
AUIRFP064N

Features

- Advanced Planar Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this Cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low on-resistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

V _{(BR)DSS}	55V
R _{DS(on)} max.	0.008Ω
I _D	110A©

G	D	S
Gate	Drain	Source

Bass part number	Deekege Ture	Standard Pack		Ordershie Port Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRFP064N	TO-247AC	Tube	25	AUIRFP064N

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Symbol Parameter		Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	110⑤	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	80\$	A
I _{DM}	Pulsed Drain Current ①	390	
P _D @T _C = 25°C	Maximum Power Dissipation	200	W
	Linear Derating Factor	1.3	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
E _{AS} Single Pulse Avalanche Energy 2		480	mJ
I _{AR} Avalanche Current ①		59	A
E _{AR} Repetitive Avalanche Energy ①		20	mJ
dv/dt	Peak Diode Recovery dv/dt3	5.0	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
	Mounting torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC}	Junction-to-Case		0.75	
$R_{ ext{ heta}CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient		40	

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55		_	V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25° C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.008	Ω	V _{GS} = 10V, I _D = 59A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	V _{DS} = V _{GS} , I _D = 250µA
gfs	Forward Trans conductance	42		_	S	V _{DS} = 25V, I _D = 59A④
1	Drain-to-Source Leakage Current			25		V _{DS} = 55V, V _{GS} = 0V
IDSS	Dialit-to-Source Leakage Current			250	μA	V _{DS} = 44V,V _{GS} = 0V,T _J =150°C
	Gate-to-Source Forward Leakage			100	n۸	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Paramotor	Min	Typ	Max	Unite	Conditions
Diode Cl	haracteristics					
C _{rss}	Reverse Transfer Capacitance		480			<i>f</i> = 1.0MHz, See Fig.5
C _{oss}	Output Capacitance		1300			V _{DS} = 25V
C _{iss}	Input Capacitance		4000			$V_{GS} = 0V$
L _S	Internal Source Inductance		13			from package
L _D	Internal Drain Inductance		5.0			Between lead, 6mm (0.25in.)
t _f	Fall Time		70			R _D = 0.39Ω , See Fig.10④
t _{d(off)}	Turn-Off Delay Time		43		115	R _G = 2.5Ω
t _r	Rise Time		100		ns	I _D = 59A
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 28V$
Q_{gd}	Gate-to-Drain Charge			74		V_{GS} = 10V, See Fig.6 and 13 \oplus
Q_{gs}	Gate-to-Source Charge			32	nC	$V_{DS} = 44V$
Q _g	Total Gate Charge			170		I _D = 59A

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current (Body Diode)			110⑤	•	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			390		integral reverse	
V_{SD}	Diode Forward Voltage			1.3	V	$T_{J} = 25^{\circ}C, I_{S} = 59A, V_{GS} = 0V ④$	
t _{rr}	Reverse Recovery Time		110	170	ns	T _J = 25°C ,I _F = 59A	
Q _{rr}	Reverse Recovery Charge		450	680	nC	di/dt = 100A/µs ④	

