
BOURNS®

BDT60, BDT60A, BDT60B, BDT60C PNP SILICON POWER DARLINGTONS

- Designed for Complementary Use with BDT61, BDT61A, BDT61B and BDT61C
- 50 W at 25°C Case Temperature
- 4 A Continuous Collector Current
- Minimum h_{FE} of 750 at 1.5V, 3 A

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDT60		-60	
Collector-base voltage ($I_E = 0$)	BDT60A	V	-80	v
	BDT60B	Усво	-100	v
	BDT60C		-120	
	BDT60		-60	
Collector emitter veltage (I)	BDT60A	V	-80	v
Collector-emitter voltage (I _B = 0)	BDT60B	V _{CEO}	-100	v
	BDT60C		-120	
Emitter-base voltage		V _{EBO}	-5	V
Continuous collector current		۱ _C	-4	А
Continuous base current		ا _B	-0.1	A
Continuous device dissipation at (or below) 25°C case temperature (see Note	P _{tot}	50	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Not	P _{tot}	2	W	
Operating junction temperature range	Тj	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C
Operating free-air temperature range	T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.4 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

PRODUCT INFORMATION

BDT60, BDT60A, BDT60B, BDT60C PNP SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature (unless otherwise noted)

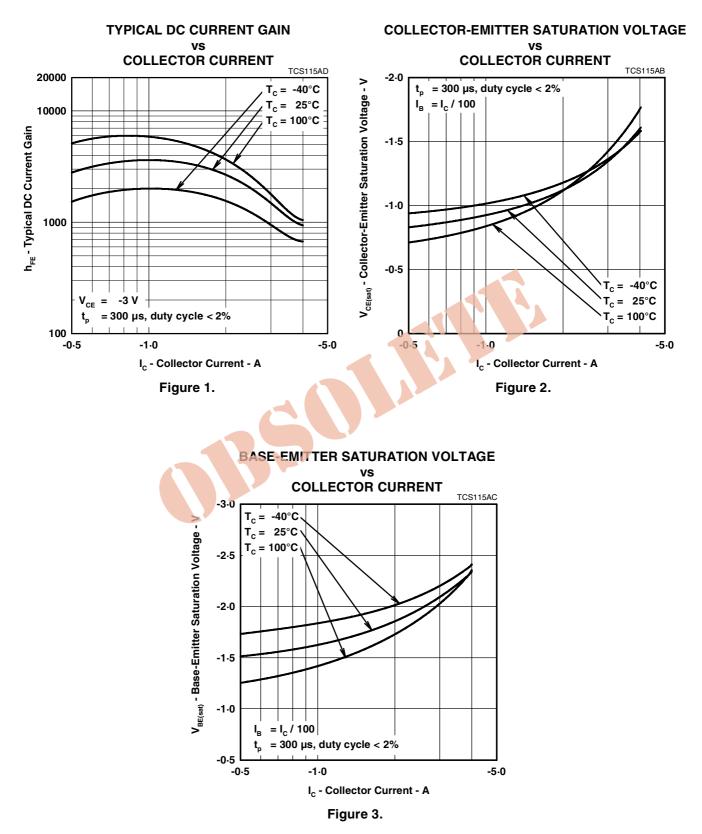
PARAMETER TEST CONDITIONS				MIN	ТҮР	MAX	UNIT		
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = -30 mA	I _B = 0	(see Note 3)	BDT60 BDT60A BDT60B	-60 -80 -100			v
					BDT60B	-120			
		$V_{CE} = -30 V$	I _B = 0		BDT60			-0.5	
I _{CEO}	Collector-emitter	$V_{CE} = -40 V$	$I_B = 0$		BDT60A			-0.5	mA
'CEO	cut-off current	$V_{CE} = -50 V$	$I_B = 0$		BDT60B			-0.5	
		$V_{CE} = -60 V$	$I_B = 0$		BDT60C			-0.5	
		V _{CB} = -60 V	I _E = 0		BDT60			-0.2	
		V _{CB} = -80 V	$I_E = 0$		BDT60A			-0.2	
		V _{CB} = -100 V	$I_E = 0$		BDT60B			-0.2	
1	Collector cut-off	V _{CB} = -120 V	$I_E = 0$		BDT60C			-0.2	mA
I _{СВО}	current	V _{CB} = -30 V	$I_E = 0$	$T_{C} = 150^{\circ}C$	BDT60			-2.0	ША
		$V_{CB} = -40 V$	$I_E = 0$	$T_{C} = 150^{\circ}C$	BDT60A			-2.0	
		V _{CB} = -50 V	$I_E = 0$	T _C = 150°C	BDT60B			-2.0	
		$V_{CB} = -60 V$	$I_E = 0$	$T_{C} = 150^{\circ}C$	BDT60C			-2.0	
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	$I_{\rm C} = 0$					-5	mA
h _{FE}	Forward current transfer ratio	V _{CE} = -3 V	l _C = -1.5 A	(see Notes 3 and	d 4)	750			
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = -6 mA	l _C = -1.5 A	(see Notes 3 and	d 4)			-2.5	V
V _{BE(on)}	Base-emitter voltage	V _{CE} = -3 V	I _C = -1.5 A	(see Notes 3 and	d 4)			-2.5	V
V_{EC}	Parallel diode forward voltage	Ι _E = -1.5 Α	$I_{B} = 0$					-2.0	V

NOTES: 3. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

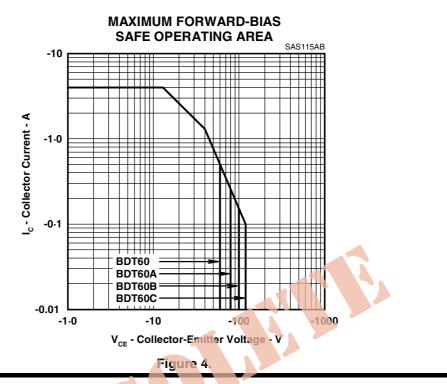
thermal characteristics

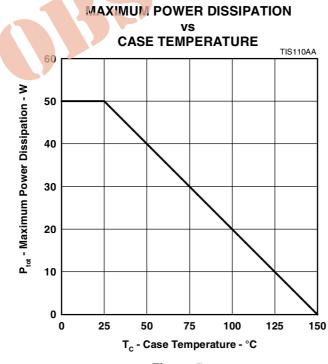
		PARAMETER	MIN	ТҮР	MAX	UNIT
	$R_{ extsf{ heta}JC}$	R _{0JC} Junction to case thermal resistance			2.5	°C/W
Γ	$R_{ extsf{ heta}JA}$				62.5	°C/W


resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on}	Turn-on time	I _C = -2 A	I _{B(on)} = -8 mA	$I_{B(off)} = 8 \text{ mA}$		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = 5 V$	$R_L = 20 \Omega$	t_p = 20 μ s, dc \leq 2%		4.5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.


TYPICAL CHARACTERISTICS


PRODUCT INFORMATION

AUGUST 1993 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

PRODUCT INFORMATION