IGBT with Monolithic Reverse Conducting Diode

This Insulated Gate Bipolar Transistor (IGBT) features robust and cost effective Field Stop (FS2) trench construction with a monolithic RC Diode. It provides a cost effective Solution for applications where diode losses are minimal. The IGBT is optimized for low conduction losses (low V_{CEsat}) and is well suited for resonant or soft switching applications.

Features

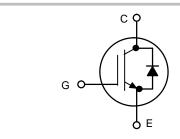
- Extremely Efficient Trench with Fieldstop Technology
- Low Conduction Design for Soft Switching Application
- Reduced Power Dissipation in Inducting Heating Application
- Reliable and Cost Effective Single Die Solution
- This is a Pb-Free Device

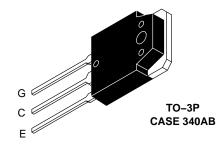
Typical Applications

- Inductive Heating
- Air Conditioning PFC
- Welding

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V _{CES}	650	V
Collector current @ T _C = 25°C @ T _C = 100°C	lc	80 40	Α
Pulsed collector current, T_{pulse} limited by T_{Jmax} , 10 μs pulse, V_{GE} = 15 V	I _{CM}	160	Α
Diode forward current @ T _C = 25°C @ T _C = 100°C	l _F	80 40	Α
Diode pulsed current, T_{pulse} limited by T_{Jmax} , 10 μs pulse, V_{GE} = 0 V	I _{FM}	160	Α
Power Dissipation @ T _C = 25°C @ T _C = 100°C	P _D	405 202	W
Operating junction temperature range	TJ	-40 to +175	°C
Storage temperature range	T _{stg}	-55 to +175	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

40 A, 650 V V_{CEsat} = 1.55 V E_{off} = 0.42 mJ

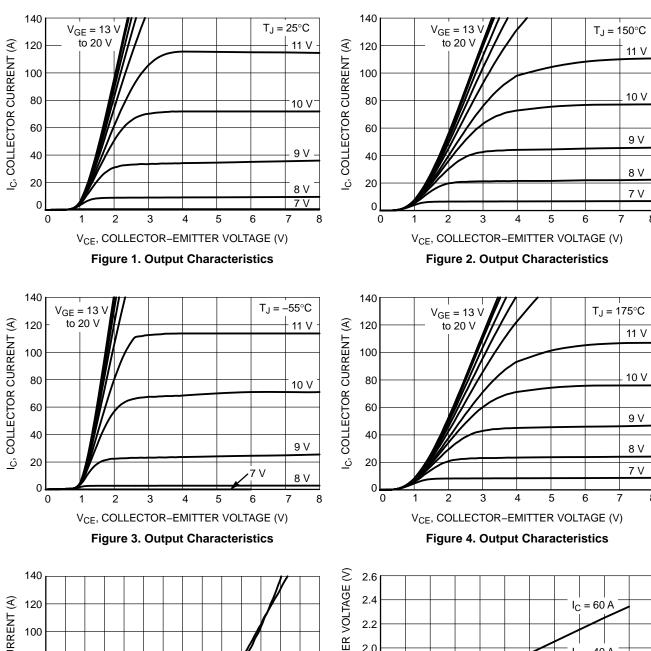
MARKING DIAGRAM

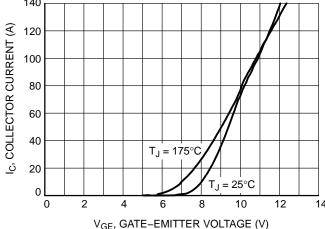
40N65H = Specific Device Code G = Pb-Free Package A = Assembly Location

Y = Year WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
NGTB40N65IHRTG	TO-3P (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS


Rating	Symbol	Value	Unit
Thermal resistance junction-to-case	$R_{ heta JC}$	0.37	°C/W
Thermal resistance junction-to-ambient	$R_{ heta JA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC					-	
Collector–emitter breakdown voltage, gate–emitter short–circuited	V_{GE} = 0 V, I_C = 500 μA	V _{(BR)CES}	650	_	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	V _{CEsat}	-	1.55 1.95	1.7 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 350 \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector–emitter cut–off current, gate– emitter short–circuited	V _{GE} = 0 V, V _{CE} = 650 V V _{GE} = 0 V, V _{CE} = 1200 V, T _J = 175°C	I _{CES}		_ 1.0	0.3	mA
Gate leakage current, collector–emitter short–circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	_	_	100	nA
DYNAMIC CHARACTERISTIC				•		
Input capacitance		C _{ies}	-	4628	_	pF
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{oes}	-	148	_	
Reverse transfer capacitance		C _{res}	-	126	-	
Gate charge total		Q_g	-	190	-	nC
Gate to emitter charge	$V_{CE} = 400 \text{ V}, I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V}$	Q _{ge}	-	38	-	
Gate to collector charge		Q_{gc}	-	90	_	
SWITCHING CHARACTERISTIC, INDUCT	IVE LOAD					
Turn-off delay time	T _J = 25°C	t _{d(off)}	-	197	_	ns
Fall time	$V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A}$ $R_{q} = 10 \Omega$	t _f	-	74	-	
Turn-off switching loss	V _{GE} = 0 V/ 15V	E _{off}	-	0.42	_	mJ
Turn-off delay time	T _J = 175°C	t _{d(off)}	-	210	_	ns
Fall time	$V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A}$ $R_{g} = 10 \Omega$	t _f	-	106	-	
Turn-off switching loss	V _{GE} = 0 V/ 15V	E _{off}	-	0.7	-	mJ
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 40 A V _{GE} = 0 V, I _F = 40 A, T _J = 175°C	V _F	- -	1.50 1.70	1.80 -	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