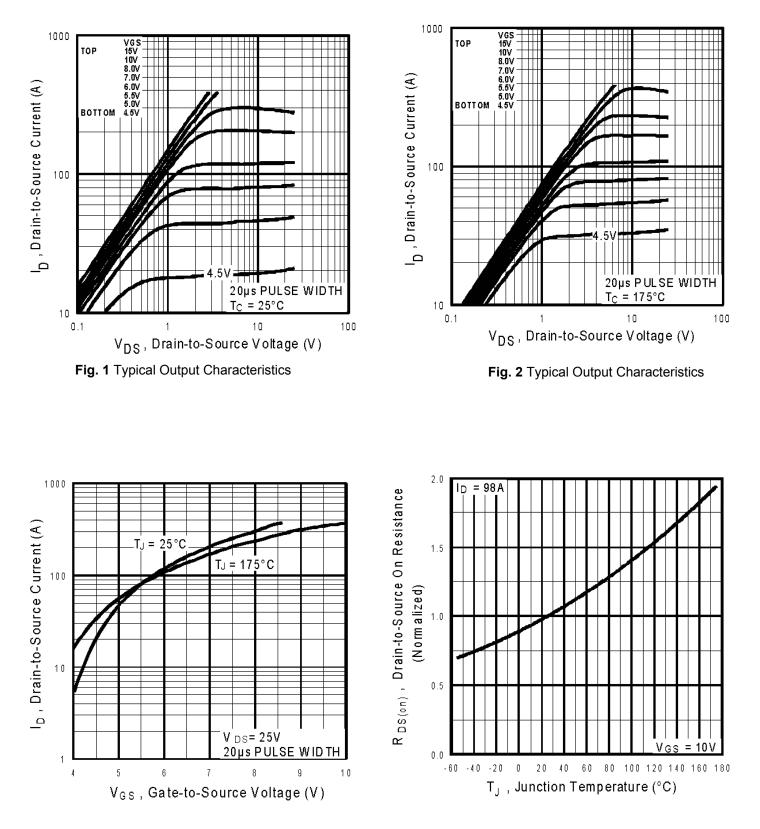
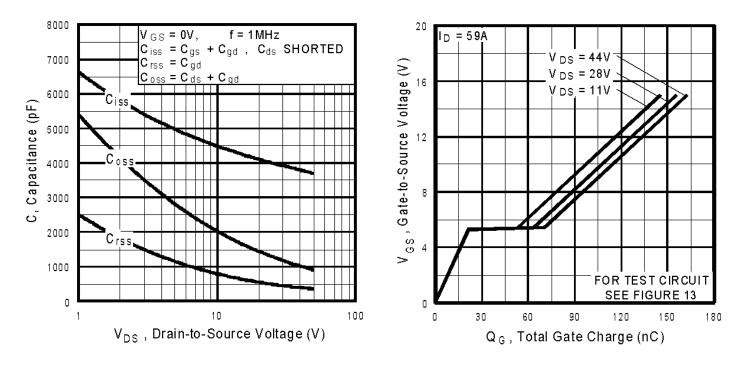
Notes:

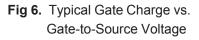
 $\odot\;$ Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).

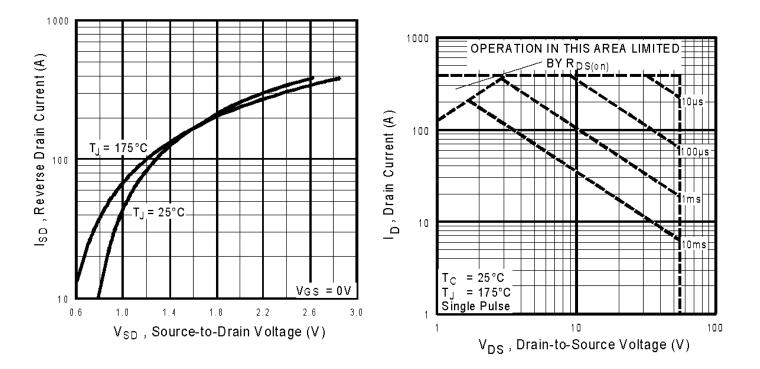
 $\ \ \, {\mathbb C} \ \ \, {\sf V}_{{\sf D}{\sf D}} \mbox{=} 25{\sf V}, \mbox{ } {\sf T}_{{\sf J}} \mbox{=} 25{\rm ^{\circ}C}, \mbox{ } {\sf L} \mbox{=} 190 \mu \mbox{H}, \mbox{ } {\sf R}_{{\sf G}} \mbox{=} 25\Omega, \mbox{ } {\sf I}_{{\sf A}{\sf S}} \mbox{=} 59 \mbox{A}. \mbox{(See fig. 12)}. \end{tabular}$

④ Pulse width \leq 300µs; duty cycle \leq 2%.

