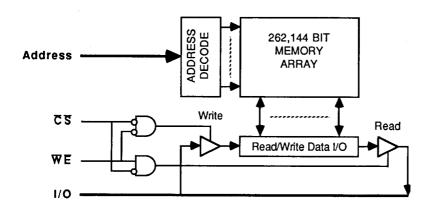
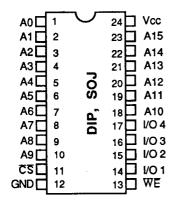
Q

High-Speed CMOS 64Kx4 SRAM with Common I/O

QS86440


FEATURES/BENEFITS

- High Speed Access and Cycle times
- 12 ns/15 ns Commercial
- 15 ns/20 ns Military
- TTL compatible I/Ó
- Low power, high-speed QCMOS™ technology
- · Military product compliant to MIL-STD-883, Class B
- 6-Transistor cell for high reliability
- · Ideal for reliable, dense memory systems
- Available in 24-pin DIP, 28-pin LCC 24-pin 300 mil SOJ
- · Low Standby current
- JEDEC standard pinout


DESCRIPTION

The QS86440 is a high-speed 256K SRAM organized as 64K words of 4 bits. It is manufactured in a high-performance CMOS process, and it based on a 6-transistor cell design for high reliability of data retention. The high-speed access times of the QS86440 make it useful in cache data RAM, cache tag RAMs, high-speed scratchpad memories, look-up tables, pipelined DSP and bit-slice systems. Low operating power and excellent latch-up and ESD protection are provided.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

ALL PINS TOP VIEW

* For LCC pinout contact factory

PIN DESCRIPTION

Pin Name	1/0	Function
Α	ı	Address
1/01 - 1/04	1/0	Data
CS	ı	Chip Select
WE	ı	Write Enable

FUNCTION TABLE

CS	WE	1/0	Power	Function
Н	Х	High Z	Standby	Deselect
L	Н	Data Out	Active	Read
L	L	Data In	Active	Write

ABSOLUTE MAXIMUM RATINGS

Supply Voltage to Ground0.5V to	+7.0V
DC Output Voltage VO0.5V to VCC	
DC Input Voltage V _I 0.5V to V _{CC}	+ 0.5V
AC Input Voltage (for a pulse width ≤20 ns)	-3.0V
DC Output Current Max. sink current/pin	50 mA
DC Output Current Max. source current/pin	30 mA
TBIAS Temperature Under Bias, COM65° to +	125°C
TSTG Storage Temperature, COM65° to +	125°C
TBIAS Temperature Under Bias, MIL65° to +	135°C
TSTG Storage Temperature, MIL65° to +	155°C

Note: Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to the maximum ratings for extended periods may affect reliability.

CAPACITANCE

Ta=+25°C, f=1 MHz

Name	Description	Conditions	Тур	Max	Unit
Cin	Input Capacitance	Vin = 0 V PDIP Pkg.	3	6	рF
Cin	Input Capacitance	Vin = 0 V SOJ Pkg.	2.5	5	pF
Cout	Output Capacitance	Vout = 0 V PDIP Pkg.		7	pF
Cout	Output Capacitance	Vout = 0 V SOJ Pkg.		7	pF

Note: Capacitance is measured at characterization but not tested at final production.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Commercial TA = 0° C to 70°C, Vcc = $5.0V\pm10\%$ Military TA = -55°C to 125° C, Vcc = $5.0V\pm10\%$

Symbol	Parameter Test Conditions		Commercial		Military		Unit
-			Min	Max	Min	Max	
Vih	Input HIGH Voltage	Logic High for All Inputs	2.2	6.0	2.2	6.0	Volts
Vil	Input LOW Voltage (1)	Logic Low for All Inputs		0.8		0.8	
Voh	Output HIGH Voltage	Ioh = -4 mA, Vcc = MIN	2.4		2.4		
Vol	Output LOW Voltage	Iol = 8 mA, Vcc = MIN		0.4		0.4	
16	Input Leakage	Vcc = MAX, Vin = GND to Vcc		5		10	μА
0	Output Leakage	Vcc = MAX, Vout = GND to Vcc		5		10	

Notes:

POWER SUPPLY CHARACTERISTICS

Commercial TA = 0° C to 70°C, Vcc = $5.0V\pm10\%$ Military TA = -55°C to 125°C, Vcc = $5.0V\pm10\%$ Vlc = 0.2 V, Vhc = Vcc - 0.2V At f = 0.2 V, one input lines switch; At f = f MAX, RAM is cycling at 1 / t RC

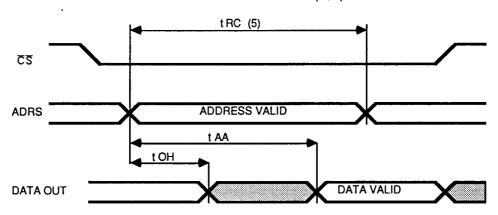
Symbol	Parameter	-12	-15		-15		-20	Unit
		O	С	М	М			
lœ	Dynamic Operating Current, Vcc = MAX Outputs open CS ≤ Vil, f = f MAX	170	165	175	165	mA		
Isb	TTL Standby Current, Vcc = MAX Outputs open CS ≥ Vih, f = f MAX	90	90	100	100			
Isb1	Full Standby Current, Vcc = MAX Outputs open CS ≥ Vhc, f = 0 Vin ≤ Vlc or Vin ≥ Vhc	15	15	20	20			

^{1.} Transient inputs with Vil not more negative than -3.0 volts are permitted for pulse widths < 20 ns.

