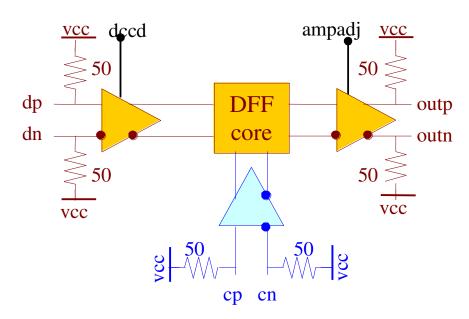


Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ASNT5117-KMC DC-40 *Gbps* D-Type Flip-Flop with Amplitude Adjust


- High speed broadband D-Type Flip-Flop for data retiming with full rate clock
- Input data common mode control
- Exhibits low jitter and limited temperature variation over industrial temperature range
- 4*ps* set-up/hold time capability
- 88% clock phase margin for retiming of data input eye
- Fully differential CML input interfaces
- Fully differential CML output interface with adjustable 0 to 900mV single-ended swing
- Single +3.3V or -3.3V power supply
- Power consumption: 726*mW*
- Fabricated in SiGe for high performance, yield, and reliability
- Custom CQFP 24-pin package

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

DESCRIPTION

Fig. 1. Functional Block Diagram

The temperature stable ASNT5117-KMC SiGe IC provides broadband data retiming functionality and is intended for use in high-speed measurement / test equipment. The IC shown in Fig. 1 can sample a high-speed data signal dp/dn with a full-rate external clock cp/cn to create a full-rate retimed NRZ data output qp/qn. The internal DC common mode voltage levels on data inputs dp/dn can be adjusted by applying analog voltage to the control input dccd. The output amplitude of the DFF is adjustable by using the control voltage ampadj.

The part's I/O's support the CML logic interface with on chip equivalent 50*Ohm* termination and may be used differentially, AC/DC coupled, single-ended, or in any combination (see also POWER SUPPLY CONFIGURATION).

HS Clock Input Buffer

The buffer can accept high-speed signals at its differential CML input port cp/cn. It can also accept a single-ended signal with a threshold voltage applied to the unused pin. It can handle a wide range of input signal amplitudes. The buffer utilizes on-chip single-ended 50*Ohm* termination to vcc for each input line.

HS Data Input Buffer

The buffer can accept high-speed signals at its differential CML input port dp/dn. It can also accept a single-ended signal with a threshold voltage applied to the unused pin. It can handle a wide range of input signal amplitudes. The buffer utilizes on-chip single-ended 50*Ohm* termination to vcc for each input line.

The buffer allows for adjustment of its input DC common-mode voltage by changing the control voltage dccd following the diagram shown in Fig. 2. Here the x-axis presents the dccd values, the y-axis presents the common-mode voltage values, the red lines correspond to the dp input, the blue lines correspond to

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

the dn input, and the solid lines represent typical conditions while dotted and dashed lines represent slow and fast conditions respectively.

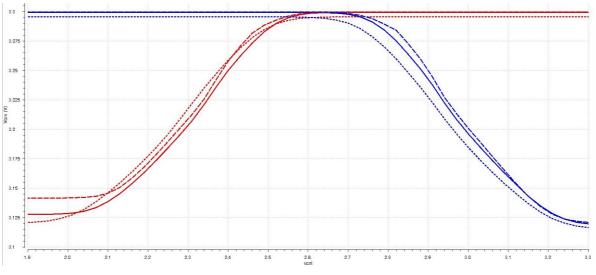


Fig. 2. Duty Cycle Control Diagram

HS Data Output Buffer

The buffer receives high-speed serial data from the DFF core and converts it into a differential CML output signal qp/qn. Each buffer utilizes internal single-ended 50*Ohm* loads to vcc and requires single-ended 50*Ohm* external termination. The termination resistors can be connected from each output directly to vcc, or through DC blocks to vee. The amplitude of the output signals can be adjusted from 0V to its maximum value using the external control voltage ampadj.

POWER SUPPLY CONFIGURATION

The part can operate with either a negative supply (vcc = 0.0V = ground and vee = -3.3V), or a positive supply (vcc = +3.3V and vee = 0.0V = ground). In case of a positive supply, all I/Os need AC termination when connected to any devices with 50*Ohm* termination to ground. Different PCB layouts will be needed for each different power supply combination.

All the characteristics detailed below assume vcc = 0.0V and vee = -3.3V.

ABSOLUTE MAXIMUM RATINGS

Caution: Exceeding the absolute maximum ratings shown in *Table 1* may cause damage to this product and/or lead to reduced reliability. Functional performance is specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed or implied. All min and max voltage limits are referenced to ground (assumed vcc).

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

Parameter	Min	Max	Units
Supply Voltage (vee)		-3.6	V
Power Consumption		0.80	W
Input Data Voltage Swing (SE)		1.0	V
Input Clk Voltage Swing (SE)		1.0	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table 1. Absolute Maximum Ratings

TERMINAL FUNCTIONS

TERMINAL		Pin		Default	Termination		
Name	No.	Туре	function		state		
High-Speed I/Os							
dp	21	CML	Input data			SE 50 <i>Ohm</i> to VCC	
dn	23	Input					
ср	3	CML	Input clock			SE 50 <i>Ohm</i> to vcc	
cn	5	Input					
qp	11	CML	Output data.			SE 500hm to vcc. Require	
qn	9	Output				external SE 500hm to vcc	
DC Controls							
ampadj	15	Analog	Output data amplitude			2.3KOhm to vcc, 9.3KOhm	
		voltage	control			to vee	
dccd	17		Input data common			5.6KOhm to vcc, 22.2KOhm	
			mode volta	age control		to vee	
Supply and Termination Voltages							
Name Description					Pin Number		
vcc	Positive power supply		2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24				
	(+3.3V or 0V)						
vee	Negative power supply		1, 7, 13, 19				
	(0V or -3.3V)						

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS
General Parameters					
VCC		0.0		V	External ground
vee	-3.1	-3.3	-3.5	V	±6%
Ivcc		220	233	mА	
Power consumption		726	770	mW	
Junction temperature	-25	50	125	°C	
		HS	Input Data	(dp/dn)	
Data rate	DC	32	40	Gbps	
Swing	0.05		0.8	V	Differential or SE, p-p
CM Voltage Level	vcc-0.7+s	sw/2 vcc-	+0.6-sw/2	V	Must match for both inputs
HS Input Clock (cp/cn)					
Frequency	DC	32	40	GHz	
Swing	0.05		0.8	V	Differential or SE, p-p
CM Voltage Level	vcc-0.7	VCC	+0.6-sw/2	V	Must match for both inputs
Duty Cycle	40	50	60	%	
Clock phase margin	86	88	90	%	For reliable data latching
HS Output Data (qp/qn)					
Data rate	DC	32	40	Gbps	
Logic "1" level	vcc-0.05	vcc-0.03	vcc-0.01	V	
	Equal to logic "1"			V	With ampadj set at minimum
Logic "0" level	vcc-0.42	vcc-0.40	vcc-0.38	V	With ampadj set at default
	vcc-0.90	vcc-0.80	vcc-0.78	V	With ampadj set at maximum
Jitter		1.5		ps	Peak-to-peak at 32Gbps
DC Input Controls (dccd, ampadj)					
Max level		VCC		V	
Min level		vcc - 1.3		V	

PACKAGE INFORMATION

The chip die is housed in a custom 24-pin CQFP package shown in Fig. 3. The package provides a center heat slug located on its back side to be used for heat dissipation. ADSANTEC recommends for this section to be soldered to the **vcc** plain, which is ground for a negative supply, or power for a positive supply.

The part's identification label is ASNT5117-KMC. The first 8 characters of the name before the dash identify the bare die including general circuit family, fabrication technology, specific circuit type, and part version while the 3 characters after the dash represent the package's manufacturer, type, and pin out count.

This device complies with the Restriction of Hazardous Substances (RoHS) per 2011/65/EU for all ten substances.

Б

2

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

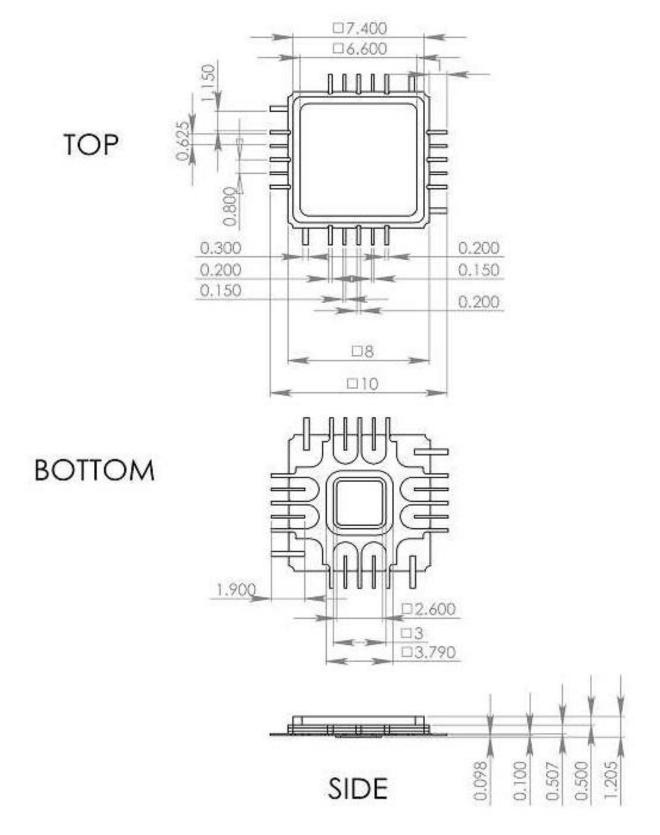


Fig. 3. CQFP 24-Pin Package Drawing (All Dimensions in mm)

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

REVISION HISTORY

Revision	Date	Changes	
1.3.2	02-2020	Updated Package Information	
1.2.2	07-2019	Updated Letterhead	
1.2.1	10-2015	Corrected electrical characteristics section	
		Updated package information section	
1.1.1	04-2015	Updated maximum frequency of operation	
		Updated maximum output amplitude	
1.0.1	04-2015	First release	