⑤ Calculated continuous current based on maximum allowable junction temperature; for recommended current-handling of the package refer to Design Tip # 93-4


Fig. 3 Typical Transfer Characteristics


Fig. 4 Normalized On-Resistance vs. Temperature

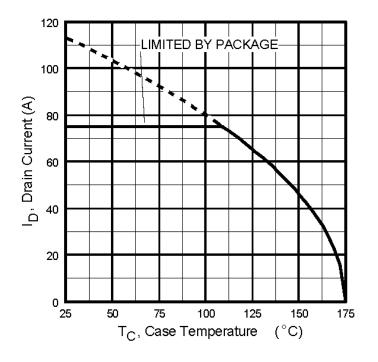


Fig 9. Maximum Drain Current vs. Case Temperature

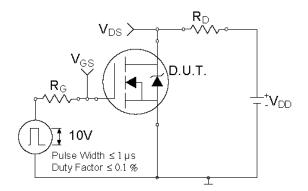


Fig 10a. Switching Time Test Circuit

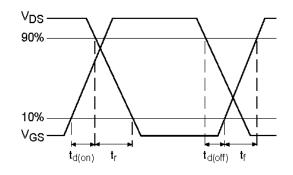
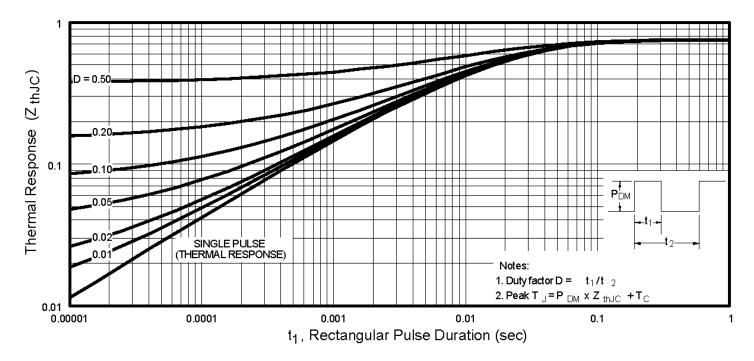
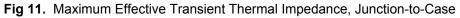




Fig 10a. Switching Time Waveforms

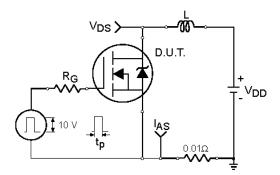


Fig. 12a. Unclamped Inductive Test Circuit

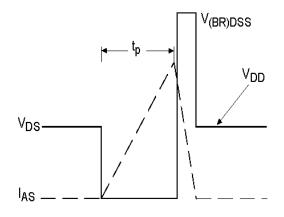


Fig. 12b. Unclamped Inductive Waveforms



Fig 13a. Basic Gate Charge Waveform

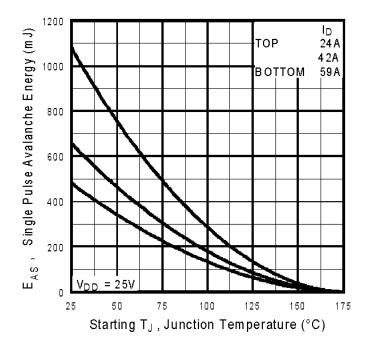


Fig 12c. Maximum Avalanche Energy vs. Drain Current

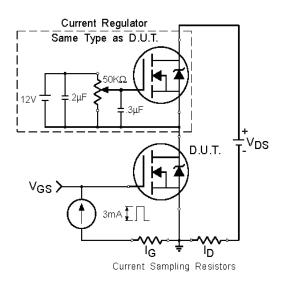
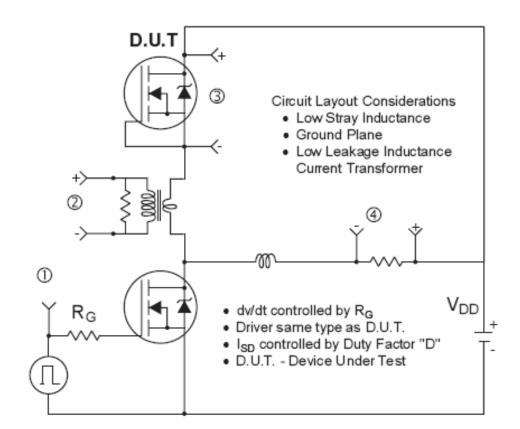
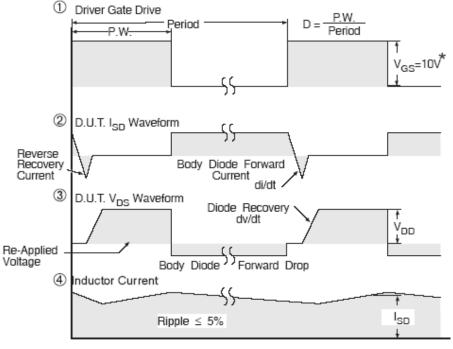
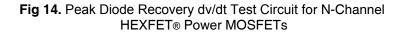
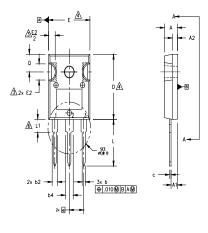
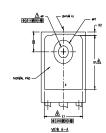
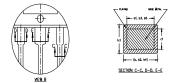





Fig 13b. Gate Charge Test Circuit



* V_{GS} = 5V for Logic Level Devices




AUIRFP064N

TO-247AC Package Outline (Dimensions are

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.
- DIMENSIONS ARE SHOWN IN INCHES. 2
- 3 CONTOUR OF SLOT OPTIONAL.

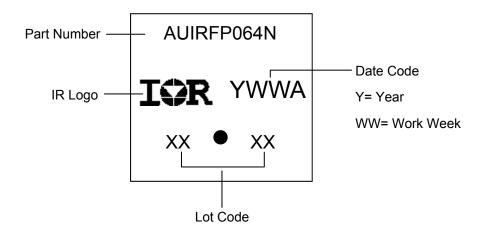
4 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.
- <u>5.</u> <u>6.</u> LEAD FINISH UNCONTROLLED IN L1.
- <u>/}.</u> OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ' TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.
- OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC . 8

	DIMENSIONS						
	ETERS	MILLIM	INCHES		SYMBOL		
NOTES	MAX.	MIN. MAX. MIN.					
	5.31	4.65	.209	.183	A		
	2.59	2.21	.102	.087	A1		
	2.49	1.50	.098	.059	A2		
	1.40	0.99	.055	.039	b		
	1.35	0.99	.053	.039	b1		
	2.39	1.65	.094	.065	b2		
	2.34	1.65	.092	.065	b3		
	3.43	2.59	.135	.102	b4		
	2.59 3.38		.133	.102	b5		
	0.38 0.89		.035	.015	с		
	0.38 0.84		.033	.015	c1		
4	20.70	19.71	.815	.776	D		
5	-	13.08	-	.515	D1		
	1.35	0.51	.053	.020	D2		
4	15.87	15.29	.625	.602	Ε		
	-	13.46	-	.530	E1		
	5.49	4.52	.216	.178	E2		
	BSC	5.46	.215 BSC		e		
	25	0.2	.010		Øk		
	16.10	14.20	.634	.559	L		
	4.29	3.71	.169	.146	L1		
	3.66	3.56	.144	.140	øР		
	7.39	-	.291	-	ØP1		
	5.69	5.31	.224	.209	Q		
	BSC	5.51	BSC	.217	S		

LEAD ASSIGNMENTS

<u>HEXFET</u> 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN


IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

DIODES

1.- ANODE/OPEN 2.- CATHODE 3.- ANODE

TO-247AC Part Marking Information

Qualification Information

		Automotive (per AEC-Q101)				
Qualification Level Comments: This part number(s) passed Automotive qualification Industrial and Consumer qualification level is granted by extension o Automotive level.			onsumer qualification level is granted by extension of the higher			
Moisture Se	ensitivity Level	3L-TO-247AC N/A				
	Machine Model	Class M4 (+/- 800V) [†]				
		AEC-Q101-002				
FeD	Human Dady Madal		Class H1B (+/- 4000V) [†]			
ESD	Human Body Model		AEC-Q101-001			
	Charged Device Medal	Class C5 (+/- 2000V) [†]				
	Charged Device Model	AEC-Q101-005				
RoHS Comp	bliant	Yes				

+ Highest passing voltage.

Revision History

Date	Comments			
09/15/2017	Updated datasheet with corporate template			
09/15/2017	Corrected typo error on part marking on page 8.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.