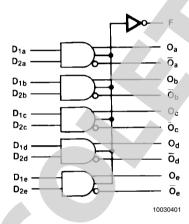


100304

OBSOLETE April 15, 2009

Low Power Quint AND/NAND Gate

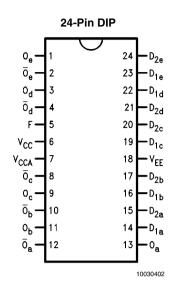

General Description

The 100304 is monolithic quint AND/NAND gate. The Function output is the wire-NOR of all five AND gate outputs. All inputs have 50 k Ω pull-down resistors.

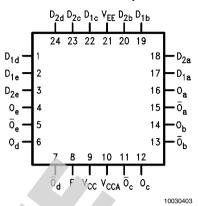
Features

- Low Power Operation
- 2000V ESD protection
- Pin/function compatible with 100104
- Voltage compensated operating range = -4.2V to -5.7V
- Available to industrial grade temperature range
- Available to Standard Microcircuit Drawing (SMD) 5962-9153701

Logic Symbol



Logic Equation


$$F = \overline{(D_{1a} \bullet D_{2a}) + (D_{1b} \bullet D_{2b}) + D_{1c} \bullet D_{2c}) + (D_{1d} \bullet D_{2d}) + (D_{1e} \bullet D_{2c})}$$

Pin Names	Description					
D _{na} -D _{ne}	Data Inputs					
F	Function Output					
O _a -O _e	Data Outputs					
\overline{O}_{a} - \overline{O}_{e}	Complementary Data Outputs					

Connection Diagrams

24-Pin Quad Cerpak

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Above which the useful life may be impaired

Storage Temperature (T_{STG}) $-65^{\circ}C$ to $+150^{\circ}C$

Maximum Junction Temperature (T_.)

Ceramic +175°C

V_{EE} Pin Potential to Ground Pin -7.0V to +0.5V

Input Voltage (DC) V_{FF} to +0.5V

Output Current (DC Output HIGH) −50 mA ESD (Note 2) ≥2000V

Recommended Operating Conditions

Case Temperature (T_C)

under these conditions is not implied.

Military -55° C to $+125^{\circ}$ C Supply Voltage (V_{FF}) -5.7V to -4.2V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Military Version DC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = -55^{\circ}C$ to $+125^{\circ}C$

Symbol	Parameter	Min	Max	Units	T _C	Cond	Notes	
V _{OH}	Output HIGH Voltage	-1025	-870	mV	0°C to			
					+125°C			
		-1085	-870	mV	–55°C	$V_{IN} = V_{IH} (Max)$	Loading with	(Notes 3, 4, 5)
V _{OL}	Output LOW Voltage	-1830	-1620	mV	0°C to	or V _{IL} (Min)	50Ω0 to -2.0V	
					+125°C			
		-1830	-1555	mV	−55°C			
V _{OHC}	Output HIGH Voltage	-1035		mV	0°C to			
					+125°C			
		-1085		mV	−55°C	$V_{IN} = V_{IH} $ (Min)	Loading with	(Notes 3, 4, 5)
V _{OLC}	Output LOW Voltage		-1610	m√	0°C to	or V _{IL} (Max)	50Ω to -2.0V	
					+125°C			
			-1555	m∨	-55°C			
V_{IH}	Input HIGH Voltage	-1165	-870	mV	−55°C	Guaranteed HIGH	(Notes 3, 4, 5, 6)	
					+125°C	for All Inputs		
V _{IL}	Input LOW Voltage	-1830	-1475	mV	−55°C to	Guaranteed LOW S	Signal	(Notes 3, 4, 5, 6)
					+125°C	for All Inputs		
I _{IL}	Input LOW Current	0.50		μA	−55°C to	$V_{EE} = -4.2V$		(Notes 3, 4, 5)
					+125°C	$V_{IN} = V_{IL}$ (Min)		
	Input High Current							
	D _{2a} -D _{2e}		250	μΑ	0°C to			
	D _{1a} -D _{1e}		350		+125°C	$V_{EE} = -5.7V$		(Notes 3, 4, 5)
I _{IH}						$V_{IN} = V_{IH} (Max)$		
	D _{2a} -D _{2e}		350	μA	–55°C			
	D _{1a} -D _{1e}		500					
I _{EE}	Power Supply Current	-75	-25	mA	–55°C to	Inputs Open		(Notes 3, 4, 5)
					+125°C			

Note 3: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately without allowing for the junction temperature to stabilize due to heat dissipation after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 4: Screen tested 100% on each device at -55° C, $+25^{\circ}$ C, and $+125^{\circ}$ C, Subgroups, 1, 2 3, 7, and 8.