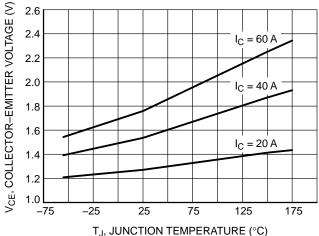


Figure 6. V_{CE(sat)} vs. T_J

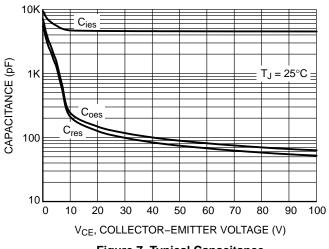
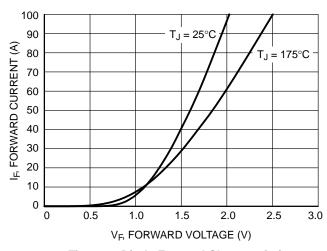



Figure 7. Typical Capacitance

Figure 8. Diode Forward Characteristics

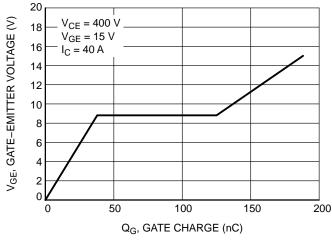


Figure 9. Typical Gate Charge

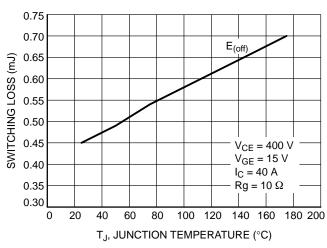


Figure 10. Switching Loss vs. Temperature

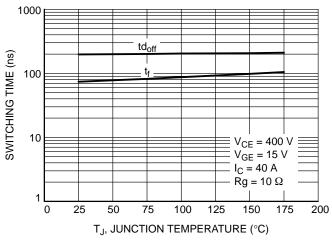


Figure 11. Switching Time vs. Temperature

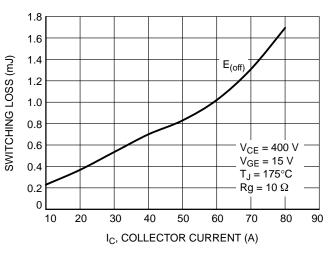


Figure 12. Switching Loss vs. I_C

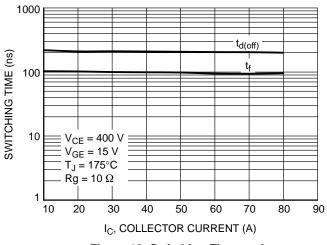


Figure 13. Switching Time vs. I_C

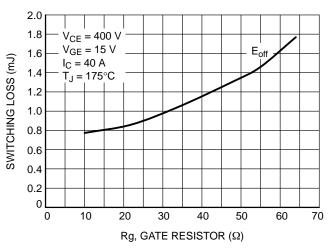


Figure 14. Switching Loss vs. Rg

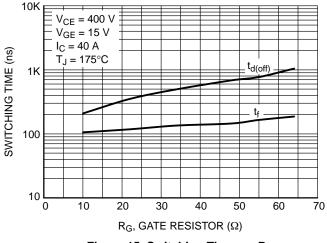


Figure 15. Switching Time vs. Rg

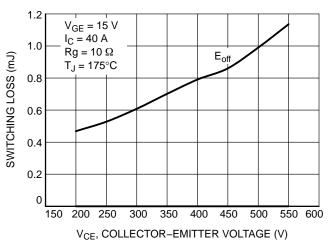


Figure 16. Switching Loss vs. V_{CE}

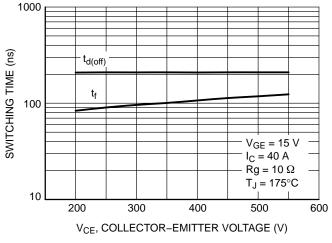


Figure 17. Switching Time vs. V_{CE}

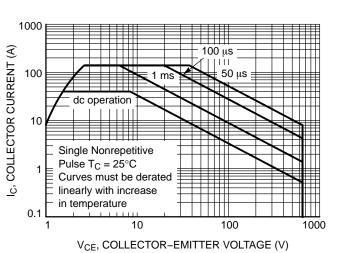


Figure 18. Safe Operating Area

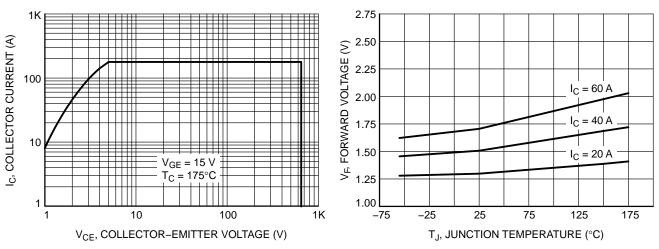


Figure 19. Reverse Bias Safe Operating Area

Figure 20. Forward Voltage vs. Junction Temperature

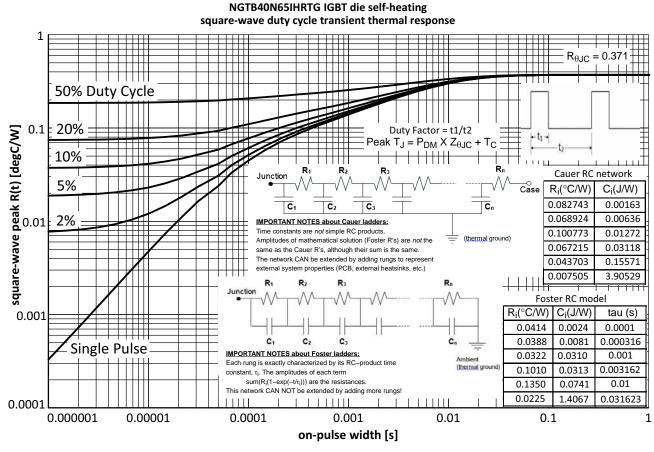