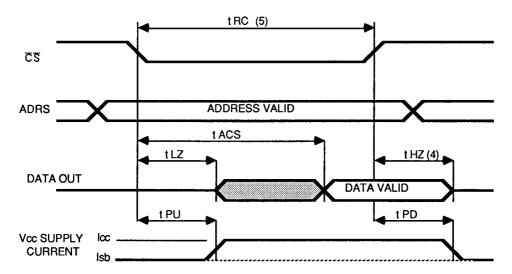
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Commercial TA = 0° C to 70°C, Vcc = $5.0V\pm10\%$ Military TA = -55°C to 125° C, Vcc = $5.0V\pm10\%$ See Read Timing Diagrams. All values in nanoseconds

Symbol	Parameter	-12	-12(3) -		-12(3)		5(3)	-20	
	:	Min	Max	Min	Max	Min	Max		
READ CYCLE									
t RC	Read Cycle Time (1)	12	-	15	-	19	,		
t AA	Address Access Time	-	12	-	15	-	19		
t ACS	Chip Select Access Time	-	12	-	15	,	19		
t OH	Output Hold from Address Change	2	,	2		3			
t LZ	Chip Select to Output in Low Z (2)	2	,	2	•	2	•		
t HZ	Chip Select to Output in High Z (2)	-	5	-	7	,	8		
t PU	Chip Select to Power Up Time (2)	0	-	0	•	0	-		
t PD	Chip Select to Power Down Time (2)	-	12	,	15	-	19		

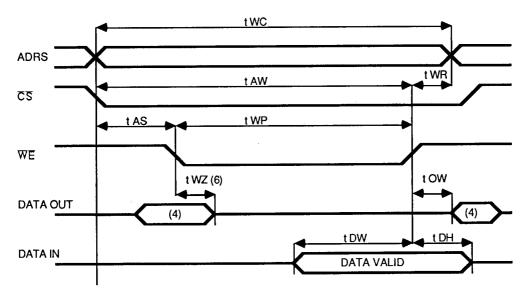

- 1) See Test Circuit and Waveforms. Minimums guaranteed but not tested.
- This parameter is guaranteed by design but not tested.
 For Vcc±5%. Commercial Only

Commercial TA = 0° C to 70°C, Vcc = $5.0V\pm10\%$ Military TA = -55°C to 125° C, Vcc = $5.0V\pm10\%$ See Write Timing Diagrams. All values in nanoseconds.

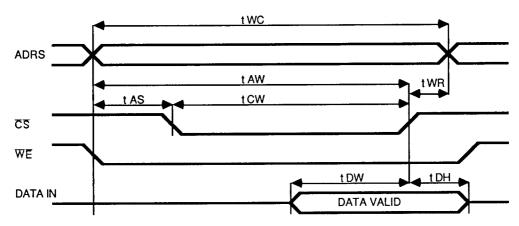

Symbol	Parameter	-12(3)		-15(3)		- :	20
		Min	Max	Min	Max	Min	Max
WRITE CYCLE							
t WC	Write Cycle Time (1)	12	,	15	-	19	-
t CW	Chip Select Valid to End of Write	10	-	13	-	17	-
t AW	Address Valid to End of Write	10	-	13	•	17	ı
t AS	Address Setup Time	0	-	0	-	0	-
t WP	Write Pulse width	10	-	12	-	16	-
t WR	Write Re∞very Time	0	-	0	-	0	-
t DW	Data Valid to End of Write	6	•	8	-	10	-
t DH	Data Hold Time	0	-	0	-	0	•
t WZ	Write Enable to Output in High Z (2)	-	5	-	6	-	7
t OW	Output Active from End of Write(2)	2	-	2	-	2	-

See Test Circuit and Waveforms. Minimums guaranteed but not tested.
 This parameter is guaranteed by design but not tested.
 For Vcc±5% Commercial Only

TIMING WAVEFORMS - READ CYCLE NO. 1 (1,2)



TIMING WAVEFORMS - READ CYCLE NO. 2 (1,3)



- WE is high for Read cycle.
 CS is low for Read cycle #1.
 Address is valid to or coincident with CS transition time for Read Cycle #2.
 Transition to Hi-Z is measured ± 200 mV change from the prior steady state voltage.
 All read timings are referenced from the last valid address to the first transitioning address.

TIMING WAVEFORMS-WRITE CYCLE No. 1 (1,2,3 WE controlled timing)

TIMING WAVEFORMS-WRITE CYCLE No. 2 (1,2,3,5 CS controlled timing)

- WE or CS must be high during address transitions.
- 2. A write occurs during the overlap of a low CS and a low WE.
- 3. t WR is measured from the earlier of \overline{CS} and \overline{WE} going high to end of the write cycle.
- 4. During this period the I/O pins are in the output state and input signals must not be applied.
- If the CS low transition occurs simultaneously with or after the WE low transition, the output remains in the high impedance state.
- 6. Transition to Hi-Z is measured ± 200 mV change from the previous steady state voltage.