

E2 (1 - 3) O-

Outline Drawing and Circuit Diagram

E1 (7 - 9) O-

	-	-
Dimensions	Inches	Millimeters
А	4.32	109.8
В	2.21	56.1
С	0.71	18.0
D	3.70±0.02	94.0±0.5
E	2.026	51.46
F	3.17	80.5
G	1.96	49.8
Н	1.00	25.5
К	0.87	22.0
L	0.266	6.75
М	0.26	6.5
Ν	0.59	15.0
Р	0.586	14.89

Dimensions	Inches	Millimeters
Q	0.449	11.40
R	0.885	22.49
S	1.047	26.6
Т	0.15	3.80
U	0.16	4.0
V	0.30	7.5
W	0.045	1.15
Х	0.03	0.8
Y	0.16	4.0
Z	0.47	12.1
AA	0.17 Dia.	4.3 Dia.
AB	0.10 Dia.	2.5 Dia.
AC	0.08 Dia. 2.1 Dia	
AC	0.08 Dia.	2.1 Dia.

QID1210007 Preliminary

Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Description:

Powerex IGBT Modules are designed for use in high frequency applications; upwards of 30 kHz for hard switching applications and 80 kHz for soft switching applications. Each module consists of two IGBT Transistors with each transistor having a reverseconnected super-fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- □ Low ESW(off)
- □ Aluminum Nitride Isolation
- Discrete Super-Fast Recovery Free-Wheel Silicon Carbide Schottky Diode
- □ Low Internal Inductance
- 2 Individual Switches per Module
- □ Isolated Baseplate for Easy Heat Sinking
- Copper Baseplate
- □ RoHS Compliant

Applications:

- Energy Saving Power Systems such as: Fans; Pumps; Consumer Appliances
- High Frequency Type Power Systems such as: UPS; High Speed Motor Drives; Induction Heating; Welder; Robotics
- High Temperature Power
 Systems such as:
 Power Electronics in Electric
 Vehicle and Aviation Systems

Information presented is based upon manufacturers testing and projected capabilities. This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability, or future availability of this product. 11/14 Rev. 1

QID1210007

Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Absolute Maximum Ratings, T_j = 25°C unless otherwise specified

Ratings	Symbol	QID1210007	Units
Junction Temperature	Тј	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 150	°C
Collector-Emitter Voltage (G-E Short)	VCES	1200	Volts
Gate-Emitter Voltage (C-E Short)	VGES	±20	Volts
Collector Current (T _C = 25°C)	۱C	100*	Amperes
Peak Collector Current	ICM	200*	Amperes
Emitter Current** (T _C = 25°C)	١E	75*	Amperes
Repetitive Peak Emitter Current (T _C = 25°C)**	IEM	150 *	Amperes
Maximum Collector Dissipation (T _C = 25°C, T _j \leq 150°C)	PC	730	Watts
Mounting Torque, M6 Mounting	_	40	in-lb
Weight	_	270	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	VISO	2500	Volts

