the device switches continuously, the

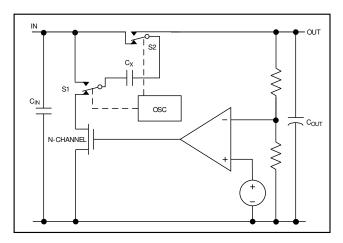


Figure 4. Constant-Frequency-Mode Regulation

Table 1. Tradeoffs Between Operating Modes

FEATURE	SKIP MODE (SKIP = LOW)	CONSTANT- FREQUENCY MODE (SKIP = HIGH)
Best Light-Load Efficiency	V	
Smallest External Component Size		V
Output Ripple Amplitude and Frequency	Relatively large amplitude, variable frequency	Relatively small amplitude, constant frequency
Load Regulation	Very Good	Good

output noise contains well-defined frequency components, and the circuit requires much smaller external capacitors for a given output ripple. However, constant-frequency mode, due to higher operating current, is less efficient at light loads than skip mode. Note: For input voltages above 3.6V, the devices must operate in constant-frequency mode. Table 1 summarizes the tradeoffs between the two operating modes.

Frequency Selection and Shutdown

The SHDN pin on the MAX682/MAX683/MAX684 performs a dual function: it shuts down the <u>device</u> and determines the oscillator frequency. The SHDN input looks like a diode to ground and should be driven through a resistor.

Driving \overline{SHDN} low places the device in shutdown mode. This disables all switches, the oscillator, and control logic. The device typically draws $0.1\mu A$ ($5\mu A$

max) of supply current in this mode and the output presents a $50k\Omega$ impedance to ground. The device exits shutdown once \overline{SHDN} is forward biased (minimum of $1\mu A$ of current). The typical no-load shutdown exit time is $50\mu s$.

When \overline{SHDN} is pulled high through an external resistor to V_{IN} , the bias current into \overline{SHDN} determines the charge-pump frequency. To select the frequency, calculate the external resistor value, R_{EXT} , using the following formula:

 $R_{EXT} = 45000 (V_{IN} - 0.69V) / f_{OSC}$

where REXT is in $k\Omega$ and fOSC is in kHz. Program the frequency in the 50kHz to 2MHz range. This frequency range corresponds to \overline{SHDN} input currents between 1 μ A and 50 μ A. Proper operation of the oscillator is not guaranteed beyond these limits. Currents lower than 1 μ A may shut down the device. The forward-biased diode voltage from the \overline{SHDN} input to GND has a temperature coefficient of -2mV/°C.

Undervoltage Lockout

The MAX682/MAX683/MAX684 have an undervoltage-lockout feature that deactivates the devices when the input voltage falls below 2.25V. Regulation at low input voltages cannot be maintained. This safety feature ensures that the device shuts down before the output voltage falls out of regulation by a considerable amount (typically 10% with no load). Once deactivated, hysteresis holds the device in shutdown until the input voltage rises 100mV above the lockout threshold.

_Applications Information

Capacitor Selection

The MAX682/MAX683/MAX684 require only three external capacitors (Figure 5). Their values are closely linked to the output current capacity, oscillator frequency, output noise content, and mode of operation.

Generally, the transfer capacitor (C_X) will be the smallest, and the input capacitor (C_{IN}) is twice as large as C_X . Higher switching frequencies allow the use of smaller C_X and C_{IN} . The output capacitor (C_{OUT}) can be anywhere from 5-times to 50-times larger than C_X , depending on the mode of operation and ripple tolerance. In continuous switching mode, smaller output ripple allows smaller C_{OUT} . In skip mode, a larger C_{OUT} is required to maintain low output ripple. Tables 2 and 3 show capacitor values recommended for lowest supply-current operation (skip mode) and smallest size operation (constant-frequency mode), respectively.

Table 2. Recommended Capacitor Values for Quiescent Current (Skip Mode)

PART	OUTPUT	CIN	CX	Соит	- (μ F)	V _{OUT}
FANT	(mA)	(μF)	(µF)	TANTALUM	CERAMIC	(mV)
MAX682	250	2.2	1	47	10	100
MAX683	100	1	0.47	22	4.7	100
MAX684	50	0.47	0.22	10	2.2	100

Table 3. Recommended Capacitor Values for Smallest Size (Constant-Frequency Mode, ISHDN = 22µA, 1MHz)

PART	OUTPUT (mA)	C _{IN} (µF)	C _X (µF)	CERAMIC C _{OUT} (µF)	V _{OUT} RIPPLE (mV)
MAX682	250	1	0.47	2.2	80
MAX683	100	0.47	0.22	1	80
MAX684	50	0.22	0.1	0.47	80

Table 4. Recommended Capacitor Manufacturers

VALUE	DESCRIPTION	MANUFACTURER	PHONE NUMBER
47μF to 10μF	595D-series tantalum surface mount	Sprague	(603) 224-1961
47μF to 10μF	TPS-series surface mount	AVX	(803) 946-0690
0.1μF to 2.2μF	Ceramic surface mount	TDK	(847) 390-4373

In addition, the following two equations approximate output ripple for each mode. In skip mode, output ripple is dominated by ESR, and is approximately:

 $V_{RIPPLE(SKIP)} \cong (2V_{IN} - V_{OUT})ESR_{COUT} / R_{TX}$

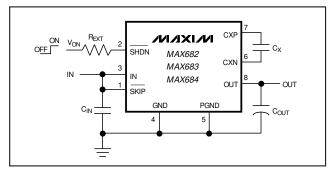


Figure 5. Standard Operating Circuit

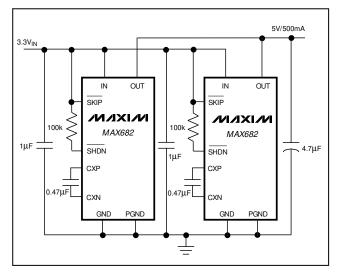


Figure 6. Paralleling Two MAX682s

where ESR_{COUT} is the ESR of the output filter capacitance, and R_{TX} is the open-loop output transfer resistance of the IC. R_{TX} is typically 0.8Ω for the MAX682, 1.6Ω for the MAX683, and 3Ω for the MAX684. In constant-frequency mode, output ripple is dominated by C_{OUT} and is approximately:

 $VRIPPLE(const-freq) \cong IOUT / (2 \times fOSC \times COUT)$

All capacitors must maintain a low (<100m Ω) equivalent series resistance (ESR). Table 4 lists the manufacturers of recommended capacitors. Surface-mount tantalum capacitors will work well for most applications. Ceramic capacitors will provide the lowest ripple due to their typically lower ESR.

If the source impedance or inductance of the input supply is large, additional input bypassing (2.2 μ F to 22 μ F) may be needed. This additional capacitance need not be a low-ESR type.

Power Dissipation

The power dissipated in the MAX682/MAX683/MAX684 depends on output current and is accurately described by:

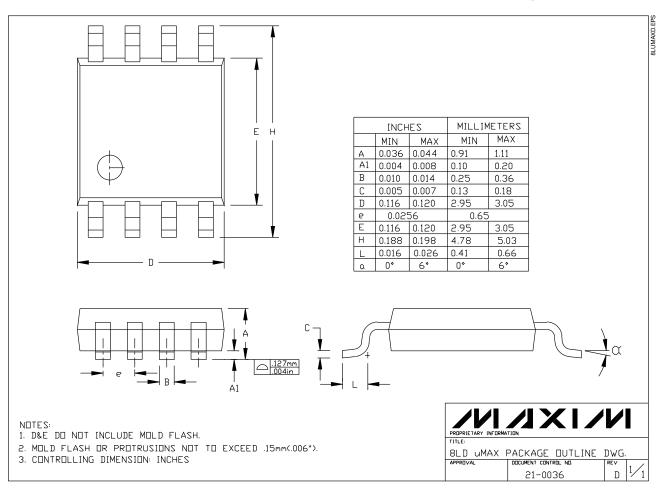
PDISS = IOUT (2VIN - VOUT)

PDISS must be less than that allowed by the package rating. See the *Absolute Maximum Ratings* for 8-pin μ MAX (MAX683/MAX684) and SO (MAX682) power-dissipation limits and deratings.

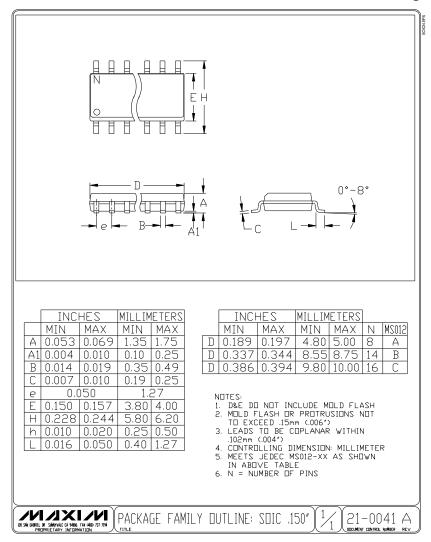
Layout Considerations

All capacitors should be soldered in close proximity to the IC. Connect ground and power ground through a short, low-impedance trace. If a high-value resistor is driving the shutdown input and is picking up noise (i.e., frequency jitter at CXP and CXN), bypass $\overline{\text{SHDN}}$ to GND with a small capacitor (0.01 μ F).

Paralleling Devices


The MAX682/MAX683/MAX684 can be paralleled to yield higher load currents. The circuit of Figure 6 can deliver 500mA at 5V. It uses two MAX682s in parallel. The devices can share the output capacitors, but each one requires its own transfer capacitor (C_X) and input capacitor. For best performance, the paralleled devices should operate in the same mode (skip or constant frequency).

Chip Information


TRANSISTOR COUNT: 659

SUBSTRATE CONNECTED TO GND

Package Information

Package Information

MAX682/MAX683/MAX684

3.3V-Input to Regulated 5V-Output Charge Pumps

NOTES

/**I**//XI/M _____

NOTES

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.