

www.vishay.com

Vishay Siliconix

Automotive P-Channel 30 V (D-S) 175 °C MOSFET

Top View				
PRODUCT SUMMARY				
V _{DS} (V)	-30			
$R_{DS(on)}$ (Ω) at $V_{GS} = -10 \text{ V}$	0.0085			
$R_{DS(on)}$ (Ω) at $V_{GS} = -4.5 \text{ V}$	0.0200			
I _D (A)	-22			
Configuration	Single			

FEATURES

- TrenchFET® power MOSFET
- AEC-Q101 qualified c
- 100 % R_q and UIS tested
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ROHS
COMPLIANT
HALOGEN
FREE

G O D
P-Channel MOSFET

ORDERING INFORMATION	
Package	SO-8
Lead (Pb)-free and halogen-free	SQ4483EY (for detailed order number please see www.vishay.com/doc?79771)

PARAMETER	SYMBOL	LIMIT	UNIT	
Drain-source voltage	V _{DS}	-30	\/	
Gate-source voltage	V_{GS}	± 20	V	
Continuous drain current		-30		
	ID	-30		
Continuous source current (diode conduction)	I _S	-30	Α	
Pulsed drain current ^a	I _{DM}	-84		
Single pulse avalanche current	I _{AS}	-32		
Single pulse avalanche energy	E _{AS}	51	mJ	
Maximum power dissipation ^a	В	7	W	
waxiiiluiii powei uissipatioii -	P _D	2		
Operating junction and storage temperature range	T _J , T _{stq}	-55 to +175	°C	

THERMAL RESISTANCE RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Junction-to-ambient	PCB mount ^b	R_{thJA}	85	°C/W		
Junction-to-case (drain)		R _{thJF}	21	1 C/VV		

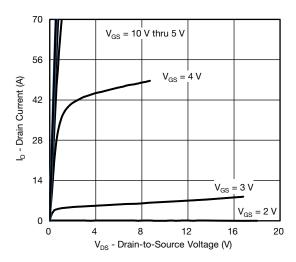
Notes

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %
- b. When mounted on 1" square PCB (FR4 material)
- c. Parametric verification ongoing