IGBT Electrical Characteristics, $T_j = 25^{\circ}C$ unless otherwise specified

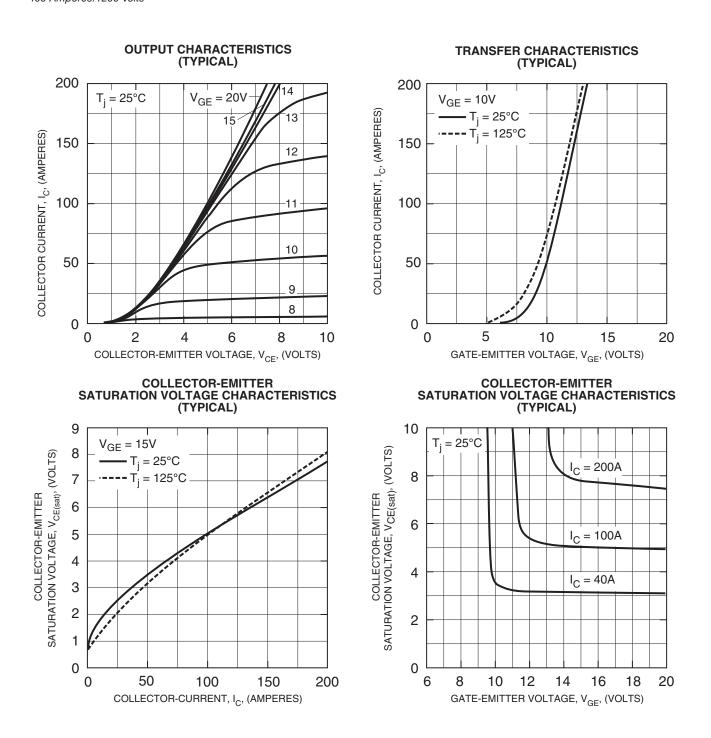
Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutof	f Current	ICES	$V_{CE} = V_{CES}, V_{GE} = 0V$	_	_	1.0	mA
Gate Leakage	Current	IGES	$V_{GE} = V_{GES}, V_{CE} = 0V$	_	_	0.5	μA
Gate-Emitter Th	hreshold Voltage	VGE(th)	$I_{C} = 10 \text{mA}, V_{CE} = 10 \text{V}$	4.5	6.0	7.5	Volts
Collector-Emitte	er Saturation Voltage	V _{CE(sat)}	I_{C} = 100A, V_{GE} = 15V, T_{j} = 25°C	_	5.0	6.5	Volts
			$I_{C} = 100A, V_{GE} = 15V, T_{j} = 125^{\circ}C$	_	5.0	_	Volts
Total Gate Cha	rge	QG	$V_{CC} = 600V, I_C = 100A, V_{GE} = 15V$	_	450	_	nC
Input Capacitar	nce	Cies		_	_	16	nf
Output Capacit	ance	Coes	$V_{CE} = 10V, V_{GE} = 0V$	_	_	1.3	nf
Reverse Transfer Capacitance		C _{res}		_	_	0.3	nf
Inductive	Turn-on Delay Time	^t d(on)	$V_{CC} = 600V, I_{C} = 100A,$	_	_	TBD	ns
Load	Rise Time	tr	$V_{GE1} = V_{GE2} = 15V,$	_	_	TBD	ns
Switch	Turn-off Delay Time	^t d(off)	R _G = 3.1Ω,	_	_	TBD	ns
	TimeFall Time	tf	Inductive Load Switching Operation	_	_	TBD	ns

* Pulse width and repetition rate should be such that device junction temperature (T_j) does not exceed T_{j(max}) rating.
**Represents characteristics of the anti-parallel, emitter-to-collector silicon carbide Schottky diode (FWDI).

QID1210007

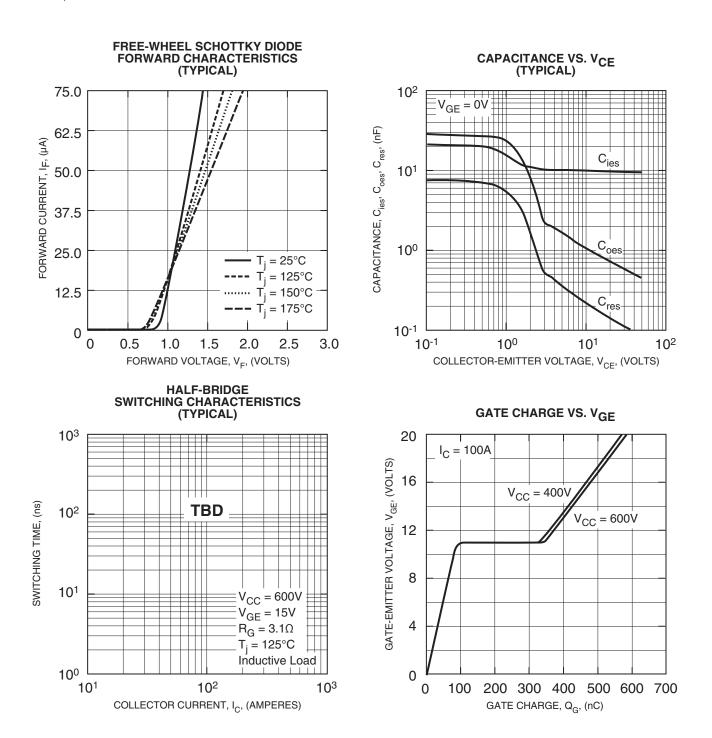
Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

