

AMD E8860 2GB PCIEx16 4xMini DP Low profile

ADVANTECH MODEL: GFX-AE8860L16-5J

MPN NUMBER: 1A1-E000189ADP

Embedded PCIe Graphics

4 x Mini DP with cable locking

CONTENTS

1.	Speci	fication	3
2.	Funct	ional Overview	4
	2.1.	Memory Configuration Support	4
	2.2.	Acceleration Features	4
	2.3.	Avivo™ Display System	5
	2.4.	DVI/HDMI™/DisplayPort Features	
	2.5.	DVI/HDMI Features	6
	2.6.	DisplaPort 1.2 Features	7
	2.7.	Integrated HD-Audio Controller (Azalia) and Codec	7
	2.8.	CRT DAC	8
	2.9.	Bus Support Features	8
3.	PIN A	ssignment and Description	9
4.	Board	l Configuration	133
	4.1 B	pard Dimension	133
	4.2 D	isplay Interface	13
5.	Therm	nal Mechanism	14
	5.1 Fa	an Thermal Module	14

1. Specification

Model Name	GFX-AE8860L16-5J
Graphics Engine	AMD Radeon E8860
Process Node	28nm
Engine Clock (max)	625Mhz
Graphics Memory	128-bit, 2 GB, GDDR5
Memory Clock (max)	1,125 MHZ / 4.5 Gbps
Bus Interface	PCI Express® 3.0 (x16)
Shader Processing Units	640 shaders
Floating Point Performance	768 GFLOPs
DirectX® Capability	DirectX [®] 11.1
Shader Model	Shader Model 5.0
OpenGL	OpenGL 4.2
OpenCL	OpenCL 1.2
Unified Video Decoder (UVD)	UVD 4 for H.264, VC-1, MPEG-2 MPEG-4 part 2 decode
Display Interface	4 x Mini DP With cable locking
Power Consumption	51 W
Operating Temperature	0°C ~ 50°C
Dimension	160 x 69mm

2. Functional Overview

2.1. Memory Configuration Support

AMD Radeon™ E8860 has four DRAM sequencers. Each DRAM channel is 32-bit wide. Four 128 Mb × 32 GDDR5 memory chips are embedded on the ASIC for a total of 2 GB memory.

2.2. Acceleration Features

- Support for all DirectX® 11 features, including the full-speed 32-bit floating point per component operation:
 - Shader Model 5.0 geometry and pixel support in a unified shader architecture:
 - Vertex, pixel, geometry, compute, domain, and hull shaders.
 - 32- and 64-bit floating-point processing per component.
 - New advanced shader instructions, including flexible flow control with CPU-level flexibility on branching.
 - ◆ A nearly unlimited shader-instruction store, using an advanced caching system.
 - ◆ An advanced shader design, with an ultra-threading sequencer for high-efficiency operations.
 - A new advanced shader core, supporting native scalar instructions.
 - Advanced, high-performance branching support, including static and dynamic branching.
 - ◆ High dynamic-range rendering with floating-point blending, texture filtering, and anti-aliasing support.
 - ◆ 16- and 32-bit floating-point components for high dynamic-range computations.
 - Full anti-aliasing on renderable surfaces up to and including 128-bit floating-point formats.
 - ♦ A new read/write caching system, replacing texture cache with a unified read-write two-level cache.
- Support for OpenGL 4.2
- Support for OpenCL 1.2
- Anti-aliasing filtering:
 - 2×/4×/8× MSAA (multi-sample anti-aliasing) modes are supported.
 - A multi-sample algorithm with gamma correction, programmable sample patterns, and centroid sampling.
 - Custom filter anti-aliasing with up to 12-samples per pixel.
 - An adaptive anti-aliasing mode.
 - Lossless color compression (up to 16:1).
- Anisotropic filtering:
 - Continuous anisotropic with 1× through 16× taps.
 - Up to 128-tap texture filtering.
 - Anisotropic biasing to allow trading quality for performance.
 - Improved anisotropic filtering with unified non-power of two-tap distribution and higher precision filter computations.

- Advanced texture compression (3Dc+™).
- High quality 4:1 compression for normal and luminance maps.
- Angle-invariant algorithm for improved quality.
- Single- or two-channel data format compatibility.
- 3D resources virtualized to a 40-bit virtual addressing space, for support of large numbers of render targets and textures.
- Up to 16k × 16k textures, including 128-bit/pixel texture are supported.
- Programmable arbitration logic maximizes memory efficiency and is software upgradeable.
- Fully associative texture, color, and z-cache design.
- Hierarchical z- and stencil-buffers with early z-test.
- Lossless z-buffer compression for both z and stencil.
- Fast z-buffer clear.
- Fast color-buffer clear.
- Z-cache optimized for real-time shadow rendering.
- Z- and color-compression resources virtualized to a 32-bit addressing space, for support of multiple render targets and textures simultaneously.

2.3. Avivo™ Display System

- The AMD Avivo[™] display system supports VGA, VESA super VGA, and accelerator mode graphics display on six independent display controllers.
- The full features of the AMD Avivo display system are outlined in the following sections.
- Six independent display controllers that support true 30-bpp (bits per pixel) throughout the display pipe.
- Support for display resolutions up to 4096 × 2160 @ 30 Hz per display output, which do not oversubscribe available memory bandwidth.
- Flexible support for various combinations of display outputs based on clock dependencies:
 - Two internal display PLLs (phase-locked loops) and an integrated DisplayPort reference clock can support:
 - Any two legacy displays and up to four DisplayPorts, or
 - One legacy display and up to five DisplayPorts, or
 - ◆ Six DisplayPorts eDP (embedded DisplayPort) is also considered a DisplayPort).
- Advanced video capabilities, including high-fidelity gamma, color correction, and scaling.
- A high-precision color pipe with the support of XR-biased sRGB and xvYCC formats.
- An adaptive per-pixel de-interlacing and frame-rate conversion (temporal filtering).
- An enhanced dithering algorithm for LCD panels.
- Full RMX for sources up to 2560 pixels/line.
- HDCP can be supported on six independent displays, such as HDMI™, DVI, or DisplayPort.
 - Note: HDCP is available only to licensed HDCP buyers.
- HDCP Protection:
 - Key information is stored in the ASIC.

- An external ROM is not needed.
- Protects both audio and video content on all HDMI/DisplayPort outputs.
- Adaptive backlight modulation to reduce panel-power consumption in embedded applications.
- An improved memory-access pattern to reduce the memory-power consumption in embedded applications.
- 3D display capabilities for both graphic and overlay contents.

2.4. DVI/HDMI™/DisplayPort Features

- On TMDSA, TMDSB, TMDSC, and TMDSD the following display configurations are supported.
 - Two single-link DVIs (any two from TMDSA, TMDSB, TMDSC, and TMDSD)
 - Two dual-link DVIs
 - HDMI
- On LVDSE and LVDSF the following display configurations are supported.
- One dual-link LVDS
- One single-link LVDS
- One dual-link DVI
- Two single-link DVIs
- HDMI
 - On TMDPA, TMDPB, TMDPC, and TMDPD the following display configurations are supported.
- Four version 1.2 DisplayPorts
 - On LVDPE and LVDPF the following display configurations are supported.
- Two version 1.2 DisplayPorts
 - Optional dithering or frame modulation from the 30-bpp internal display pipeline to 24- or 18-bit outputs on the DVI/HDMI/DisplayPort if not using a 30-bpp output mode.

2.5. DVI/HDMI Features

- Advanced DVI capability supporting 10-bit HDR (high dynamic range) output.
- Supports industry-standard CEA-861B video modes including 480p, 720p, 1080i, and 1080p. For a full list of currently supported modes, contact your local AMD support person.
- Maximum pixel rates for 24-bpp outputs are:
 - DVI—162 MP/s (megapixels per second) for single-link DVI
 - DVI—268.5 MP/s for dual-link DVI
 - HDMI—297 MP/s.
- Compliant with the DVI electrical specification.
- The HDMI specification meets the Windows Vista® logo requirements.

2.6. DisplaPort 1.2 Features

- Supports all the mandatory features of the DisplayPort Standard Version 1.2 and the following optional features on links A,
 B, C, D, E, and F:
 - ACM packet-type support.
- ISRC packet-type support.
 - Each DisplayPort link can transport up to six video streams; one from each display engine.
 - Each DisplayPort link can support three options for the number of lanes and three options for link-data rate as follows:
- Four, two, or one lane(s).
- 5.4-, 2.7-, or 1.62-GHz link-data rate per lane.
- Supports all video modes supported by the display controller that do not oversubscribe the link bandwidth.
 - Examples of supported pixel-rate/resolution for four lanes at 5.4-GHz link rate:
 - Link bandwidth allows pixel clocks of up to 718 MP/s for 24 bpp or 574 MP/s for 30 bpp.
 - 2560 × 2048 @ 60Hz, 30 bpp is supported.
 - Examples of supported pixel-rate/resolution for two lanes at 5.4-GHz link rate:
 - Link bandwidth allows pixel clocks of up to 359 MP/s for 24 bpp or 287 MP/s for 30 bpp.
 - ◆ 2560 × 1600 @ 60Hz, 30 bpp is supported.
- Enhanced audio capabilities:
 - Supports PCM audio rates up to 192 kHz.
 - Dolby-TrueHD bit stream and DTS-HD Master Audio bit stream capable.

2.7. Integrated HD-Audio Controller (Azalia) and Codec

- HD-audio HDMI, DisplayPort, and wireless display outputs.
 - Multiple output stream DMAs.
 - Maximum output bandwidth of 73.728 Mbit/s.
 - Low power ECN support.
 - Hardware silent stream.
 - Function level reset.
 - Compatible Microsoft® UAA driver support for basic audio.
 - For advanced functionality (as follows), an AMD or a third party driver is required.
 - LPCM:
 - ◆ Speaker formats: 2.0, 2.1, 3.0, 4.0, 5.1, 6.1, and 7.1
 - ◆ Sample rates: 32, 44.1, 48, 88.2, 96, 176.4, and 192 kHz
 - Bits per sample: 16, 20, and 24
- Non-HBR Compressed audio pass-through up to 6.144 Mbps:

- Supports AC-3, MPEG1, MP3 (MPEG1 layer 3), MPEG2, AAC, DTS, ATRAC, Dolby Digital+, WMA Pro, and DTS-HD.
- HBR compressed audio pass-through up to 24.576 Mbps:
 - Supports DTS-HD Master Audio and Dolby True HD.
- Plug-and-Play:
 - Sink audio format capabilities declaration.
 - Sink information.
 - AV association.
- Lip sync information.
- HDCP content protection.

2.8. CRT DAC

- One integrated triple 10-bit DAC with built-in reference circuit, which takes output from either one of the internal display controllers (primary or secondary).
- A single RGB-CRT output.
- Support for the stereo-sync signal to drive a 3D display.
- A maximum pixel frequency of 400 MHz.
- An individual power-down feature for each of the three guns.
- Compliant with the VSIS electrical specification.
- Integrated with a built-in bandgap reference circuitry.
- A static detection circuitry (S_detect) for hot-plug/unplug capability.
- An integrated static monitor-detection circuit.

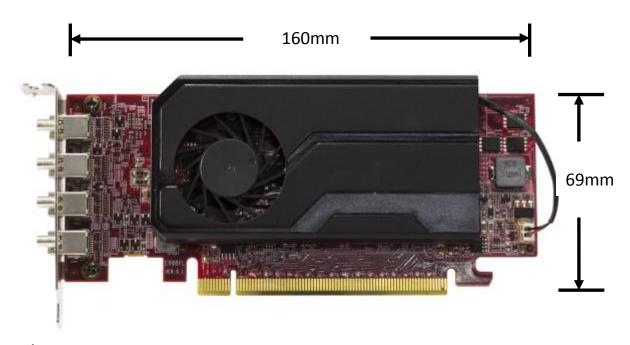
2.9. Bus Support Features

- Compliant with the PCI Express® Base Specification Revision 3.0, up to 8.0 GT/s.
- Fully inter-operative with PCI Express Base Specification Revision 2.1 and earlier devices.
- Supports ×1, ×2, ×4, ×8, and ×16 lane widths.
- Supports 2.5 GT/s, 5.0 GT/s, and 8.0 GT/s link-data rates.
- Supports ×16 lane reversal where the receivers on lanes 0 to 15 on the graphics endpoint are mapped to the transmitters on lanes 15 down to 0 on the root complex.
- Supports ×16 lane reversal where the transmitters on lanes 0 to 15 on the graphics endpoint are mapped to the receivers on lanes 15 down to 0 on the root complex (requires corresponding support on the root complex).
- Supports full-swing and low-swing transmitter output levels.

3. PIN Assignment and Description

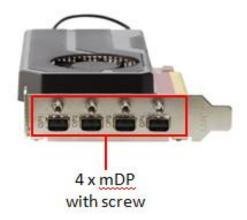
Pin	Side B Connector			Side A Connector		
#	Name	Description	Name	Description		
1	+12v	+12 volt power	PRSNT#1	Hot plug presence detect		
2	+12v	+12 volt power	+12v	+12 volt power		
3	+12v	+12 volt power	+12v	+12 volt power		
4	GND	Ground	GND	Ground		
5	SMCLK	SMBus clock	JTAG2	TCK		
6	SMDAT	SMBus data	JTAG3	TDI		
7	GND	Ground	JTAG4	TDO		
8	+3.3v	+3.3 volt power	JTAG5	TMS		
9	JTAG1	+TRST#	+3.3v	+3.3 volt power		
10	3.3Vaux	3.3v volt power	+3.3v	+3.3 volt power		
11	WAKE#	Link Reactivation	PWRGD	Power Good		
	Mechanical Key					
12	RSVD	Reserved	GND	Ground		
13	GND	Ground	REFCLK+	Reference Clock		
14	HSOp(0)	Transmitter Lane 0,	REFCLK-	Differential pair		
15	HSOn(0)	Differential pair	GND	Ground		
16	GND	Ground	HSIp(0)	Receiver Lane 0,		
17	PRSNT#2	Hotplug detect	HSIn(0)	Differential pair		
18	GND	Ground	GND	Ground		
19	HSOp(1)	Transmitter Lane 1,	RSVD	Reserved		
20	HSOn(1)	Differential pair	GND	Ground		
21	GND	Ground	HSIp(1)	Receiver Lane 1,		
22	GND	Ground	HSIn(1)	Differential pair		
23	HSOp(2)	Transmitter Lane 2,	GND	Ground		

Pin	Side B Connector			Side A Connector
#	Name	Description	Name	Description
24	HSOn(2)	Differential pair	GND	Ground
25	GND	Ground	HSIp(2)	Receiver Lane 2,
26	GND	Ground	HSIn(2)	Differential pair
27	HSOp(3)	Transmitter Lane 3,	GND	Ground
28	HSOn(3)	Differential pair	GND	Ground
29	GND	Ground	HSIp(3)	Receiver Lane 3,
30	RSVD	Reserved	HSIn(3)	Differential pair
31	PRSNT#2	Hot plug detect	GND	Ground
32	GND	Ground	RSVD	Reserved
33	HSOp(4)	Transmitter Lane 4,	RSVD	Reserved
34	HSOn(4)	Differential pair	GND	Ground
35	GND	Ground	HSIp(4)	Receiver Lane 4,
36	GND	Ground	HSIn(4)	Differential pair
37	HSOp(5)	Transmitter Lane 5,	GND	Ground
38	HSOn(5)	Differential pair	GND	Ground
39	GND	Ground	HSIp(5)	Receiver Lane 5,
40	GND	Ground	HSIn(5)	Differential pair
41	HSOp(6)	Transmitter Lane 6,	GND	Ground
42	HSOn(6)	Differential pair	GND	Ground
43	GND	Ground	HSIp(6)	Receiver Lane 6,
44	GND	Ground	HSIn(6)	Differential pair
45	HSOp(7)	Transmitter Lane 7,	GND	Ground
46	HSOn(7)	Differential pair	GND	Ground
47	GND	Ground	HSIp(7)	Receiver Lane 7,
48	PRSNT#2	Hot plug detect	HSIn(7)	Differential pair
49	GND	Ground	GND	Ground
50	HSOp(8)	Transmitter Lane 8,	RSVD	Reserved

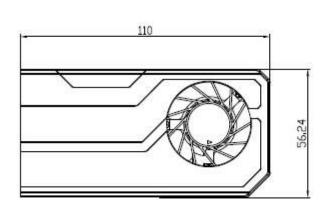

Pin	Side B Connector			Side A Connector
#	Name	Description	Name	Description
51	HSOn(8)	Differential pair	GND	Ground
52	GND	Ground	HSIp(8)	Receiver Lane 8,
53	GND	Ground	HSIn(8)	Differential pair
54	HSOp(9)	Transmitter Lane 9,	GND	Ground
55	HSOn(9)	Differential pair	GND	Ground
56	GND	Ground	HSIp(9)	Receiver Lane 9,
57	GND	Ground	HSIn(9)	Differential pair
58	HSOp(10)	Transmitter Lane 10,	GND	Ground
59	HSOn(10)	Differential pair	GND	Ground
60	GND	Ground	HSIp(10)	Receiver Lane 10,
61	GND	Ground	HSIn(10)	Differential pair
62	HSOp(11)	Transmitter Lane 11,	GND	Ground
63	HSOn(11)	Differential pair	GND	Ground
64	GND	Ground	HSIp(11)	Receiver Lane 11,
65	GND	Ground	HSIn(11)	Differential pair
66	HSOp(12)	Transmitter Lane 12,	GND	Ground
67	HSOn(12)	Differential pair	GND	Ground
68	GND	Ground	HSIp(12)	Receiver Lane 12,
69	GND	Ground	HSIn(12)	Differential pair
70	HSOp(13)	Transmitter Lane 13,	GND	Ground
71	HSOn(13)	Differential pair	GND	Ground
72	GND	Ground	HSIp(13)	Receiver Lane 13,
73	GND	Ground	HSIn(13)	Differential pair
74	HSOp(14)	Transmitter Lane 14,	GND	Ground
75	HSOn(14)	Differential pair	GND	Ground
76	GND	Ground	HSIp(14)	Receiver Lane 14,
77	GND	Ground	HSIn(14)	Differential pair

Pin	Side B Connector			Side A Connector
#	Name	Description	Name	Description
78	HSOp(15)	Transmitter Lane 15,	GND	Ground
79	HSOn(15)	Differential pair	GND	Ground
80	GND	Ground	HSIp(15)	Receiver Lane 15,
81	PRSNT#2	Hot plug present detect	HSIn(15)	Differential pair
82	RSVD#2	Hot Plug Detect	GND	Ground

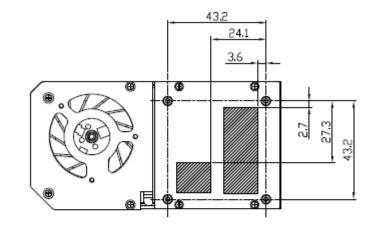
4. Board Configuration

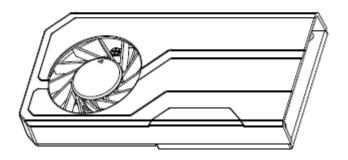

4.1 Board Dimension

(Unit:mm)


Tolerances: +/- 0.13 mm

4.2 Display Interface




5. Thermal Mechanism

5.1 Fan Thermal Module

Change List

Rev.	Date	Description
1.0	2015/7/27	E8860RFL datasheet released