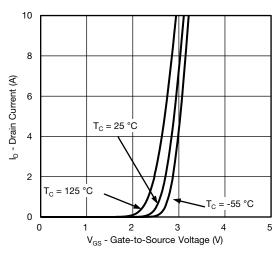
www.vishay.com

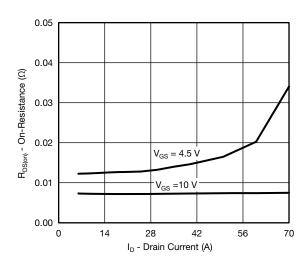
Vishay Siliconix

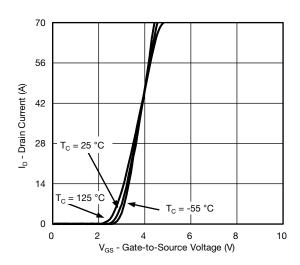
V _{GS} = 0 V V _{DS} = -30 V V _{DS} = -10 V V _{DS} = -15 V V _{DS} = -10 V V _{DS} = -15 V V _{DS} = -10 V V _{DS} = -15 V V _{DS} = -10	MAX. UNIT	TYP.	MIN.	T CONDITIONS	TES	SYMBOL	PARAMETER
Sate-source threshold voltage V _{GS} (th) V _{DS} = V _{GS} , I _D = -250 μA -1.5 -2.0 -2.5	•						Static
Cate-source leakage I_GSS V_DS = 0 V, V_GS = ±20 V - - ±100		-	-30	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		V _{DS}	Drain-source breakdown voltage
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	-2.5	-2.0	-1.5	V _{GS} , I _D = -250 μA	V _{DS} =	V _{GS(th)}	Gate-source threshold voltage
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	± 100 nA	-	-	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$		I _{GSS}	Gate-source leakage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1	-	-	$V_{DS} = -30 \text{ V}$	$V_{GS} = 0 V$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-50 µA	-	-	V _{DS} = -30 V, T _J = 125 °C	V _{GS} = 0 V	I _{DSS}	Zero gate voltage drain current
$ P_{Drain-source on-state resistance a} \ \ P_{DS(on)} \ \ P$	-150	-	-	V _{DS} = -30 V, T _J = 175 °C	V _{GS} = 0 V		
$ \begin{array}{ c c c c c c c c } & P_{Dain-source on-state resistance} & P_{DS(on)} & V_{GS} = -10 \ V & I_D = -10 \ A, \ T_J = 125 \ ^{\circ}C & - & - & 0.0160 \\ \hline V_{GS} = -10 \ V & I_D = -10 \ A, \ T_J = 175 \ ^{\circ}C & - & - & 0.0160 \\ \hline V_{GS} = -4.5 \ V & I_D = -7 \ A & - & 0.0160 \ 0.0200 \\ \hline Forward transconductance b & g_{fs} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -10 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -15 \ V, \ I_D = -10 \ A & - & 32 \ - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -15 \ V, \ I_D = -10 \ A & - & 0.0160 \\ \hline P_{Dynamic} & V_{DS} = -15 \ V, \ I_D = -10 \ A \\ \hline P_{DS} & V_{DS} = -15 \ V, \ I_D = -10 \$	- A	-	-30	$V_{DS} \le -5 \text{ V}$	V _{GS} = -10 V	I _{D(on)}	On-state drain current a
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.0085	0.0070	ı	I _D = -10 A	V _{GS} = -10 V		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0130	-	ı	$I_D = -10 \text{ A}, T_J = 125 ^{\circ}\text{C}$	V _{GS} = -10 V	B-ac	Drain-source on-state resistance a
Promard transconductance Promard transcondu	0.0150	-	ı	$I_D = -10 \text{ A}, T_J = 175 ^{\circ}\text{C}$	V _{GS} = -10 V	nDS(on)	Diditi-Source off-state resistance
Dynamic b Input capacitance C _{iss} V _{GS} = 0 V V _{DS} = -15 V, f = 1 MHz - 3400 4500 4500 Output capacitance C _{oss} V _{GS} = 0 V V _{DS} = -15 V, f = 1 MHz - 712 890 Reverse transfer capacitance C _{rss} - 580 770 Total gate charge ° Q _g V _{GS} = -10 V V _{DS} = -15 V, I _D = -10 A - 9.5 - 75 113 Gate-source charge ° Q _{gd} V _{GS} = -10 V V _{DS} = -15 V, I _D = -10 A - 9.5 - 75 - 19 - 75 - 11 - 75 - 10 - 75 - 10 - 75 - 10 - 75 - 10 - 75	0.0200	0.0160	ı	I _D = -7 A	$V_{GS} = -4.5 \text{ V}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- S	32	ı	V _{DS} = -10 V, I _D = -10 A		9 _{fs}	Forward transconductance b
Output capacitance C_{oss} $V_{GS} = 0 \text{ V}$ $V_{DS} = -15 \text{ V}, f = 1 \text{ MHz}$ - 712 890 Reverse transfer capacitance C_{rss} - 580 770 Total gate charge ° Q_g $V_{GS} = -10 \text{ V}$ $V_{DS} = -15 \text{ V}, I_D = -10 \text{ A}$ - 75 113 Gate-source charge ° Q_{gd} $V_{GS} = -10 \text{ V}$ $V_{DS} = -15 \text{ V}, I_D = -10 \text{ A}$ - 9.5 - Gate resistance R_g $f = 1 \text{ MHz}$ 1 2 3 Turn-on delay time ° $t_{d(on)}$ $V_{DD} = -15 \text{ V}, R_L = 1.5 \Omega$ - - 146 189 Turn-off delay time ° t_g $V_{DD} = -15 \text{ V}, R_L = 1.5 \Omega$ - - 57 75 Fall time ° t_g $V_{DD} = -10 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$ - 57 75 Source-Drain Diode Ratings and Characteristics b Pulsed current a I_{SM} - - - - - - - - - - - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Dynamic ^b</td></td<>							Dynamic ^b
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4500	3400	-			C _{iss}	Input capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	890 pF	712	-	$V_{DS} = -15 \text{ V, f} = 1 \text{ MHz}$	$V_{GS} = 0 V$	C _{oss}	Output capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	770	580	-			C _{rss}	Reverse transfer capacitance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	75	-			Q_{g}	Total gate charge ^c
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- nC	9.5	-	$V_{DS} = -15 \text{ V}, I_{D} = -10 \text{ A}$	V _{GS} = -10 V	Q_{gs}	Gate-source charge ^c
Turn-on delay time $^{\circ}$ $t_{d(on)}$ $V_{DD} = -15 \text{ V}$, $R_L = 1.5 \Omega$ - 20 25 Rise time $^{\circ}$ t_r $V_{DD} = -15 \text{ V}$, $R_L = 1.5 \Omega$ - 146 189 Turn-off delay time $^{\circ}$ t_f t_f - 57 75 Fall time $^{\circ}$ t_f - 20 25 Source-Drain Diode Ratings and Characteristics b Pulsed current a I_{SM} - - - -84	-	19	-				Gate-drain charge ^c
Rise time $^{\circ}$ t_r $V_{DD} = -15 \text{ V}, R_L = 1.5 \Omega$ $-$ 146 189 Turn-off delay time $^{\circ}$ $t_{d(off)}$ $I_D \cong -10 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$ $-$ 57 75 Fall time $^{\circ}$ t_f $-$ 20 25 Source-Drain Diode Ratings and Characteristics b I_{SM} $ -$ 84	3 Ω	2	1	f = 1 MHz		R_g	Gate resistance
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	20	-			t _{d(on)}	Turn-on delay time ^c
Fall time ° t _f - 20 25 Source-Drain Diode Ratings and Characteristics b - <td></td> <td>146</td> <td>-</td> <td colspan="2" rowspan="3"></td> <td></td> <td>Rise time ^c</td>		146	-				Rise time ^c
Fall time c t _f - 20 25 Source-Drain Diode Ratings and Characteristics b Pulsed current a I _{SM} 84	75 ns	57	-			t _{d(off)}	Turn-off delay time ^c
Pulsed current ^a I _{SM} 84	25	20	-				Fall time ^c
- Cim						cteristics ^b	Source-Drain Diode Ratings and Chara
Forward voltage	-84 A	-	-			I _{SM}	Pulsed current ^a
Forward voltage $V_{SD} = V_{F} = -3 \text{ A}, V_{GS} = 0 \text{ V} = -1.2$	-1.2 V	-0.75	-	I _F = -3 A, V _{GS} = 0 V		V _{SD}	Forward voltage

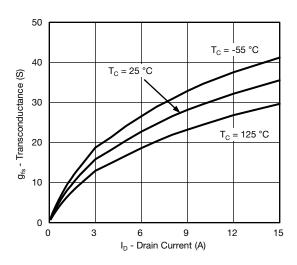

Notes

- d. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$
- e. Guaranteed by design, not subject to production testing
- f. Independent of operating temperature


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Output Characteristics


Transfer Characteristics

On-Resistance vs. Drain Current

Transfer Characteristics

Transconductance

C - Capacitance (pF)

1000

0 L

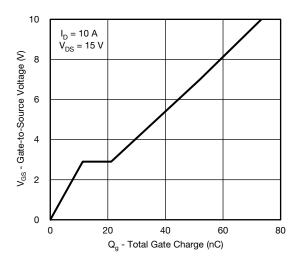
5

6000 5000 4000 C_{iss} 3000 2000 C_{oss}

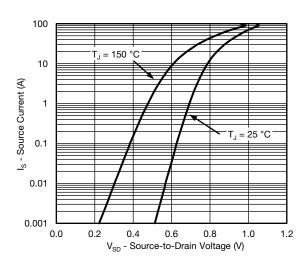
Capacitance

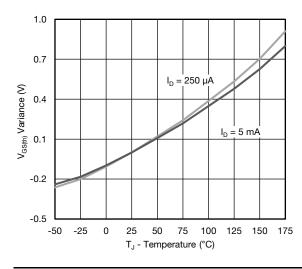
15

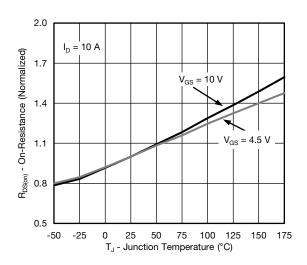
 $V_{\rm DS}$ - Drain-to-Source Voltage (V)