Reverse Schottky Diode Characteristics, $T_j = 25$ °C unless otherwise specified

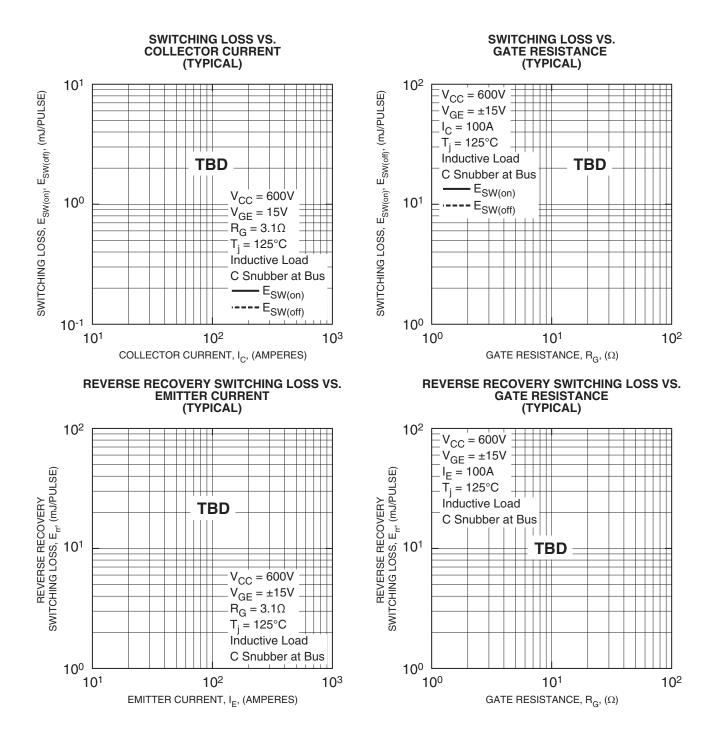

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	VFM	$I_{F} = 75A, V_{GE} = -5V$	—	1.45	1.75	Volts
		I _F = 75A, V _{GE} = -5V, T _j = 175°C	—	1.95	2.35	Volts
Diode Reverse Current	I _R	V _R = 1200V	—	0.9	5.0	mA
		$V_{R} = 1200, T_{j} = 175^{\circ}C$	—	6.0	33.3	mA
Diode Capacitive Charge	QC	V _R = 1200V, I _F = 75A, di/dt = 1100A/µs	_	300	_	nC

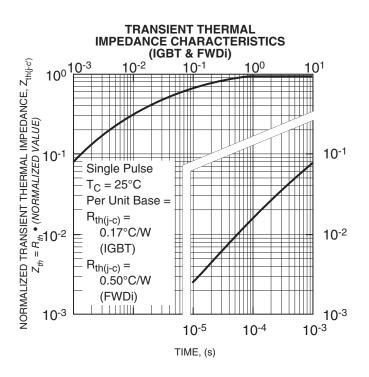
Thermal and Mechanical Characteristics, $T_i = 25$ °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)} Q	Per IGBT 1/2 Module,	_	_	0.17	°C/W
		T _C Reference Point Under Chips				
Thermal Resistance, Junction to Case	R _{th(j-c)} D	Per FWDi 1/2 Module, T _C Reference	_		0.50	°C/W
		T _C Reference Point Under Chips				
Contact Thermal Resistance	R _{th(c-f)}	Per 1/2 Module, Thermal Grease Applied	_	0.04	_	°C/W
External Gate Resistance	RG		3.1	_	31	Ω
Internal Inductance	L _{int}	IGBT Part	_	10	_	nH


QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

QID1210007


Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts


QID1210007

Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

QID1210007 Split Dual Si/SiC Hybrid IGBT Module 100 Amperes/1200 Volts

