

AS6C4008-70SAN

512k x 8 Low Power SRAM 32pin SOP Package

Revision	Details	Date
Rev 1.0	Preliminary datasheet	Mar. 2019

Alliance Memory Inc. 511 Taylor Way, San Carlos, CA 94070 TEL: (650) 610-6800 FAX: (650) 620-9211 Alliance Memory Inc. reserves the right to change products or specification without notice

Confidential - 1 of 10 - Rev.1.0. March 2019

FEATURES

Fast access time: 70ns
 Low power consumption:
 Operating current: 20mA (TYP.)
 Standby current: 4μA (TYP.)
 Single 2.7V ~ 5.5V power supply

■ All outputs TTL compatible

Fully static operationTri-state output

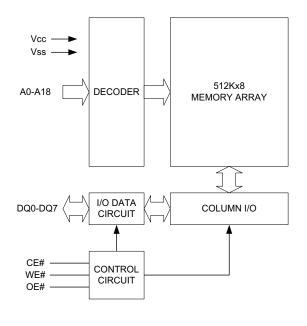
■ Data retention voltage : 1.5V (MIN.)

■ ROHS Compliant-Pb free
■ Package: 32-pin 450 mil SOP
■ Operating Temperature

Automotive Grade 1 -40°C ~+125°C

GENERAL DESCRIPTION

The AS6C4008-70SAN is a 4,194,304-bit low power CMOS static random access memory organized as 524,288 words by 8 bits. It is fabricated using very high performance, high reliability CMOS technology. Its standby current is stable within the range of operating temperature.

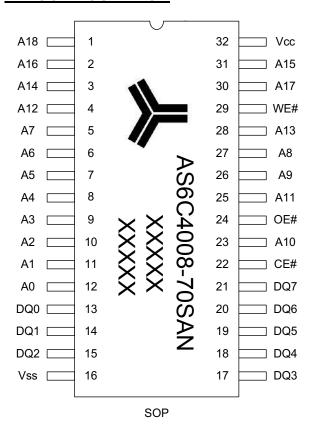

The AS6C4008-70SAN is well designed for very low power system applications, and particularly well suited for battery back-up nonvolatile memory application.

The AS6C4008-70SAN operates from a single power supply of $2.7V \sim 5.5V$ and all inputs and outputs are fully TTL compatible

PRODUCT FAMILY

Product	Operating Vcc Range		Van Banga Speed		Dissipation
Family	Temperature	Vcc Range Speed		Standby(IsB1TYP.)	Operating(Icc,TYP.)
AS6C4008-70SAN	-40°C ~+125°C	2.7 ~ 5.5V	70ns	4µA	20mA

FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A18	Address Inputs
DQ0 – DQ7	Data Inputs/Outputs
CE#	Chip Enable Inputs
WE#	Write Enable Input
OE#	Output Enable Input
Vcc	Power Supply
Vss	Ground
NC	No Connection

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT
Voltage on Vcc relative to Vss	V _{T1}	-0.5 to 6.5	V
Voltage on any other pin relative to Vss	V _{T2}	-0.5 to Vcc+0.5	V
Operating Temperature	TA	-40 to 125(A grade)	$^{\circ}$
Storage Temperature	Тѕтс	-65 to 150	℃
Power Dissipation	PD	1	W
DC Output Current	Іоит	50	mA

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE#	OE#	WE#	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	X	High-Z	I _{SB1}
Output Disable	L	Н	Н	High-Z	Icc,Icc1
Read	L	L	Н	D ouт	lcc,lcc1
Write	L	Х	L	Din	lcc,lcc1

Note: $H = V_{IH}$, $L = V_{IL}$, X = Don't care.

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP. *4	MAX.	UNIT
Supply Voltage	Vcc		2.7	3.0	5.5	V
Innut High Voltage	V _{IH} *1	V _{CC} = 4.5V ~ 5.5V	2.4	-	Vcc+0.3	V
Input High Voltage	VIH	V _{CC} = 2.7V ~ 4.5V	2.2	-	Vcc+0.3	V
Innut Low Voltage	VIL*2	V _{CC} = 4.5V ~ 5.5V	- 0.2	-	8.0	V
Input Low Voltage	VIL	V _{CC} = 2.7V ~ 4.5V	- 0.2	-	0.6	V
Input Leakage Current	lu	$V_{CC} \ge V_{IN} \ge V_{SS}$	- 2	-	2	μA
Output Leakage Current	ILO	Vcc ≧ Vo∪τ ≧ Vss, Output Disabled	- 2	-	2	μΑ
Output High Voltage	Vон	I _{OH} = -1mA	2.4	2.7	-	V
Output Low Voltage	Vol	IoL = 2mA	-	-	0.4	V
Average Operating	Icc	Cycle time = Min. CE# = V _{IL} I _{I/O} = 0mA Other pins at V _{IL} or V _{IH}	-	20	50	mA
Power supply Current	Icc1	Cycle time = 1µs CE#≦0.2V, I _{I/O} = 0mA Other pins at 0.2V or Vcc-0.2V	-	4	10	mA
Standby Power Supply Current	ls _{B1}	CE# ≧Vcc-0.2V Others at 0.2V or Vcc - 0.2V	-	4	80	μΑ

Notes:

- 1. $V_{IH}(max) = V_{CC} + 3.0V$ for pulse width less than 6ns.
- 2. VIL(min) = Vss 3.0V for pulse width less than 6ns.
- 3. Over/Undershoot specifications are characterized, not 100% tested.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC}(TYP.)$ and $T_A = 25^{\circ}C$
- 5. This parameter is measured at Vcc = 3.0V

Confidential - 4 of 10 - Rev.1.0. March 2019

CAPACITANCE (TA = 25°C, f = 1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	6	pF
Input/Output Capacitance	C _{I/O}	-	8	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0.2V to Vcc - 0.2V
Input Rise and Fall Times	3ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 30pF + 1TTL$, $I_{OH}/I_{OL} = -2mA/4mA$

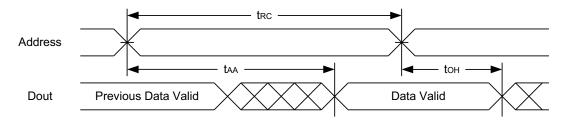
AC ELECTRICAL CHARACTERISTICS

(1) READ CYCLE

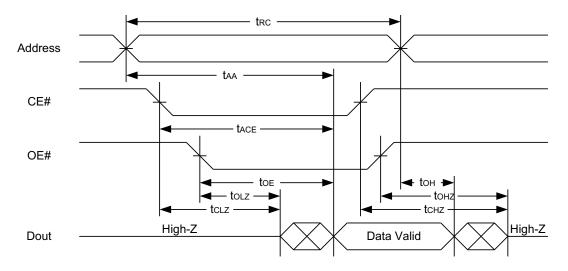
(I) KLAD CICLL					
PARAMETER	SYM.	AS6C400	AS6C4008-70SAN		
		MIN.	MAX.		
Read Cycle Time	trc	70	-	ns	
Address Access Time	taa	-	70	ns	
Chip Enable Access Time	tace	-	70	ns	
Output Enable Access Time	toe	-	35	ns	
Chip Enable to Output in Low-Z	tcLz*	10	-	ns	
Output Enable to Output in Low-Z	tolz*	5	-	ns	
Chip Disable to Output in High-Z	tcHz*	-	25	ns	
Output Disable to Output in High-Z	tonz*	-	25	ns	
Output Hold from Address Change	tон	10	-	ns	

(2) WRITE CYCLE

PARAMETER	SYM.	SYM. AS6C4008-70SAN		
		MIN.	MAX.	
Write Cycle Time	twc	70	-	ns
Address Valid to End of Write	taw	60	-	ns
Chip Enable to End of Write	tcw	60	-	ns
Address Set-up Time	tas	0	-	ns
Write Pulse Width	twp	55	-	ns
Write Recovery Time	twr	0	-	ns
Data to Write Time Overlap	tow	30	-	ns
Data Hold from End of Write Time	tон	0	-	ns
Output Active from End of Write	tow*	5	-	ns
Write to Output in High-Z	twnz*	-	25	ns


^{*}These parameters are guaranteed by device characterization, but not production tested.

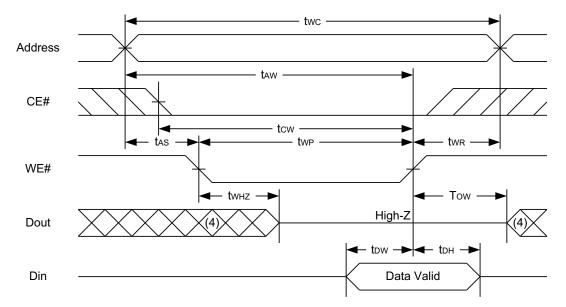
Confidential - 5 of 10 - Rev.1.0. March 2019



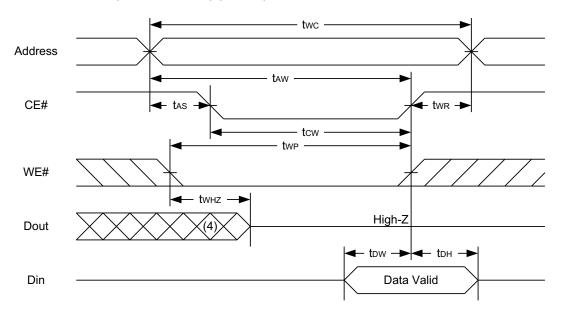
TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 (CE# and OE# Controlled) (1,3,4,5)


Notes:

- 1.WE# is high for read cycle.
- 2.Device is continuously selected OE# = low, CE# = low.
- 3.Address must be valid prior to or coincident with CE# = low,; otherwise tAA is the limiting parameter.
- 4.tcLz, toLz, tcHz and toHz are specified with CL = 5pF. Transition is measured ±500mV from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .


Confidential - 6 of 10 - Rev.1.0. March 2019

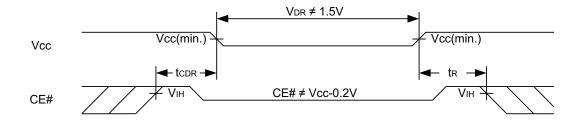
WRITE CYCLE 1 (WE# Controlled) (1,2,3,5,6)

WRITE CYCLE 2 (CE# Controlled) (1,2,5,6)

Notes:

- 1.WE#, CE# must be high during all address transitions.
- 2.A write occurs during the overlap of a low CE#, low WE#.
- 3.During a WE# controlled write cycle with OE# low, twp must be greater than twnz + tow to allow the drivers to turn off and data to be placed on the bus.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5.If the CE# low transition occurs simultaneously with or after WE# low transition, the outputs remain in a high impedance state. 6.tow and t_{WHZ} are specified with $C_L = 5pF$. Transition is measured $\pm 500 \text{mV}$ from steady state.

Confidential - 7 of 10 -Rev.1.0. March 2019

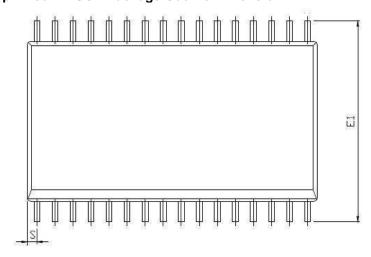


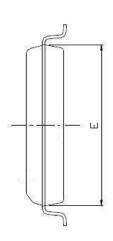
DATA RETENTION CHARACTERISTICS

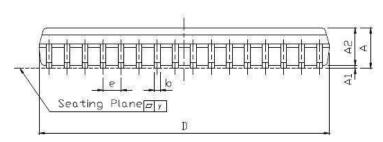
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V_{DR}	CE# ≧ V _{CC} - 0.2V	1.5	-	5.5	V
Data Retention Current	Idr	V _{CC} = 1.5V CE# ≧ V _{CC} - 0.2V Other pins at 0.2V or V _{CC} -0.2V	-	2	80	μΑ
Chip Disable to Data Retention Time	tcdr	See Data Retention Waveforms (below)	0	-	-	ns
Recovery Time	tr		trc*	-	-	ns

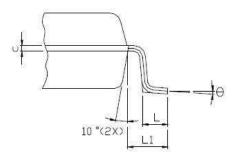
 t_{RC^*} = Read Cycle Time

DATA RETENTION WAVEFORM




Confidential - 8 of 10 - Rev.1.0. March 2019




PACKAGE OUTLINE DIMENSION

32 pin 450 mil SOP Package Outline Dimension

UNIT SYM.	INCH.(BASE)	MM(REF)
Α	0.120(MAX)	3.048(MAX)
A1	0.004(MIN)	0.102(MIN)
A2	0.116(MAX)	2.946(MAX)
b	0.016(TYP)	0.406(TYP)
С	0.008(TYP)	0.203(TYP)
D	0.817(MAX)	20.75(MAX)
Е	0.445±0.006	11.303±0.152
E1	0.555±0.025	14.097±0.635
е	0.050(TYP)	1.270(TYP)
L	0.033±0.017	0.838±0.432
L1	0.055±0.008	1.397±0.203
S	0.026(MAX)	0.660(MAX)
У	0.004(MAX)	0.101(MAX)
Θ	0° -10°	0° -10°

Confidential - 9 of 10 - Rev.1.0. March 2019

AS6C4008-70SAN

ORDERING INFORMATION

Package Type	Access Time	Temperature	Packing	Alliance Memory
	(Speed)(ns)	Range(℃)	Type	Part Number
32 Pin(450mil) SOP	70	-40°C~125°C	Tube Tape Reel	AS6C4008-70SAN AS6C4008-70SANTR

PART NUMBERING SYSTEM

AS6C	4008	-70	S	Α	N
Low power SRAM prefix	Device Number 40 = 4M 08 = by 8	Access Time	Package Options: S = 32 pin 450 mil SOP	Temperature Range: A= Automotive (-40°C to +125°C)	N = Lead Free ROHS Compliant Part

Alliance Memory, Inc. 511 Taylor Way, San Carlos, CA 94070 Tel: 650-610-6800 Fax: 650-620-9211

www.alliancememory.com

Copyright © Alliance Memory All Rights Reserved

© Copyright 2007 Alliance Memory, Inc. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.

Confidential - 10 of 10 - Rev.1.0. March 2019