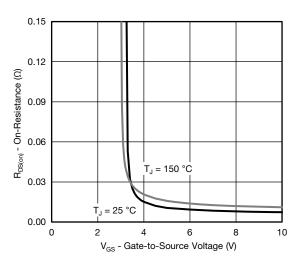

20

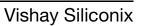
25


30


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Gate Charge


Source Drain Diode Forward Voltage


Threshold Voltage

On-Resistance vs. Junction Temperature

On-Resistance vs. Gate-to-Source Voltage

-25

-50

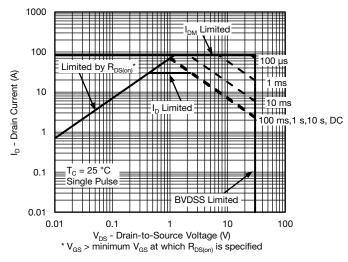
0 25 50 75

-30
Source Voltage
-32
-34
-36
-36
-37
-38
-40

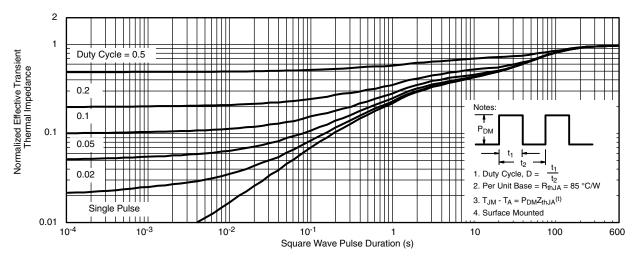
www.vishay.com

Drain Source Breakdown vs. Junction Temperature

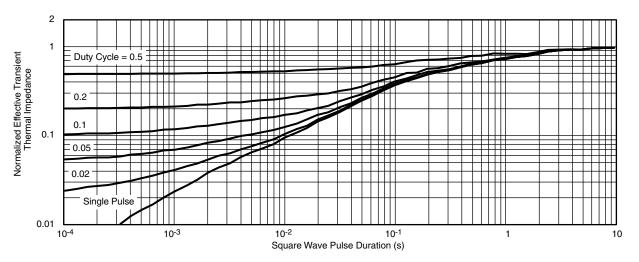
T_J - Junction Temperature (°C)


150

175


100 125

THERMAL RATINGS ($T_A = 25$ °C, unless otherwise noted)

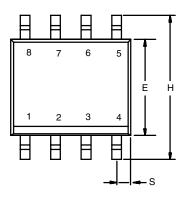

Safe Operating Area

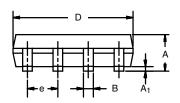
Normalized Thermal Transient Impedance, Junction-to-Ambient

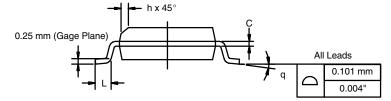
THERMAL RATINGS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Foot

Note

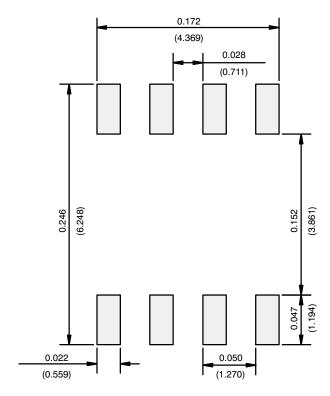

- The characteristics shown in the two graphs
 - Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)
 - Normalized Transient Thermal Impedance Junction-to-Foot (25 °C)


are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?74794.

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012

	MILLIM	IETERS	INC	HES	
DIM	Min	Max	Min	Max	
Α	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
Е	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050) BSC	
Н	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	
ECN: C-06527-Rev. I. 11-Sep-06					


DWG: 5498

Document Number: 71192 www.vishay.com 11-Sep-06

APPLICATION NOTE

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.