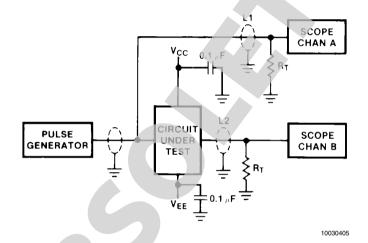
Note 5: Sample tested (Method 5005, Table I) on each manufactured lot at -55°C, +25°C, and +125°C, Subgroups A1, 2, 3, 7, and 8.

Note 6: Guaranteed by applying specified input condition and testing V_{OH}/V_{OL} .

AC Electrical Characteristics

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$

Symbol	Parameter	T _C = -	-55°C	T _C = +25°C		T _C = +125°C		Units	Conditions	Notes
		Min	Max	Min	Max	Min	Max			
t _{PLH}	Propagation Delay	0.30	1.90	0.40	1.80	0.30	2.30	ns		
t _{PHL}	D_{na} – D_{ne} to O, \overline{O}									(Notes 7, 8, 9)
t _{PLH}	Propagation Delay	0.80	2.90	0.90	2.80	0.90	3.40	ns	Figures 1, 2	
t _{PHL}	Data to F									
t _{TLH}	Transition Time	0.20	1.80	0.30	1.60	0.20	2.00	ns		(Note 10)
t _{THL}	20% to 80%, 80% to 20%									


Note 7: F100K 300 Series cold temperature testing is performed by temperature soaking (to guarantee junction temperature equals –55°C), then testing immediately after power-up. This provides "cold start" specs which can be considered a worst case condition at cold temperatures.

Note 8: Screen tested 100% on each device at +25°C temperature only, Subgroup A9.

Note 9: Sample tested (Method 5005, Table I) on each mfg. lot at +25°C, Subgroup A9, and at +125°C and -55°C lemperatures, Subgroups A10 and A11.

Note 10: Not tested at +25°C, +125°C, and -55°C temperature (design characterization data).

Test Circuitry

Notes:

 $V_{CC}, V_{CCA} = +2V, V_{EE} = -2.5V$

L1 and L2 = equal length 50Ω impedance lines

 $R_T = 50\Omega$ terminator internal to scope

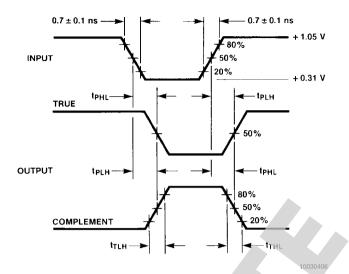
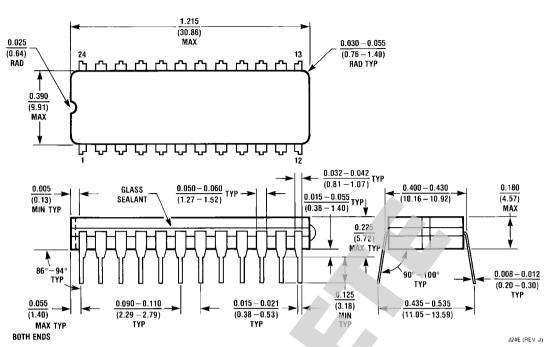
Decoupling 0.1 μ F from GND to V_{CC} and V_{EE}

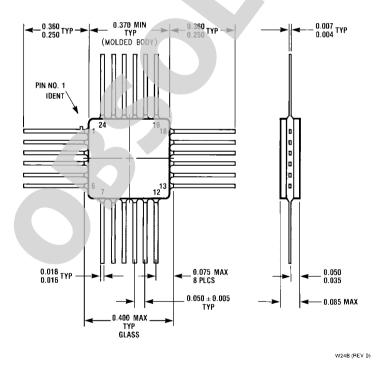
All unused outputs are loaded with 50Ω to GND

 C_L = Fixture and stray capacitance \leq 3 pF

FIGURE 1. AC Test Circuit

Switching Waveforms


FIGURE 2. Propagation Delay and Transition Times

Physical Dimensions inches (millimeters) unless otherwise noted

24-Pin Ceramic Dual-In-Line Package (D) NS Package Number J24E

24-Pin Quad Cerpak (F) NS Package Number W24B

www.national.com 6

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
Wireless (PLL/VCO)	www.national.com/wireless	Analog University®	www.national.com/AU		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com