
BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

BOURNS®

- Designed for Complementary Use with the BD246 Series
- 80 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- 15 A Peak Collector Current
- Customer-Specified Selections Available

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BD245		55		
Collector-emitter voltage ($R_{BE} = 100 \Omega$)	BD245A	N	70	v	
$Collector-entitler voltage (R_{BE} = 100.22)$	BD245B	VCER	90	v	
	BD245C		115		
	BD245		45		
Collector-emitter voltage ($I_C = 30 \text{ mA}$)	BD245A	V	60	V	
	BD245B	V _{CEO}	80		
	BD245C		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current		۱ _C	10	A	
Peak collector current (see Note 1)		I _{CM}	15	A	
Continuous base current		I _B	3	A	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)		P _{tot}	80	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	3)	P _{tot}	3	W	
Unclamped inductive load energy (see Note 4)		½Ll _C ²	62.5	mJ	
Operating junction temperature range		Тj	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds		TL	250	°C	

NOTES: 1. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%.$

2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 24 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

PRODUCT INFORMATION

BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

electrical characteristics at 25°C case temperature

PARAMETER			TEST CONDITION	S	MIN	ТҮР	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA (see Note 5)	I _B = 0	BD245 BD245A BD245B BD245C	45 60 80 100			V
I _{CES}	Collector-emitter cut-off current	$V_{CE} = 55 V$ $V_{CE} = 70 V$ $V_{CE} = 90 V$ $V_{CE} = 115 V$	$V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$	BD245 BD245A BD245B BD245C			0.4 0.4 0.4 0.4	mA
I _{CEO}	Collector cut-off current	$V_{CE} = 30 V$ $V_{CE} = 60 V$	I _B = 0 I _B = 0	BD245/245A BD245B/245C			0.7 0.7	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				1	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 4 V$ $V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_{C} = 1 A$ $I_{C} = 3 A$ $I_{C} = 10 A$	(see Notes 5 and 6)	40 20 4			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_{B} = 0.3 A$ $I_{B} = 2.5 A$	$I_{\rm C} = 3$ A $I_{\rm C} = 10$ A	(see Notes 5 and 6)			1 4	V
V _{BE}	Base-emitter voltage	$V_{CE} = 4 V$ $V_{CE} = 4 V$	$I_{\rm C} = 3 \text{ A}$ $I_{\rm C} = 10 \text{ A}$	(see Notes 5 and 6)			1.6 3	V
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 kHz	20			
h _{fe}	Small signal forward current transfer ratio	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	3			

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

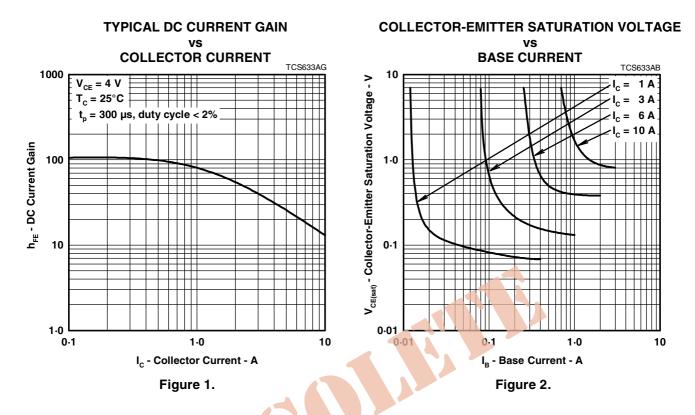
6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

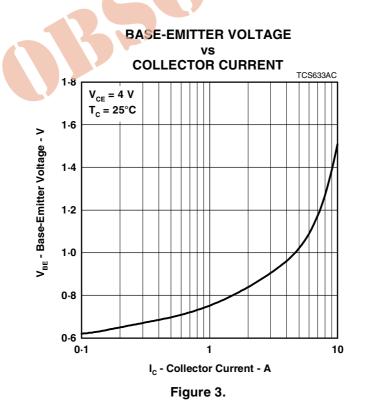
thermal characteristics

PARAMETER	MIN	ТҮР	MAX	UNIT
R _{eJC} Junction to case thermal resistance			1.56	°C/W
R _{eJA} Junction to free air thermal resistance			42	°C/W

resistive-load-switching characteristics at 25°C case temperature

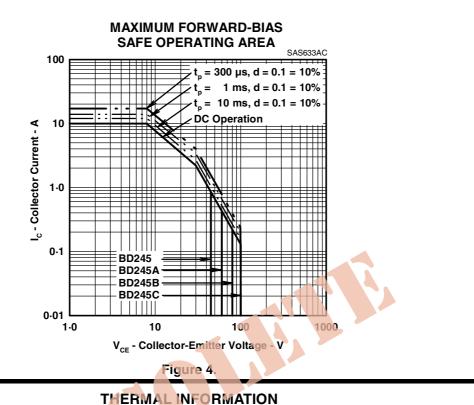
	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on}	Turn-on time	I _C = 1 A	I _{B(on)} = 0.1 A	$I_{B(off)} = -0.1 A$		0.3		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.7 V$	$R_L = 20 \ \Omega$	t_p = 20 µs, dc \leq 2%		1		μs

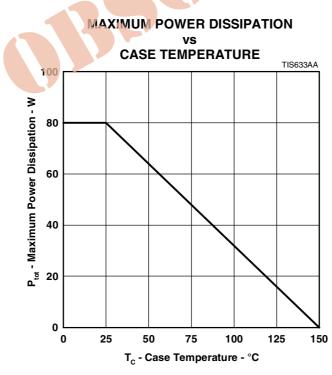

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.



BD245, BD245A, BD245B, BD245C NPN SILICON POWER TRANSISTORS

TYPICAL CHARACTERISTICS





PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS

PRODUCT INFORMATION

JUNE 1973 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.