Figure 21. IGBT Transient Thermal Impedance

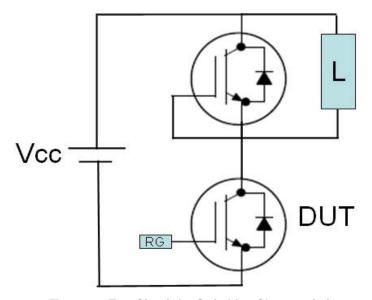


Figure 22. Test Circuit for Switching Characteristics

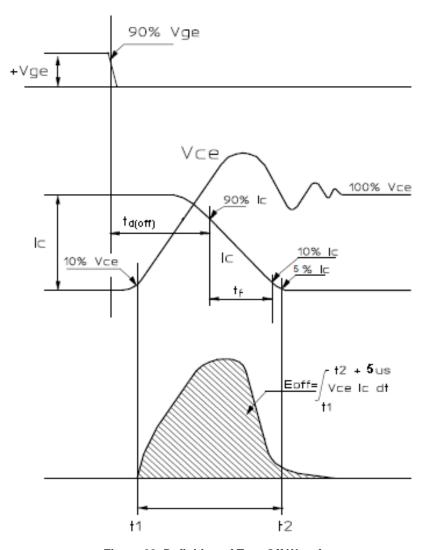
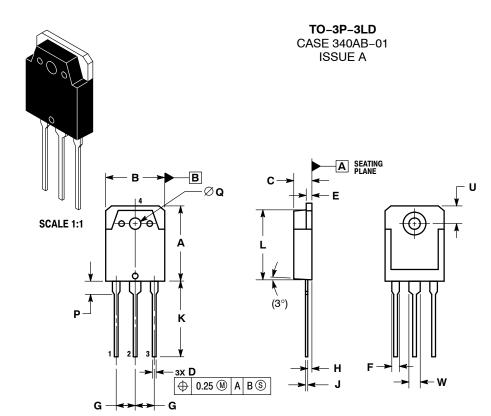
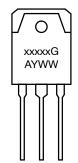



Figure 23. Definition of Turn Off Waveform


DATE 30 OCT 2007

- IOIES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM THE TERMINAL TIP.
- DIMENSION A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	19.70	19.90	20.10	
В	15.40	15.60	15.80	
С	4.60	4.80	5.00	
D	0.80	1.00	1.20	
Е	1.45	1.50	1.65	
F	1.80	2.00	2.20	
G	5.45 BSC			
Н	1.20	1.40	1.60	
J	0.55	0.60	0.75	
K	19.80	20.00	20.20	
L	18.50	18.70	18.90	
Р	3.30	3.50	3.70	
Q	3.10	3.20	3.50	
U	5.00 REF			
W	2.80	3.00	3.20	

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Pb-Free Package G = Assembly Location Α

= Year WW = Work Week

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present.

PIN 1. BASE 2. COLLECTOR EMITTER COLLECTOR

STYLE 1:

STYLE 2: ANODE CATHODE 2. ANODE

CATHODE

STYLE 3: PIN 1. GATE 2. DRAIN

SOURCE DRAIN

Υ

DOCUMENT NUMBER:	98AON25095D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-3P-3LD		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales