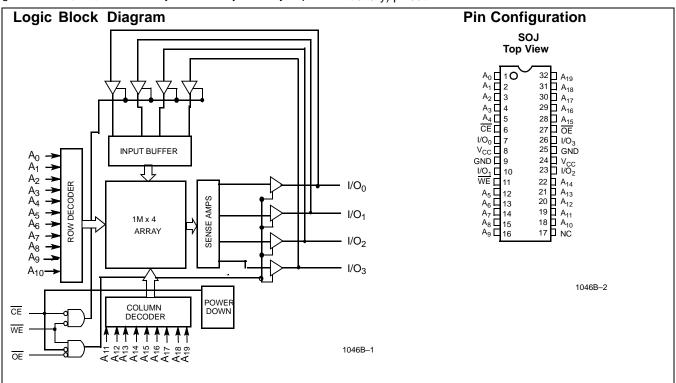


1M x 4 Static RAM

Features

- · High speed
 - $-t_{AA} = 12 \text{ ns}$
- · Low active power
 - -935 mW (max.)
- Low CMOS standby power (L version)
 - -2.75 mW (max.)
- 2.0V Data Retention (400 μW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description


The CY7C1046B is a high-performance CMOS static RAM organized as 1,048,576 words by 4 bits. Easy memory expan-

sion is provided by an <u>active LOW Chip Enable ($\overline{\text{CE}}$)</u>, an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. Writing to the device is <u>accomplished</u> by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the four I/O pins (I/O₀ through I/O₃) is then written into the location specified on the address pins (A_0 through A_{19}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The four input/output pins (I/O $_0$ through I/O $_3$) are placed in a high-impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1046B is available in a standard 400-mil-wide 32-pin SOJ package with center power and ground (revolutionary) pinout.

Selection Guide

		7C1046B-12	7C1046B-15	7C1046B-20
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)		170	150	130
Maximum CMOS Standby Current (mA)	Com'I	8	8	8
	L version	0.5	0.5	0.5

Shaded areas contain advance information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage on $\rm V_{CC}$ to Relative $\rm GND^{[1]}$ –0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[1]}$-0.5V to $^{[1]}$ voltage $^{[1]}$-0.5V DC Input Voltage^[1]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

Operating Range

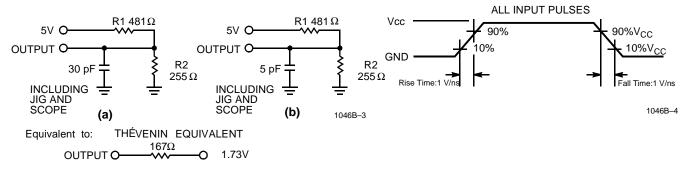
Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	4.5V-5.5V

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Condition	ons	7C10	46B-12	7C10	46B-15	7C10	46B-20	
				Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} =	8.0 mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled		-1	+1	-1	+1	-1	+1	μА
Icc	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$			170		150		130	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{array}{c} \text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ \text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{f} = \text{f}_{\text{MAX}} \end{array}$			20		20		20	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\frac{\text{Max. V}_{\text{CC}},}{\text{CE} \ge \text{V}_{\text{CC}} - 0.3\text{V},}\\ \text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.3\text{V},}\\ \text{or V}_{\text{IN}} \le 0.3\text{V}, \text{f} = 0$	Com'l L version		8 0.5		8 0.5		8 0.5	mA

Shaded areas contain advance information.

Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	6	pF

Note:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- T_A is the "Instant On" case temperature.
 Tested initially and after any design or process changes that may affect these parameters.

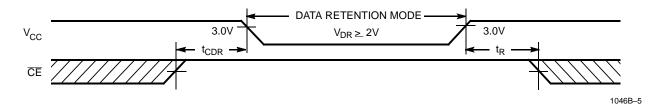
AC Test Loads and Waveforms

Switching Characteristics^[4] Over the Operating Range

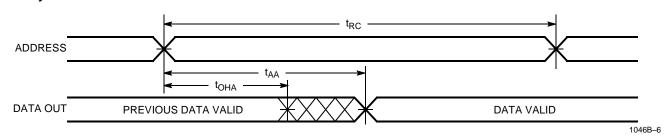
		7C104	46B-12	7C104	16B-15	7C1046B-20		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	LE				1			J.
t _{power}	V _{CC} (typical) to the first access ^[5]	1		1		1		μs
t _{RC}	Read Cycle Time	12		15		20		ns
t _{AA}	Address to Data Valid		12		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		20	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		8	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		20	ns
WRITE CYC	CLE ^[8, 9]	•						
t _{WC}	Write Cycle Time	12		15		20		ns
t _{SCE}	CE LOW to Write End	8		10		15		ns
t _{AW}	Address Set-Up to Write End	8		10		15		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	8		10		12		ns
t _{SD}	Data Set-Up to Write End	6		8		10		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

Notes:

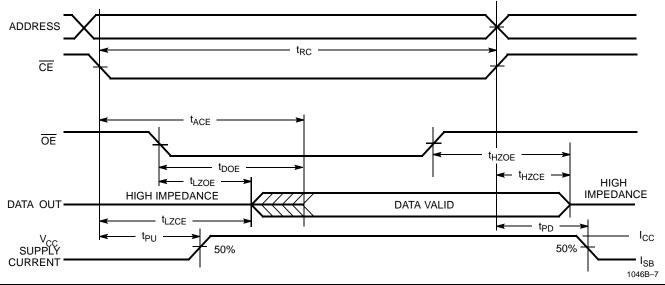
- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. tpower time has to be provided initially before a read/write operation 5.


- is started.
 t_{HZCF}, t_{HZCF}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCF}, t_{HZCF} is less than t_{LZCF}, and t_{HZWE} is less than t_{LZCF} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}. 8.

Data Retention Characteristics Over the Operating Range


Parameter	Description		Conditions ^[10]	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Com'l	$\underline{V_{CC}} = V_{DR} = 2.0V,$		200	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time		$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	0		ns
t _R	Operation Recovery Time			200		μs

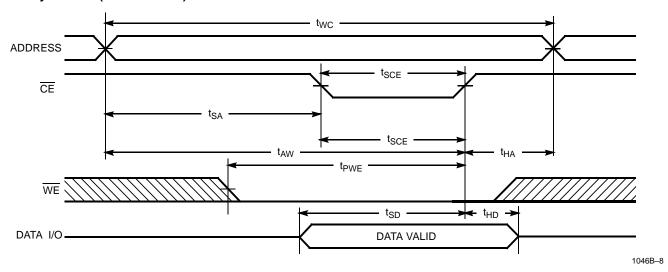
Data Retention Waveform



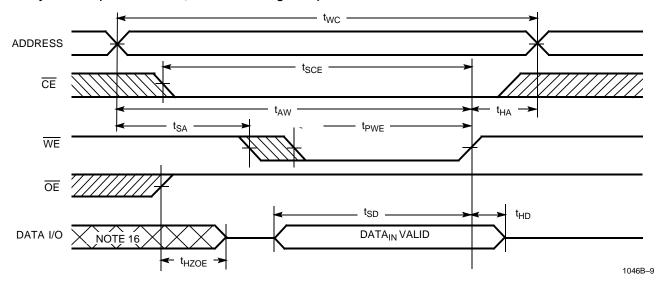
Switching Waveforms

Read Cycle No. 1^[11, 12]

Read Cycle No. 2 (OE Controlled)[12, 13]



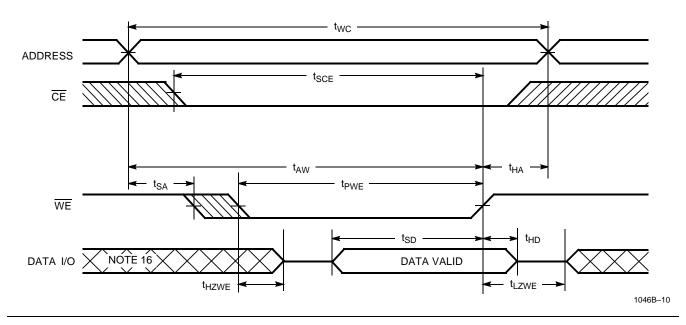
- 10. No input may exceed V_{CC} + 0.5V.
 11. Device is continuously selected. OE, CE = V_{IL}.
- WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[14, 15]

Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[14, 15]

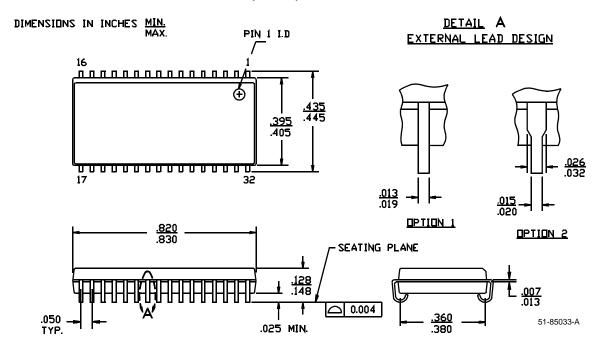

Notes:

- 14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 16. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)^[15]

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1046B-12VC	V33	32-Lead (400-Mil) Molded SOJ	Commercial
15	CY7C1046B-15VC	V33	32-Lead (400-Mil) Molded SOJ	
20	CY7C1046B-20VC	V33	32-Lead (400-Mil) Molded SOJ	
12	CY7C1046BL-12VC	V33	32-Lead (400-Mil) Molded SOJ	
15	CY7C1046BL-15VC	V33	32-Lead (400-Mil) Molded SOJ	
20	CY7C1046BL-20VC	V33	32-Lead (400-Mil) Molded SOJ	

Shaded areas contain advance information.

Package Diagram

32-Lead (400-Mil) Molded SOJ V33

	Document Title: CY7C1046B 1M x 4 Static RAM Document Number: 38-05144						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	109888	09/22/01	SZV	Change from Spec number: 38-00948 to 38-05144			