

MOSFET - Power, DUAL COOL® N-Channel, DFN8 5x6 40 V, 0.87 mΩ, 310 A NVMFSCOD9N04C

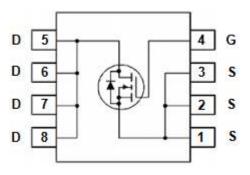
Features

- Advanced Dual-sided Cooled Packaging
- Small Footprint (5x6 mm) for Compact Design
- Ulra Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant
- MSL1 Robust Packaging Design

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

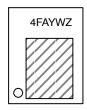
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady State	T _C = 25°C	I _D	313	Α
Power Dissipation $R_{\theta JC}$ (Note 2)			P _D	166	W
Continuous Drain Current R _{θJA} (Notes 1, 2)	Steady State	T _A = 25°C	I _D	48.9	Α
Power Dissipation R _{θJA} (Notes 1, 2)			P _D	4.1	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \ \mu s$		I _{DM}	900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	158	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 34 A)			E _{AS}	578	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Bottom)- Steady State (Note 2)	$R_{\theta JC}$	0.9	°C/W
Junction-to-Case (Top) - Steady State (Note 2)	$R_{\theta JC}$	1.4	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	37	

- 1. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
40 V	$0.87~\mathrm{m}\Omega$ @ $10~\mathrm{V}$	310 A	

N-Channel MOSFET

MARKING DIAGRAM

4F = Specific Device Code A = Assembly Location

Y = Year
W = Work Week
Z = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

V _{(BR)DSS} V _{(BR)DSS} / T _J I _{DSS}	$V_{GS} = 0 \text{ V}, I_D =$ $I_D = 250 \mu\text{A, ref}$ $V_{GS} = 0 \text{ V},$		40			
V _{(BR)DSS} / T _J	I _D = 250 μA, ref		40			T
TJ		to 25°C				V
I _{DSS}	V 0 V			5		mV/°C
	$V_{GS} = 0 \text{ V},$ $V_{DS} = 40 \text{ V}$	$T_{J} = 25^{\circ}C$ $T_{.l} = 125^{\circ}C$			10 100	μΑ
I _{GSS}	V _{DS} = 0 V, V _{GS}	= +20 V			100	nA
			I		ı	
V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	250 μΑ	2.5		3.5	V
V _{GS(TH)} /T _J	I _D = 250 μA, ref	to 25°C		-8.6		mV/°C
R _{DS(on)}	V _{GS} = 10 V	I _D = 50 A		0.69	0.87	mΩ
					•	
C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 25 V			6100		pF
C _{OSS}				3400		1
C _{RSS}				70		1
Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 32 V; I _D = 50 A			86		nC
Q_{GS}				28		1
Q_{GD}				14		
V_{GP}				4.9		V
t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 32 V, I_{D} = 50 A, R_{G} = 2.5 Ω			54		ns
t _r				160		
t _{d(OFF)}				220		
t _f				170		
s						
V _{SD}	V _{GS} = 0 V, I _S = 50 A	$T_J = 25^{\circ}C$		0.8	1.2	٧
tos	$V_{GS} = 0 \text{ V, } dI_{S}/dt = 100 \text{ A}/\mu\text{s,}$ $I_{S} = 50 \text{ A}$					ns
						4
						nC
	VGS(TH)/TJ RDS(on) CISS COSS CRSS QG(TOT) QGS QGD VGP td(ON) tr td(OFF) tf S VSD tRRR ta tb QRR	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c } \hline V_{GS(TH)} & V_{GS} = V_{DS}, I_D = 250 \ \mu A & 2.5 \\ \hline V_{GS(TH)}/T_J & I_D = 250 \ \mu A, \ ref \ to \ 25^{\circ}C & -8.6 \\ \hline R_{DS(on)} & V_{GS} = 10 \ V & I_D = 50 \ A & 0.69 \\ \hline \hline C_{ISS} & V_{GS} = 0 \ V, \ f = 1 \ MHz, \ V_{DS} = 25 \ V & 6100 \\ \hline C_{OSS} & 3400 \\ \hline C_{RSS} & 70 \\ \hline Q_{G(TOT)} & V_{GS} = 10 \ V, \ V_{DS} = 32 \ V; \ I_D = 50 \ A & 86 \\ \hline Q_{GS} & 28 \\ \hline Q_{GD} & 14 \\ \hline V_{GP} & 4.9 \\ \hline \hline \hline t_f & 160 \\ \hline t_G(OFF) & 220 \\ \hline t_f & 170 \\ \hline S & V_{GS} = 0 \ V, \ I_S = 50 \ A & T_J = 25^{\circ}C & 0.8 \\ \hline T_{J} = 125^{\circ}C & 0.65 \\ \hline t_{RR} & V_{GS} = 0 \ V, \ dI_{S}/dt = 100 \ A/\mu s, \\ I_{S} = 50 \ A & 42 \\ \hline t_{D} & 49 \\ \hline Q_{RR} & 159 \\ \hline \end{array}$	$\begin{array}{ c c c c c } \hline V_{GS(TH)} & V_{GS} = V_{DS}, I_D = 250 \ \mu A & 2.5 & 3.5 \\ \hline V_{GS(TH)}/T_J & I_D = 250 \ \mu A, ref to 25^{\circ}C & -8.6 \\ \hline R_{DS(on)} & V_{GS} = 10 \ V & I_D = 50 \ A & 0.69 & 0.87 \\ \hline \hline \\ C_{ISS} & V_{GS} = 0 \ V, f = 1 \ MHz, V_{DS} = 25 \ V & 6100 \\ \hline \\ C_{OSS} & 3400 & 3400 \\ \hline \\ C_{RSS} & 70 & 86 \\ \hline \\ Q_{GS} & 28 & 28 \\ \hline \\ Q_{GD} & 14 & 28 \\ \hline \\ V_{GP} & 4.9 \\ \hline \\ \hline \\ t_f & 170 & 8 \\ \hline \\ V_{SD} & V_{GS} = 0 \ V, V_{DS} = 32 \ V, I_D = 50 \ A & 86 \\ \hline \\ Q_{GS} & 28 & 28 \\ \hline \\ Q_{GD} & 14 & 14 \\ \hline \\ V_{GP} & 160 & 160 \\ \hline \\ V_{SS} = 10 \ V, V_{DS} = 32 \ V, I_D = 50 \ A, R_G = 2.5 \ \Omega & 160 \\ \hline \\ V_{GS} = 10 \ V, V_{DS} = 32 \ V, I_D = 50 \ A, R_G = 2.5 \ \Omega & 160 \\ \hline \\ V_{SD} & V_{GS} = 0 \ V, I_S = 50 \ A & T_J = 25^{\circ}C & 0.65 \\ \hline \\ V_{RR} & V_{GS} = 0 \ V, dI_S/dt = 100 \ A/\mu s, I_S = 50 \ A & 42 \\ \hline \\ V_{B} & 49 & 49 \\ \hline \end{array}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

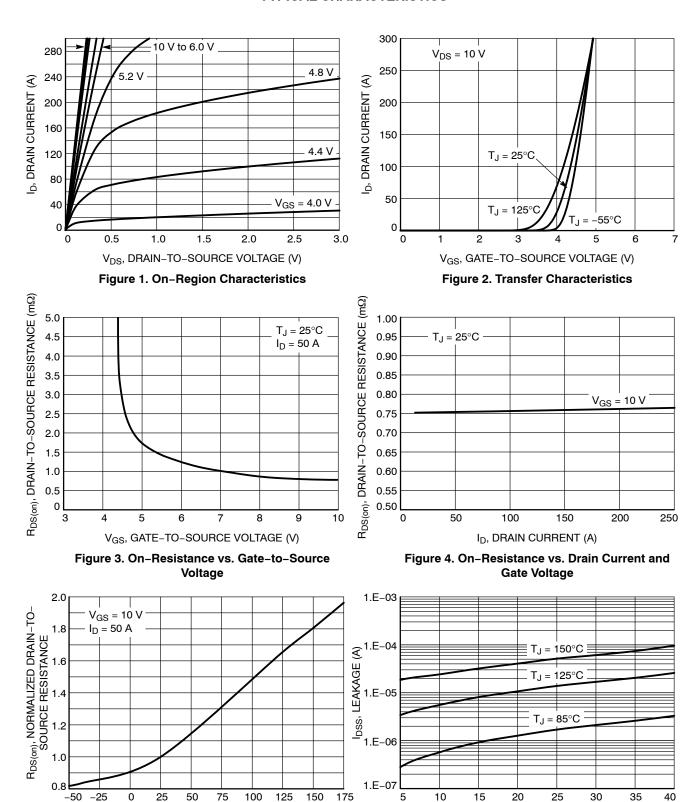


Figure 5. On–Resistance Variation with Temperature

T_J, JUNCTION TEMPERATURE (°C)

