9-Bit TTL to ECL Translator

Description

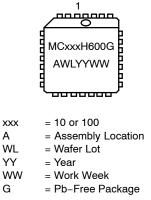
The MC10H/100H600 is a 9-bit, dual supply TTL to ECL translator. Devices in the ON Semiconductor 9-bit translator series utilize the PLCC-28 for optimal power pinning, signal flow-through and electrical performance.

The H600 features both ECL and TTL logic enable controls for maximum flexibility.

The 10H version is compatible with MECL 10H ECL logic levels. The 100H version is compatible with 100K levels.

Features

- 9-Bit Ideal for Byte-Parity Applications
- Flow–Through Configuration
- Extra TTL and ECL Power/Ground Pins to Minimize Switching Noise
- ECL and TTL Enable Inputs
- Dual Supply
- 3.5 ns Max D to Q
- PNP TTL Inputs for Low Loading
- Choice of ECL Compatibility: MECL 10H (10Hxxx) or 100K (100Hxxx)
- Pb–Free Packages are Available*


ON Semiconductor®

http://onsemi.com

PLCC-28 FN SUFFIX CASE 776

MARKING DIAGRAM*

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

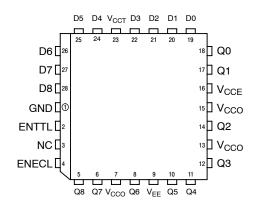


Figure 1. Pinout: PLCC-28 (Top View)

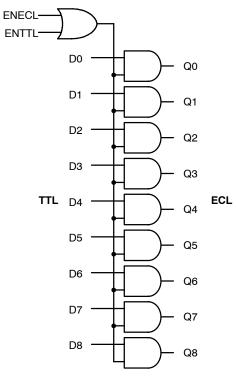


Figure 2. Logic Symbol

PIN	FUNCTION
GND	TTL Ground (0 V)
V _{CCE}	ECL V_{CC} (0 V)
V _{CCO}	ECL V_{CC} (0 V) – Outputs
V _{CCT}	TTL Supply (+5.0 V)
V _{EE}	ECL Supply (-5.2/-4.5 V)
D0-D8	Data Inputs (TTL)
Q0-Q8	Data Outputs (ECL)
ENECL	Enable Control (ECL)
ENTTL	Enable Control (TTL)

Table 2. TRUTH TABLE

ENECL	ENTTL	D	Q
Н	х	н	н
н	Х	L	L
X	Н	н	н
X	Н	L	L
L	L	Х	L

	nbol Parameter		0	°C	25	°C	75	°C	
Symbol			Min	Max	Min	Max	Min	Max	Unit
Power S	upply Current								
I _{EE}	ECL	10H 100H		-125 -122		-125 -123		-125 -132	mA
I _{CCH} I _{CCL}	ΠL			48 50		48 50		48 50	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

			0 °	C	25	°C	75	°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH} I _{IL}	Input HIGH Current Input LOW Current		0.5	225	0.5	175	0.5	175	μΑ μΑ
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage		-1170 -1950	-840 -1480	-1130 -1950	-810 -1480	-1070 -1950	-735 -1450	mV
V _{OH} V _{OL}	Output HIGH Voltage Output LOW Voltage	50 Ω to – 2.0 V	-1020 -1950	-840 -1630	-980 -1950	-810 -1630	-920 -1950	-735 -1600	mV

Table 4. 10H ECL DC CHARACTERISTICS: V_{CCT} = 5.0 V \pm 10%; V_{EE} = -5.2 V \pm 5%

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

			0 °	C	25	°C	75	°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
I _{INH} I _{IL}	Input HIGH Current Input LOW Current		0.5	255	0.5	175	0.5	175	μΑ μΑ
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage		-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	-1165 -1810	-880 -1475	mV
V _{OH} V _{OL}	Output HIGH Voltage Output LOW Voltage	50 Ω to -2.0 V	-1025 -1810	-880 -1620	-1025 -1810	-880 -1620	-1025 -1810	-880 -1620	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 6. TTL DC CHARACTERISTICS: $V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -5.2 \text{ V} \pm 5\%$ (10H); $V_{EE} = -4.2 \text{ V}$ to -5.5 V (100H)

			0	°C	25	°C	75	°C	
Symbol	Parameter	Condition	Min	Max	Min	Max	Min	Max	Unit
V _{IH} V _{IL}	Input HIGH Voltage Input LOW Voltage		2.0	0.8	2.0	0.8	2.0	0.8	V V
IIH	Input HIGH Current	V _{IN} = 2.7 V V _{IN} = 7.0 V		20 100		20 100		20 100	μΑ
IIL	Input LOW Current	V _{IN} = 0.5 V		-0.6		-0.6		-0.6	mA
V _{IK}	Input Clamp Voltage	I _{IN} = -18 mA		-1.2		-1.2		-1.2	V

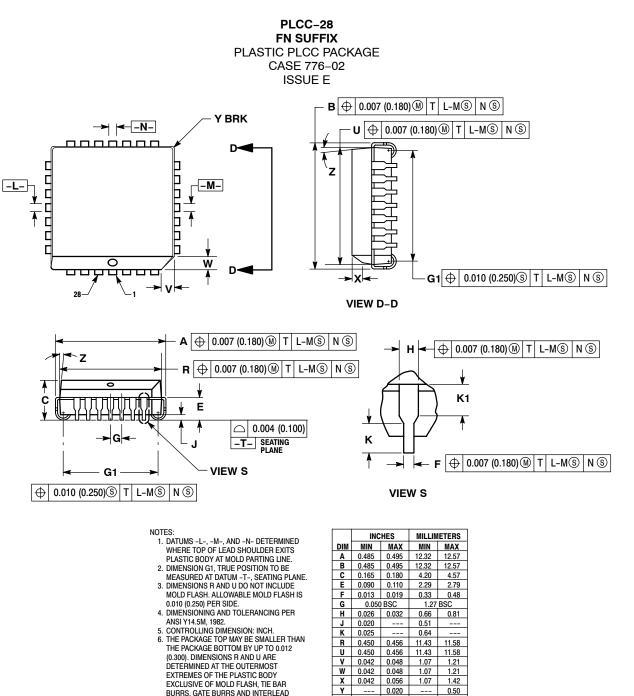
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

				0 °	С	25	°C	75	°C	
Symbol	Parameter		Condition	Min	Max	Min	Max	Min	Max	Unit
t _{PLH}	Propagation Delay to Output	D	50 Ω to – 2.0 V	1.4	3.0	1.5	3.2	1.7	3.5	ns
t _{PHL}		ENECL/ ENTTL		1.8	3.7	1.9	3.9	2.0	4.1	ns
t _R t _F	Output Rise/Fall Time 20% – 80%)		0.5	1.5	0.5	1.5	0.5	1.5	ns

Table 7. AC CHARACTERISTICS: $V_{CCT} = 5.0 \text{ V} \pm 10\%$; $V_{EE} = -5.2 \text{ V} \pm 5\%$ (10H); $V_{EE} = -4.2 \text{ V}$ to -5.5 V (100H)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10H600FN	PLCC-28	37 Units / Rail
MC10H600FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10H600FNR2	PLCC-28	500 / Tape & Reel
MC10H600FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100H600FN	PLCC-28	37 Units / Rail
MC100H600FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100H600FNR2	PLCC-28	500 / Tape & Reel
MC100H600FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

http://onsemi.com 5

BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH

BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.

7

DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037

(0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

0.50

10°

2 °

1.02

2 °

K1 0.040

10 °

G1 0.410 0.430 10.42 10.92

z

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and I are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative