

Data Sheet

FEATURES

Fixed gain of 18.4 dB

Broad operation from 30 MHz to 6 GHz High dynamic range gain block Input and output internally matched to 50 Ω Integrated bias circuit OIP3 of 38.8 dBm at 900 MHz P1dB of 20.4 dBm at 900 MHz Noise figure of 2.2 dB at 900 MHz Single 5 V power supply Low quiescent current of 92 mA Wide operating temperature range of -40°C to +105°C Thermally efficient SOT-89 package ESD rating of ±1.5 kV (Class 1C)

GENERAL DESCRIPTION

The ADL5610 is a single-ended RF/IF gain block amplifier that provides broadband operation from 30 MHz to 6 GHz. The ADL5610 provides a low noise figure of 2.2 dB with a very high OIP3 of more than 38 dBm simultaneously, which delivers a high dynamic range.

The ADL5610 provides a gain of 18 dB, which is stable over frequency, temperature, and power supply, and from device to device. The amplifier is offered in the industry-standard SOT-89 package and is internally matched to 50 Ω at the input and

30 MHz to 6 GHz RF/IF Gain Block

ADL5610

FUNCTIONAL BLOCK DIAGRAM

output, making the ADL5610 easy to implement in a wide variety of applications. The only external parts required are the input and output ac coupling capacitors, power supply decoupling capacitors, and bias inductor.

The ADL5610 has a high ESD rating of ± 1.5 kV (Class 1C) and is fully specified for operation across a wide temperature range of -40° C to $+105^{\circ}$ C.

A fully populated RoHS-compliant evaluation board is available.

Rev. B

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Typical Scattering Parameters (S-Parameters)	5
Absolute Maximum Ratings	7
Thermal Resistance	7
ESD Caution	7
Pin Configuration and Function Descriptions	8
Typical Performance Characteristics	9

REVISION HISTORY

12/15—Rev. A to Rev. B	
Updated Outline Dimensions	. 16

9/13—Rev. 0 to Rev. A

Added Figure 19; Renumbered Sequentially 1	1
Changes to Figure 29 1	4
Updated Outline Dimensions 1	6

7/13—Revision 0: Initial Version

500 MHz to 6 GHz Frequency Band	9
30 MHz to 500 MHz Frequency Band	10
General	11
Applications Information	13
Basic Connections	13
Soldering Information and Recommended PCB Land Pattern	
W-CDMA ACPR Performance	
Evaluation Board	15
Outline Dimensions	16
Ordering Guide	

SPECIFICATIONS

 V_{POS} = 5 V and T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
OVERALL FUNCTION					
Frequency Range		30		6000	MHz
FREQUENCY = 30 MHz					
Gain			18.1		dB
Output 1 dB Compression Point (P1dB)			16.1		dBm
Output Third-Order Intercept (OIP3)	$\Delta f = 1 \text{ MHz}$, output power (P _{OUT}) = 3 dBm per tone		30.8		dBm
Noise Figure ¹			2.8		dB
FREQUENCY = 140 MHz					
Gain			15.0		dB
vs. Frequency	±10 MHz		±0.43		dB
vs. Temperature	$-40^{\circ}C \le T_{A} \le +105^{\circ}C$		±0.33		dB
vs. Supply	4.75 V to 5.25 V		±0.04		dB
Output 1 dB Compression Point			16.0		dBm
Output Third-Order Intercept	$\Delta f = 1 MHz$, Pout = 3 dBm per tone		29.3		dBm
Noise Figure ¹	,		2.6		dB
FREQUENCY = 350 MHz					
Gain			18.1		dB
vs. Frequency	+10 MHz		+0.04		dB
vs. Temperature	$-40^{\circ}C < T_{A} < +105^{\circ}C$		+0.29		dB
vs Supply	4 75 V to 5 25 V		+0.02		dB
Output 1 dB Compression Point			20.2		dBm
Output Third-Order Intercent	$\Lambda f = 1 \text{ MHz}$ output power (Pout) = 3 dBm pertone		34.6		dBm
Noise Figure ¹			21		dB
FREQUENCY = 700 MHz			2.1		
Gain			18.4		dB
vs Frequency	+50 MHz		+0.02		dB
vs. Temperature	$-40^{\circ}C < T_{A} < +105^{\circ}C$		+0.23		dB
vs. Supply	4 75 V to 5 25 V		+0.04		dB
Output 1 dB Compression Point	1.7.5 V (0.5.2.5 V		20.01		dBm
Output Third-Order Intercent	$\Lambda f = 1 MHz P_{out} = 3 dBm per tone$		20.4		dBm
			22		dB
			2.2		ub
Gain		174	10/	10/	dB
	+50 MHz	17.4	+0.01	19.4	dB
vs. Temperature	-40° < T ₁ < $\pm 105^{\circ}$		+0.22		dB
vs. Supply	4 75 V to 5 25 V		+0.05		dB
Output 1 dB Comprossion Point	4.75 V to 5.25 V		<u>+0.05</u> 20.4		dBm
Output Third-Order Intercept	$\Delta f = 1 MHz Pouz = 3 dBm portono$		20.4		dBm
Noiso Figuro	$\Delta I = 1 \text{ min} 2, F 0 I = 3 \text{ dom per tone}$		30.0 2 2		dB
			2.2		UD
Gain		16.0	17.0	100	dP
		10.9	17.9	10.9	dD
vs. Frequency			±0.05		dD
vs. Temperature	$-40 C \ge 1A \ge +100 C$		±0.25		dD
vs. supply	4.7.5 V (U 3.2.5 V		±0.11		dB~~
Output T up Compression Point	$\Delta f = 1 M Hz D = -2 dPm pertone$		20.1 20.7		
Noice Figure	$\Delta I = I M \Pi Z, P_{OUT} = 5 ubin per tone$		30./ 2.5		
ivoise rigure		1	2.5		ив

Fragmeter Test Conditions/Comments Mm Typ Max Office FREQUENCY = 2140 MHz	Parameter	Tast Conditions/Commonts	Min	Tun M	lav	Unit
FREQUENCY = 2140 MHZ ±50 MHZ 17.8 dB vs. Frequency ±50 MHZ ±0.03 dB vs. Temperature -40°C \leq T_A \leq ±105°C ±0.25 dB vs. Supply 4.75 V to 5.25 V ±0.13 dB Output 1 dB Compression Point 19.9 dBm Output Third-Order Intercept $\Delta f = 1$ MHz, Pour = 3 dBm per tone 36.8 dBm Noise Figure ¹ 2.7 dB FREQUENCY = 2600 MHz 17.5 dB Gain 17.5 dB vs. Frequency ±50 MHz ±0.03 dB vs. Temperature -40°C \leq T_A \leq ±105°C ±0.28 dB vs. Supply 4.75 V to 5.25 V ±0.15 dB Output 1 dB Compression Point 18.7 dBm Output 1 dB Compression Point 18.7 dBm Output Third-Order Intercept $\Delta f = 1$ MHz, Pour = 3 dBm per tone 33.5 dBm Noise Figure ¹ 2.8 dBm 2.8 dBm Noise Figure ¹ 2.8 dBm 2.8 dBm Noise Figure ¹ 2.8 dBm			141111	тур г	Παλ	Unit
Gain17.5dbvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.25 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.13 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}, P_{our} = 3 \text{ dBm per tone}$ 36.8 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{our} = 3 \text{ dBm per tone}$ 36.8 dBNoise Figure 1 2.7 dBFREQUENCY = 2600 MHz $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.03 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.03 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.28 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.15 dBOutput 1 dB Compression Point MHz 8.7 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{out} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure 1 $\Delta f = 1 \text{ MHz}, P_{out} = 3 \text{ dBm per tone}$ 2.8 dBFREQUENCY = 3500 MHz 2.8 40.04 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.044 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.455 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.455 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.455 dBvs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.445 dBvs.	Coin			170		dD
VS. Requency $\pm 50 \text{ MHZ}$ ± 0.03 dbvs. Temperature $-40^{\circ}\text{C} \le T_A \le +105^{\circ}\text{C}$ ± 0.25 dBvs. Supply 4.75 V to 5.25 V ± 0.13 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 36.8 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 36.8 dBmNoise Figure1 2.7 dBFREQUENCY = 2600 MHz $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}\text{C} \le T_A \le +105^{\circ}\text{C}$ ± 0.28 dBvs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 33.5 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{outr} = 3 \text{ dBm}$ 17.6 dBvs. Temperature $-40^{\circ}\text{C} \le T_A \le +105^{\circ}\text{C}$ ± 0.044 dBvs. Supply 4.75 V to 5.25 V ± 0.045 dBvs. Supply 4.75 V to $5.25 $				17.0		dD
vs. femperature $-40 C \le T_A \le +105 C$ ± 0.23 dbvs. Supply4.75 V to 5.25 V ± 0.13 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 36.8 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 36.8 dBmNoise Figure2 2.7 dBFREQUENCY = 2600 MHz $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.28 dBvs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure2 $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone 33.5 dBmNoise Figure3 $4.75 \text{ V to 5.25 \text{ V}$ ± 0.04 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dBvs. Supply $4.75 \text{ V to 5.25 \text{ V}$ ± 0.19 dBvs. Supply $4.75 \text{ V to 5.25 \text{ V}$ <td>vs. Frequency</td> <td>100 Mmz</td> <td></td> <td>±0.05</td> <td></td> <td>dD</td>	vs. Frequency	100 Mmz		±0.05		dD
Vs. supply4.75 V to 5.25 V ± 0.13 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 19.9dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 36.8dBmNoise Figure12.7dBFREQUENCY = 2600 MHz $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.28 dBvs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 34.8dBFREQUENCY = 3500 MHz $4.75 \text{ V to 5.25 V$ ± 0.04 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dBvs. Supply $4.75 V to 5.25 V$ ± 0.19 dB	vs. temperature	$-40 C \le I_A \le +103 C$		±0.25		ub JD
Output This Compression Point $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 19.9 dBm Output Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 36.8 dBm Noise Figure 1 2.7 dB FREQUENCY = 2600 MHz 17.5 dB Gain 17.5 dB vs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dB vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.28 dB vs. Supply $4.75 \text{ V to } 5.25 \text{ V}$ ± 0.15 dB Output 1 dB Compression Point $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5 dBm Noise Figure 1 $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5 dBm REQUENCY = 3500 MHz $4.75 \text{ V to } 5.25 \text{ V}$ 17.6 dB vs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dB vs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dB vs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dB vs. Supply $4.75 \text{ V to } 5.25 \text{ V}$ ± 0.04 dB	vs. supply	4.75 V 10 5.25 V		±0.13		d Dura
Output Hind-Order Intercept $\Delta I = T MHZ, Pour = 3 dBm per tone36.8dBmNoise Figure12.7dBFREQUENCY = 2600 MHz17.5dBGain\pm 50 \text{ MHz}\pm 0.03dBvs. Frequency\pm 50 \text{ MHz}\pm 0.03dBvs. Temperature-40^{\circ}C \le T_A \le +105^{\circ}C\pm 0.28dBvs. Supply4.75 \text{ V to } 5.25 \text{ V}\pm 0.15dBOutput 1 dB Compression Point\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}33.5dBmNoise Figure1\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}33.5dBmNoise Figure1\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}33.5dBmNoise Figure1\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}34.6 \text{ dB}4.75 \text{ V to } 5.25 \text{ V}frequency\pm 50 \text{ MHz}17.6dBvs. Frequency\pm 50 \text{ MHz}17.6dBvs. Frequency\pm 50 \text{ MHz}\pm 0.04dBvs. Supply4.75 \text{ V to } 5.25 \text{ V}\pm 0.19dBvs. Supply4.75 \text{ V to } 5.25 \text{ V}\pm 0.19dB$	Output T dB Complession Point			19.9		
Noise Figure2.7dBFREQUENCY = 2600 MHz17.5dBGain17.5dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 vs. Temperature $-40^{\circ}C \leq T_A \leq +105^{\circ}C$ ± 0.28 vs. Supply4.75 V to 5.25 V ± 0.15 Output 1 dB Compression Point18.7Output Third-Order Intercept $\Delta f = 1 \text{ MHz}$, Pour = 3 dBm per tone33.5Noise Figure 12.8FREQUENCY = 3500 MHz17.6Gain $\pm 50 \text{ MHz}$ ± 0.044 vs. Frequency $\pm 50 \text{ MHz}$ ± 0.044 vs. Frequency $\pm 50 \text{ MHz}$ ± 0.044 vs. Frequency $\pm 50 \text{ MHz}$ ± 0.045 vs. Supply 4.75 V to 5.25 V ± 0.19 dB 0.455 V 0.199 dB 0.199 dBdB 0.199 dB	Noise Figure 1	$\Delta t = 1 \text{ MHz}, P_{OUT} = 3 \text{ aBm per tone}$		30.8		and
FREQUENCY = 2600 MHz17.5dBGain $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}\text{C} \leq T_A \leq +105^{\circ}\text{C}$ ± 0.28 dBvs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput 1 dB Compression Point 18.7 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure 1 2.8 dBFREQUENCY = 3500 MHz 17.6 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.45 dBvs. Supply 4.75 V to 5.25 V ± 0.19 dB				2.7		ав
Gain17.5dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}\text{C} \leq T_A \leq +105^{\circ}\text{C}$ ± 0.28 dBvs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput 1 dB Compression Point $\Delta f = 1 \text{ MHz}$, $P_{OUT} = 3 \text{ dBm}$ per tone 18.7 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}$, $P_{OUT} = 3 \text{ dBm}$ per tone 33.5 dBmNoise Figure 1 2.8 dBFREQUENCY = 3500 MHz 17.6 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Supply 4.75 V to 5.25 V ± 0.19 dB	FREQUENCY = 2600 MHZ			47.5		10
vs. Frequency $\pm 50 \text{ MHz}$ ± 0.03 dBvs. Temperature $-40^{\circ}\text{C} \leq T_{A} \leq +105^{\circ}\text{C}$ ± 0.28 dBvs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput 1 dB Compression Point 18.7 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5 dBmNoise Figure1 2.8 dBFREQUENCY = 3500 MHz 17.6 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Supply 4.75 V to 5.25 V ± 0.19 dB	Gain			17.5		dB
vs. lemperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.28 dBvs. Supply $4.75 \lor to 5.25 \lor$ ± 0.15 dBOutput 1 dB Compression Point 18.7 dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm}$ per tone 33.5 dBmNoise Figure1 $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm}$ per tone 33.5 dBmFREQUENCY = 3500 MHz 17.6 dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dBvs. Supply $4.75 \lor to 5.25 \lor$ ± 0.19 dB	vs. Frequency	±50 MHz		±0.03		dB
vs. Supply 4.75 V to 5.25 V ± 0.15 dBOutput 1 dB Compression Point 18.7 dBmOutput Third-Order Intercept $\Delta f = 1$ MHz, $P_{OUT} = 3$ dBm per tone 33.5 dBmNoise Figure 1 2.8 dBFREQUENCY = 3500 MHz 17.6 dBvs. Frequency ± 50 MHz ± 0.04 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dBvs. Supply 4.75 V to 5.25 V ± 0.19 dB	vs. lemperature	$-40^{\circ}C \le I_{A} \le +105^{\circ}C$		±0.28		dB
Output 1 dB Compression Point18.7dBmOutput Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5dBmNoise Figure12.8dBFREQUENCY = 3500 MHz17.6dBvs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dBvs. Supply4.75 V to 5.25 V ± 0.19 dB	vs. Supply	4.75 V to 5.25 V		±0.15		dB
Output Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 33.5 dBm Noise Figure1 2.8 dB FREQUENCY = 3500 MHz 17.6 dB Gain 17.6 dB vs. Frequency $\pm 50 \text{ MHz}$ vs. Temperature $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$ vs. Supply 4.75 V to 5.25 V 2.9 dB	Output 1 dB Compression Point			18.7		dBm
Noise Figure'2.8dBFREQUENCY = 3500 MHz17.6dBGain17.6dBvs. Frequency ± 50 MHz ± 0.04 dBvs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dBvs. Supply4.75 V to 5.25 V ± 0.19 dB	Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$		33.5		dBm
FREQUENCY = 3500 MHz 17.6 dB Gain 17.6 dB vs. Frequency ± 50 MHz ± 0.04 dB vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dB vs. Supply 4.75 V to 5.25 V ± 0.19 dB	Noise Figure ¹			2.8		dB
Gain 17.6 dB vs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dB vs. Temperature $-40^{\circ}\text{C} \le T_A \le +105^{\circ}\text{C}$ ± 0.45 dB vs. Supply 4.75 V to 5.25 V ± 0.19 dB	FREQUENCY = 3500 MHz					
vs. Frequency $\pm 50 \text{ MHz}$ ± 0.04 dB vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dB vs. Supply 4.75 V to 5.25 V ± 0.19 dB	Gain			17.6		dB
vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.45 dB vs. Supply $4.75 V \text{ to } 5.25 V$ ± 0.19 dB	vs. Frequency	±50 MHz		±0.04		dB
vs. Supply 4.75 V to 5.25 V ±0.19 dB	vs. Temperature	$-40^{\circ}C \le T_{A} \le +105^{\circ}C$		±0.45		dB
	vs. Supply	4.75 V to 5.25 V		±0.19		dB
Output i dB Compression Point 17.4 dBm	Output 1 dB Compression Point			17.4		dBm
Output Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 29.4dBm	Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}$, P _{OUT} = 3 dBm per tone		29.4		dBm
Noise Figure ¹ 3.0 dB	Noise Figure ¹			3.0		dB
FREQUENCY = 4000 MHz	FREQUENCY = 4000 MHz					
Gain 17.9 dB	Gain			17.9		dB
vs. Frequency ±50 MHz ±0.04 dB	vs. Frequency	±50 MHz		±0.04		dB
vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 0.84 dB	vs. Temperature	$-40^{\circ}C \le T_A \le +105^{\circ}C$		±0.84		dB
vs. Supply 4.75 V to 5.25 V ±0.24 dB	vs. Supply	4.75 V to 5.25 V		±0.24		dB
Output 1 dB Compression Point 16.4 dBm	Output 1 dB Compression Point			16.4		dBm
Output Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 27.6dBm	Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}$, P _{OUT} = 3 dBm per tone		27.6		dBm
Noise Figure ¹ 3.2 dB	Noise Figure ¹			3.2		dB
FREQUENCY = 5000 MHz	FREQUENCY = 5000 MHz					
Gain 15.3 dB	Gain			15.3		dB
vs. Frequency ±50 MHz ±0.11 dB	vs. Frequency	±50 MHz		±0.11		dB
vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 1.27 dB	vs. Temperature	$-40^{\circ}C \le T_{A} \le +105^{\circ}C$		±1.27		dB
vs. Supply 4.75 V to 5.25 V ±0.33 dB	vs. Supply	4.75 V to 5.25 V		±0.33		dB
Output 1 dB Compression Point 15.7 dBm	Output 1 dB Compression Point			15.7		dBm
Output Third-Order Intercept $\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$ 26.1dBm	Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}, P_{OUT} = 3 \text{ dBm per tone}$		26.1		dBm
Noise Figure 4.4 dB	Noise Figure			4.4		dB
FREQUENCY = 5800 MHz	FREQUENCY = 5800 MHz					
Gain 13.2 dB	Gain			13.2		dB
vs. Frequency ±50 MHz ±0.08 dB	vs. Frequency	±50 MHz		±0.08		dB
vs. Temperature $-40^{\circ}C \le T_A \le +105^{\circ}C$ ± 1.36 dB	vs. Temperature	$-40^{\circ}C \le T_A \le +105^{\circ}C$		±1.36		dB
vs. Supply 4.75 V to 5.25 V ±0.33 dB	vs. Supply	4.75 V to 5.25 V		±0.33		dB
Output 1 dB Compression Point 12 5 dBm	Output 1 dB Compression Point			12.5		dBm
Output Third-Order Intercept $\Delta f = 1 \text{ MHz}$. Pour = 3 dBm per tone 21.2 dBm	Output Third-Order Intercept	$\Delta f = 1 \text{ MHz}$, $P_{OUT} = 3 \text{ dBm per tone}$		21.2		dBm
Noise Figure ¹ 6.1 dB	Noise Figure ¹			6.1		dB

Data Sheet

ADL5610

Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
POWER INTERFACE					
Supply Voltage	VPOS	4.75	5	5.25	V
Supply Current			92	118	mA
vs. Temperature	$-40^{\circ}C \le T_A \le +105^{\circ}C$		-6/+14		mA
Power Dissipation			460		mW

¹ Noise figure specified includes printed circuit board (PCB) traces losses.

TYPICAL SCATTERING PARAMETERS (S-PARAMETERS)

 V_{POS} = 5 V and T_{A} = 25°C.

Table 2.

Frequency	S11		S21		S12		S22	
(MHz)	Magnitude (dB)	Angle (°)						
30	-19.575	-21.758	18.186	+167.401	-23.536	+0.034	-12.040	-154.592
50	-13.194	+17.280	+16.748	+158.342	-24.873	-11.954	-8.336	-158.609
100	-8.023	-17.286	+13.552	+168.911	-27.865	-5.368	-5.677	-189.790
200	-10.635	-67.774	+16.801	+171.154	-24.787	-2.040	-8.176	-225.737
300	-13.978	-93.402	+17.960	+154.322	-23.679	-16.582	-10.953	-237.962
400	-16.890	-111.950	+18.355	+138.243	-23.336	-29.568	-12.818	-242.287
500	-14.057	-140.270	+18.204	-229.198	-23.467	-33.884	-10.083	+104.308
600	-15.303	-160.894	+18.339	-243.615	-23.322	-45.046	-10.629	+98.947
700	-17.025	-180.268	+18.416	-258.515	-23.214	-56.945	-11.317	+95.056
800	-18.532	-198.771	+18.434	-272.822	-23.143	-68.374	-11.700	+91.300
900	-19.926	-216.383	+18.425	-286.779	-23.102	-79.290	-11.891	+87.191
1000	-21.266	-233.373	+18.401	-300.434	-23.099	-90.132	-11.967	+82.648
1100	-22.659	-248.512	+18.366	-313.941	-23.071	-100.705	-11.951	+77.917
1200	-24.210	-262.937	+18.320	-327.244	-23.068	-111.189	-11.897	+72.400
1300	-26.057	-274.666	+18.272	-340.437	-23.063	-121.632	-11.812	+66.929
1400	-28.536	-282.527	+18.220	-353.552	-23.065	-131.946	-11.702	+61.131
1500	-31.933	-279.454	+18.166	-366.576	-23.063	-142.239	-11.599	+55.505
1600	-34.750	-255.300	+18.106	-379.548	-23.067	-152.499	-11.467	+49.533
1700	-32.172	-220.241	+18.046	-392.387	-23.070	-162.725	-11.381	+43.914
1800	-27.781	-211.620	+17.977	-405.225	-23.085	-173.046	-11.275	+38.152
1900	-24.468	-218.185	+17.916	-418.174	-23.047	-183.266	-11.132	+32.216
2000	-21.613	-222.836	+17.843	-430.638	-23.111	-193.454	-11.136	+27.227
2100	-19.342	-232.483	+17.783	-443.294	-23.127	-203.629	-11.017	+21.933
2200	-17.343	-243.288	+17.740	-455.878	-23.141	-213.605	-10.826	+16.768
2300	-15.863	-253.959	+17.682	-468.509	-23.139	-223.746	-10.670	+10.889
2400	-14.592	-264.759	+17.629	-481.088	-23.129	-233.823	-10.488	+4.907
2500	-13.521	-275.854	+17.583	-493.684	-23.123	-243.825	-10.295	-1.461
2600	-12.680	-286.432	+17.533	-506.169	-23.114	-254.026	-10.160	-8.539
2700	-11.965	-296.744	+17.494	-518.608	-23.122	-264.148	-10.022	-15.582
2800	-11.364	-307.385	+17.466	-531.068	-23.105	-274.109	-9.909	-23.543
2900	-10.983	-318.098	+17.441	-543.539	-23.013	-284.190	-9.885	-32.338
3000	-10.683	-328.063	+17.448	-555.886	-22.967	-294.664	-9.958	-41.038
3100	-10.470	-338.914	+17.468	-568.495	-22.910	-304.790	-10.016	-50.760
3200	-10.377	-349.594	+17.503	-581.114	-22.848	-315.180	-10.207	-61.042
3300	-10.454	-360.106	+17.556	-593.755	-22.757	-325.637	-10.506	-72.485
3400	-10.733	-371.185	+17.609	-606.730	-22.674	-336.157	-10.842	-85.064
3500	-11.222	-381.299	+17.683	-619.682	-22.581	-346.908	-11.291	-98.903

Data Sheet

Frequency	S11		S21		S12		S22	
(MHz)	Magnitude (dB)	Angle (°)						
3600	-11.851	-392.155	+17.768	-633.032	-22.457	-358.060	-11.908	-114.642
3700	-12.849	-403.342	+17.830	-646.607	-22.372	-369.044	-12.522	-132.684
3800	-14.417	-413.805	+17.904	-660.333	-22.234	-380.712	-13.184	-153.495
3900	-16.531	-425.971	+17.938	-674.447	-22.200	-392.377	-13.538	-177.923
4000	-19.249	-436.011	+18.010	-689.430	-22.085	-405.026	-13.882	-202.196
4100	-24.999	-460.302	+17.915	-704.472	-22.195	-417.459	-13.296	-228.659
4200	-32.089	-556.369	+17.769	-719.835	-22.338	-430.127	-12.342	-252.450
4300	-21.011	-617.527	+17.448	-735.470	-22.655	-442.759	-11.165	-273.722
4440	-14.797	-639.680	+16.876	-750.505	-23.014	-453.711	-9.840	-292.336
4500	-10.740	-661.435	+16.212	-763.011	-23.353	-463.267	-8.338	-310.540
4600	-8.451	-681.844	+15.849	-773.947	-23.431	-472.943	-7.134	-329.131
4700	-7.237	-698.863	+15.707	-785.709	-23.418	-483.451	-6.336	-346.718
4800	-6.447	-713.011	+15.581	-798.441	-23.453	-494.525	-5.808	-362.618
4900	-5.907	-724.933	+15.413	-811.388	-23.569	-505.774	-5.457	-377.358
5000	-5.507	-735.570	+15.210	-824.332	-23.748	-516.626	-5.207	-391.101
5100	-5.147	-745.147	+14.998	-837.253	-23.929	-527.665	-5.106	-404.171
5200	-4.964	-754.155	+14.767	-850.018	-23.998	-538.788	-5.099	-416.123
5300	-4.929	-762.147	+14.507	-862.399	-24.155	-548.537	-5.180	-428.050
5400	-4.758	-770.468	+14.376	-874.651	-24.220	-559.477	-5.313	-440.141
5500	-4.735	-779.351	+14.216	-887.558	-24.481	-568.644	-5.672	-453.016
5600	-4.686	-786.735	+14.109	-900.141	-24.355	-579.878	-6.142	-464.297
5700	-4.708	-793.953	+13.986	-913.048	-24.406	-589.889	-6.809	-476.641
5800	-4.782	-800.356	+13.873	-925.986	-24.277	-599.855	-7.749	-488.815
5900	-4.821	-807.419	+13.750	-939.485	-24.360	-611.222	-8.867	-501.594
6000	-4.831	-812.689	+13.663	-952.755	-24.108	-622.580	-10.361	-513.719

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage, V _{POS}	6.5 V
Input Power (50 Ω Impedance)	20 dBm
Internal Power Dissipation (Pad Soldered to Ground)	800 mW
ESD Human Body Model (HBM) Rating (ESDA/ JEDEC JS-001-2011)	±1.5 kV
Maximum Junction Temperature	150°C
Operating Temperature Range	-40°C to +105°C
Storage Temperature Range	–65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Table 4 lists the junction-to-air thermal resistance (θ_{JA}) and the junction-to-case thermal resistance (θ_{JC}) for the ADL5610.

Table 4. Thermal Resistance

Package Type	θ_{JA}^1	θ」2	Unit
3-Lead SOT-89 (RK-3)	52	9	°C/W

¹ Measured on the ADL5610 evaluation board. For more information about board layout, see the Soldering Information and Recommended PCB Land Pattern section.

² Based on simulation with a standard JEDEC board per JESD51.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	RFIN	RF Input. This pin requires a dc blocking capacitor.
2	GND	Ground. Connect this pin to a low impedance ground plane.
3	RFOUT	RF Output and Supply Voltage. DC bias is provided to this pin through an inductor that is connected to the external power supply. The RF path requires a dc blocking capacitor.
	EPAD	Exposed Pad. The exposed pad encompasses Pin 2 and the tab at the top side of the package. Solder the exposed pad to a low impedance ground plane for electrical grounding and thermal transfer.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency

Figure 5. OIP3 and P1dB vs. Frequency and Temperature

Figure 6. OIP3 vs. Output Power (POUT) and Frequency

Figure 7. Output Return Loss (S22), Input Return Loss (S11), and Reverse Isolation (S12) vs. Frequency

Figure 8. Noise Figure vs. Frequency and Temperature

1507-105

30 MHz TO 500 MHz FREQUENCY BAND

Figure 9. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency, Low Frequency Configuration

Figure 11. OIP3 and P1dB vs. Frequency and Temperature, Low Frequency Configuration

Figure 12. OIP3 vs. Output Power (Pour) and Frequency, Low Frequency Configuration

Figure 13. Output Return Loss (S22), Input Return Loss (S11), and Reverse Isolation (S12) vs. Frequency, Low Frequency Configuration

Ire 14. Noise Figure vs. Frequency and Temperati Low Frequency Configuration

Data Sheet

GENERAL

Figure 15. Supply Current vs. Temperature

Figure 16. Gain Distribution at 900 MHz

Figure 17. Gain Distribution at 1900 MHz

Figure 19. Supply Current vs. P_{OUT} and Temperature, $V_{CC} = 5 V$ at 900 MHz

Figure 20. Gain Distribution at 2600 MHz

Figure 23. OIP3 Distribution at 900 MHz, $P_{OUT} = 3 \text{ dBm per Tone}$

APPLICATIONS INFORMATION basic connections

Figure 26 shows the basic connections for operating the ADL5610. The device supports operation from 30 MHz to 6 GHz. However, for optimal performance at lower frequency bands, the board configuration must be adjusted. Table 6 lists the recommended board configuration to operate the device at various frequency bands.

A 5 V dc bias is supplied to the amplifier through the bias inductor connected to RFOUT (Pin 3). Decouple the bias voltage using 68 pF, 1.2 nF, and 1 μ F power supply decoupling capacitors. The typical current consumption for the ADL5610 is 92 mA.

At low frequencies, the device exhibits improved performance with the suggested setup configuration listed in Table 6. Figure 27 and Figure 28 provide a comparison of the performance of the device at the 30 MHz to 500 MHz band when driven with the optimal setup configuration and the default setup configuration.

Figure 27. Noise Figure, Gain, P1dB, and OIP3 vs. Frequency, 30 MHz to 500 MHz, Comparison of Performance with the Optimized Settings and the Default Configuration

Figure 28. Output Return Loss (S22), Input Return Loss (S11), and Reverse Isolation (S12), 30 MHz to 500 MHz, Comparison of Performance with the Optimized Settings and the Default Configuration

Table 6. Recommended C	omponents for Basic Connections
------------------------	---------------------------------

	AC Coupling Capacitors (0402)		DC Bias Inductor (0603HP)
Frequency Band	C1 (nF)	C2 (nF)	L1 (nH)
500 MHz to 6 GHz	100	100	43
30 MHz to 500 MHz	100	100	1000

SOLDERING INFORMATION AND RECOMMENDED PCB LAND PATTERN

Figure 29 shows the recommended land pattern for the ADL5610. To minimize thermal impedance, the exposed pad on the underside of the SOT-89 package is soldered to a ground plane, along with Pin 2. If multiple ground layers exist, stitch the layers together using vias.

Figure 29. Recommended Land Pattern

The land pattern on the ADL5610 evaluation board provides a measured thermal resistance (θ_{JA}) of 52°C/W. To measure θ_{JA} , the temperature at the top of the SOT-89 package is sensed with an IR temperature gun. Thermal simulation suggests a

junction temperature that is 10°C higher than the top-ofpackage temperature. With additional measurements of the ambient temperature and input/output (I/O) power, θ_{IA} can be determined.

W-CDMA ACPR PERFORMANCE

Figure 30 shows a plot of the adjacent channel power ratio (ACPR) vs. P_{OUT} for the ADL5610. The signal type used is a single wideband code division multiple access (W-CDMA) carrier (Test Model 1-64) at 2140 MHz. This signal is generated by a very low ACPR source. ACPR is measured at the output by a high dynamic range spectrum analyzer that incorporates an instrument noise correction function.

Figure 30. ACPR vs. Pout, Single W-CDMA Carrier (Test Model 1-64) at 2140 MHz

The ADL5610 achieves an ACPR of -81 dBc at an output power level of -5 dBm, at which point the device noise and not distortion begins to dominate the power in the adjacent channels. At an output power level of 5 dBm, ACPR is still very low at -65 dBc.

EVALUATION BOARD

Figure 31 shows the ADL5610 evaluation board layout. Figure 32 shows the schematic for the evaluation board. The board is powered by a single 5 V supply. Table 7 lists the components used on the evaluation board. Power can be applied to the board through clip-on terminals (VCC and GND).

Figure 31. Evaluation Board Layout (Top)

Component	Description	Default Value
C1, C2	AC coupling capacitors	C1, C2 = 100 nF, 0402
L1	DC bias inductor	L1 = 43 nH, 0603 (Coilcraft 0603HP or equivalent)
R5	Bias resistor	$R5 = 0 \Omega, 0402$
VCC and GND	Clip-on terminals for power supply	Not applicable
C4, C5, C6	Power supply decoupling capacitors	C4 = 68 pF, 0603; C5 = 1.2 nF, 0603; C6 = 1 μF, 1206

Figure 32. Evaluation Board Schematic

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADL5610ARKZ-R7	–40°C to +105°C	3-Lead SOT-89, 7" Tape and Reel	RK-3
ADL5610-EVALZ		Evaluation Board	

 1 Z = RoHS Compliant Part.

©2013–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11507-0-12/15(B)

www.analog.com