Figure 6. Drain-to-Source Leakage Current vs. Voltage

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

TYPICAL CHARACTERISTICS

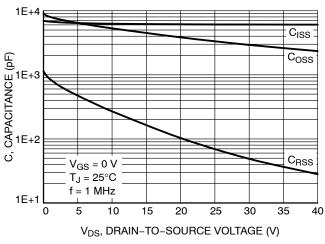


Figure 7. Capacitance Variation

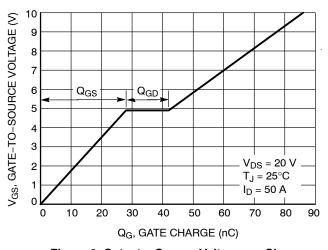


Figure 8. Gate-to-Source Voltage vs. Charge

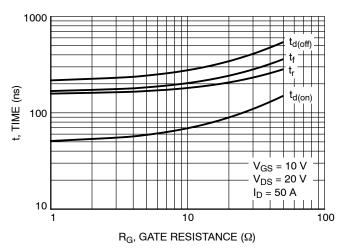


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

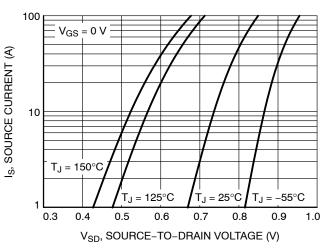


Figure 10. Diode Forward Voltage vs. Current

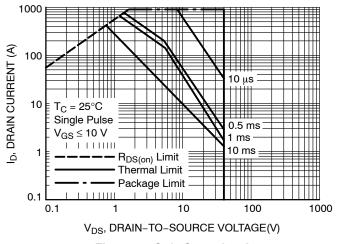


Figure 11. Safe Operating Area

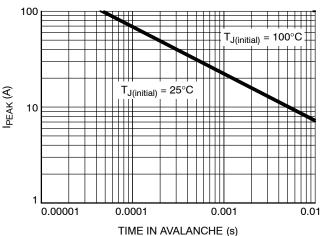


Figure 12. I_{PEAK} vs. Time in Avalanche

TYPICAL CHARACTERISTICS

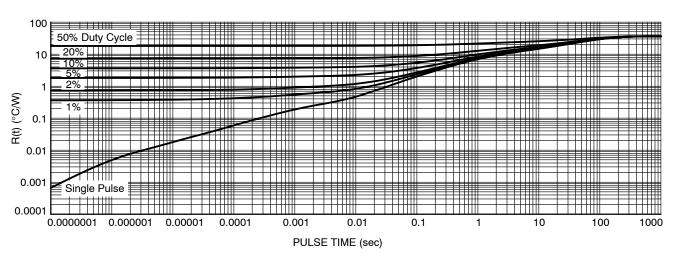
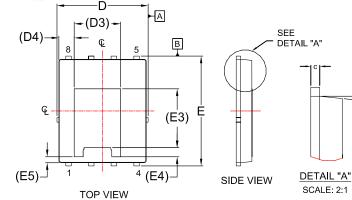


Figure 13. Thermal Characteristics

ORDERING INFORMATION


Device	Device Marking	Package	Shipping [†]
NVMFSC0D9N04C	4F	DFN8 5x6 (Pb-Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DFN8 5x6.15, 1.27P, DUAL COOL CASE 506EG ISSUE D

DATE 25 AUG 2020

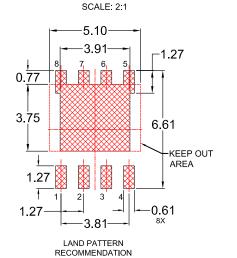
SEE

NOTES:

Θ

Δ1

Ċ


SEATING **PLANE**

θ

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	RONT VIEW	← DETAIL "B"	0.10 C
(E7)————————————————————————————————————	D2 — D1 —	2e	0. 1 3. 7

FRONT VIEW

DETAIL "B"

DIM	MILLIMETERS				
D.I.V.	MIN.	NOM.	MAX.		
Α	0.85	0.90	0.95		
A1	ı	1	0.05		
A2	ı	1	0.05		
b	0.31	0.41	0.51		
b1	0.21	0.31	0.41		
С	0.20	0.25	0.30		
D	4.90	5.00	5.10		
D1	4.80	4.90	5.00		
D2	3.67	3.82	3.97		
D3	2.60 REF				
D4	0.86 REF				
Е	6.05	6.15	6.25		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.58		
E3	3.30 REF				
E4	0.50 REF				
E5	0.34 REF				
E6	0.30 REF				
E7	0.52 REF				
е	1.27 BSC				
1/2e	0.635 BSC				
K	1.30	1.40	1.50		
L	0.56	0.66	0.76		
L1	0.52	0.62	0.72		
Ф	0°		12°		

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

AYWWZZ XXXXXX

XXXX = Specific Device Code

// 0.10 C

= Assembly Location

= Year

WW = Work Week

= Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON84257G	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN8 5x6.15, 1.27P, DUAL COOL		PAGE 1 OF 1	

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

REFERENCE MANUAL, SOLDERRM/D.

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales