

Vishay Siliconix

PRODUCT SUMMARY					
V _{DS} (V)	-50				
R _{DS(on)} (Ω)	V _{GS} = -10 V 0.28				
Q _g max. (nC)	14				
Q _{gs} (nC)	6.5				
Q _{gd} (nC)	6.5				
Configuration	Single				

Power MOSFET

FEATURES

- Surface mountable (order as IRFR9020, SiHFR9020)
- Straight lead option (order as IRFU9020, SiHFU9020)
- Repetitive avalanche ratings
- Dynamic dV/dt rating
- Simple drive requirements
- Ease of paralleling
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The power MOSFET technology is the key to Vishay's advanced line of power MOSFET transistors. The efficient geometry and unique processing of this latest "State of the Art" design achieves: very low on-state resistance combined with high transconductance; superior reverse energy and diode recovery dV/dt.

The power MOSFET transistors also feature all of the well established advantages of MOSFET'S such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

Surface-mount packages enhance circuit performance by reducing stray inductances and capacitance. The TO-252 surface mount package brings the advantages of power MOSFET's to high volume applications where PC board surface mounting is desirable. The surface-mount option IRFR9020, SiHFR9020 is provided on 16mm tape. The straight lead option IRFU9020, SiHFU9020 of the device is called the IPAK (TO-251).

They are well suited for applications where limited heat dissipation is required such as, computers and peripherals, telecommunication equipment, DC/DC converters, and a wide range of consumer products.

ORDERING INFORMATION						
PACKAGE	DPAK (TO-252)	DPAK (TO-252)	DPAK (TO-252)	IPAK (TO-251)		
Lood (Db) free and belogen free	SiHFR9020-GE3	SiHFR9020TR-GE3 a	SiHFR9020TRL-GE3 ^a	SiHFU9020-GE3		
Lead (Pb)-free and halogen-free	IRFR9020TRLPBF-BE3 ab	-	-	-		
Lead (Pb)-free	IRFR9020PbF	IRFR9020TRPbF ^a	IRFR9020TRLPbF ^a	IRFU9020PbF		

Notes

a. See device orientation

b. "-BE3" denotes alternate manufacturing location

RoHS

HALOGEN FREE Available

www.vishay.com

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (T C	= 25 °C, unless otherwis	se noted)		
PARAMETER		SYMBOL	LIMIT	UNIT
Drain-source voltage		V _{DS}	-50	v
Gate-source voltage		V _{GS}	± 20	v
Continuous drain current	V_{GS} at -10 V $\frac{T_C = 25 \degree C}{T_C = 100 \degree C}$	L.	-9.9	
Continuous drain current	$T_{\rm C} = 100 ^{\circ}{\rm C}$	Ι _D	-6.3	A
Pulsed drain current ^a		I _{DM}	-40	
Linear derating factor			0.33	W/°C
Single pulse avalanche energy ^b		E _{AS}	250	mJ
Repetitive avalanche current ^a		I _{AR}	-9.9	A
Repetitive avalanche energy ^a		E _{AR}	4.2	mJ
Maximum power dissipation	T _C = 25 °C	PD	42	W
Peak diode recovery dV/dt ^c		dV/dt	5.8	V/ns
Operating junction and storage temperature range		T _J , T _{stg}	-55 to +150	°C
Soldering recommendations (peak temperature) ^d	for 10 s		300	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 16)

b. V_{DD} = -25 V, starting T_J = 25 °C, L = 5.1 mH, R_g = 25 Ω , peak I_L = -9.9 A

c. $I_{SD} \leq$ -9.9 A, dl/dt \leq -120 A/µs, $V_{DD} \leq$ 40 V, $T_J \leq$ 150 °C

d. 0.063" (1.6 mm) from case

e. When mounted on 1" square PCB (FR-4 or G-10 material)

THERMAL RESISTANCE RATINGS					
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Maximum junction-to-ambient	R _{thJA}	-	-	110	
Case-to-sink	R _{thCS}	-	1.7	-	°C/W
Maximum junction-to-case (drain)	R _{thJC}	-	-	3.0	

SPECIFICATIONS ($T_J = 25 \circ C$	C, unless of	herwise note	ed)				
PARAMETER	SYMBOL		TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Static							
Drain-source breakdown voltage	V _{DS}	V	_{GS} = 0 V, I _D = -250 µA	- 50	-	-	V
Gate-source threshold voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -50 \ \mu A$		- 2.0	-	- 4.0	V
Gate-source leakage	I _{GSS}		$V_{GS} = \pm 20 V$	-	-	± 500	nA
Zero gate voltage drain current	1	V _{DS}	= max. rating, V _{GS} = 0 V	-	-	250	μA
Zero gate voltage drain current	IDSS	V _{DS} = 0.8 x m	hax. rating, $V_{GS} = 0 V$, $T_J = 125 \ ^{\circ}C$	-	-	1000	μΑ
Drain-source on-state resistance	R _{DS(on)}	V _{GS} = -10 V	I _D = 5.7 A ^b	-	0.20	0.28	Ω
Forward transconductance	g _{fs}	VD	$_{\rm S}$ \leq -50 V, I _{DS} = - 5.7 A	2.3	3.5	-	S
Dynamic							
Input capacitance	C _{iss}		$V_{GS} = 0 V$.	-	490	-	
Output capacitance	C _{oss}		$V_{DS} = -25 V,$	-	320	-	pF
Reverse transfer capacitance	C _{rss}	f	= 1.0 MHz, see fig. 9	-	70	-	
Total gate charge	Qg		I _D = -9.7 A, V _{DS} = 0.8 x max.	-	9.4	14	
Gate-source charge	Q _{gs}	$V_{GS} = -10 \text{ V}$	rating, see fig. 18 (Independent	-	4.3	6.5	nC
Gate-drain charge	Q _{gd}		operating temperature)	-	4.3	6.5	1
Turn-on delay time	t _{d(on)}			-	8.2	12	
Rise time	t _r	$V_{DD} = -25 \text{ V}, \text{ I}_{D} = -9.7 \text{ A},$		-	57	66	1
Turn-off delay time	t _{d(off)}		3Ω , $R_D = 2.4 \Omega$, see fig. 17 Ident operating temperature)	-	12	18	ns
Fall time	t _f	(F		-	25	38	
Internal drain inductance	L _D		ر , 6 mm (0.25")	-	4.5	-	
Internal source inductance	L _S	from package die contact.	e and center of	-	7.5	-	nH

S21-0771-Rev. E, 19-Jul-2021

2 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 90350

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C	, unless ot	herwise noted)				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Drain-source body diode characteris	tics					
Continuous source-drain diode current	ls	MOSFET symbol	-	-	-9.9	
Pulsed diode forward current ^a	I _{SM}	showing the integral reverse		-	- 40	А
Body diode voltage	V _{SD}	T_J = 25 °C, I_S = - 9.9 A, V_{GS} = 0 V $^{\rm b}$	-	-	- 6.3	V
Body diode reverse recovery time	t _{rr}	T _J = 25 °C, I _F = - 9,7 A, dl/dt = 100 A/µs ^b	56	110	280	ns
Body diode reverse recovery charge	Q _{rr}	$r_{\rm J} = 25$ C, $r_{\rm F} = -9$, 7 A, di/dt = 100 A/µs ⁻⁵	0.17	0.34	0.85	nC
Forward turn-on time	t _{on}	Intrinsic turn-on time is negligible (turn-on is don	ninated by	$^{\prime} L_{S}$ and L	. _D)	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 16)

b. Pulse width \leq 300 $\mu s;$ duty cycle \leq 2 %

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

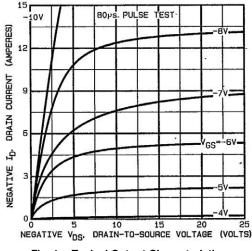
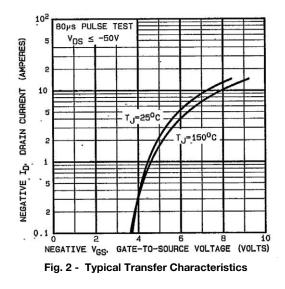



Fig. 1 - Typical Output Characteristics

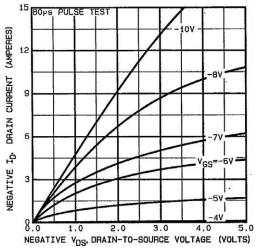
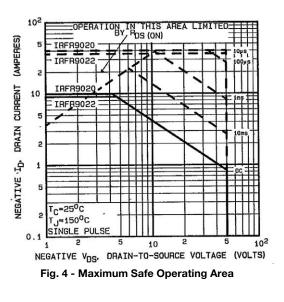



Fig. 3 - Typical Saturation Characteristics

S21-0771-Rev. E, 19-Jul-2021

3 For technical questions, contact: <u>hvm@vishay.com</u>

Vishay Siliconix

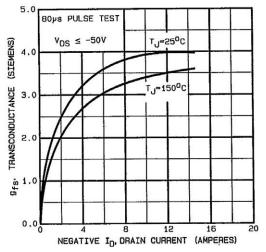


Fig. 5 - Typical Transconductance vs. Drain Current

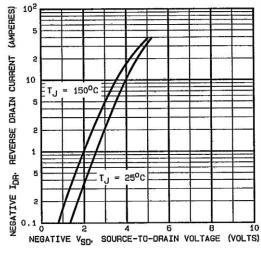


Fig. 6 - Typical Source-Drain Diode Forward Voltage

Fig. 7 - Breakdown Voltage vs. Temperature

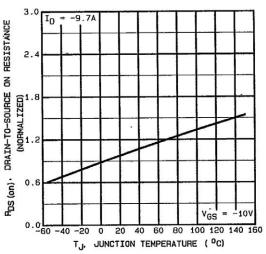


Fig. 8 - Breakdown Voltage vs. Temperature

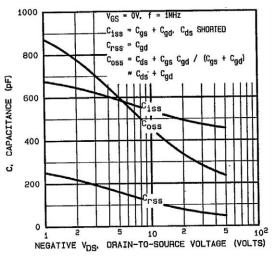


Fig. 9 - Typical Capacitance vs. Drain-to-Source Voltage

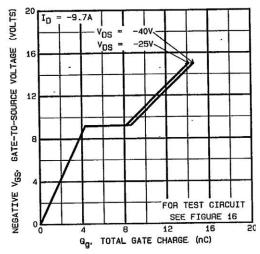


Fig. 10 - Typical Gate Charge vs. Gate-to-Source Voltage

S21-0771-Rev. E, 19-Jul-2021

4 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 90350

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

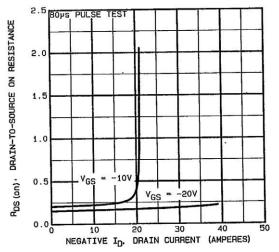


Fig. 11 - Typical On-Resistance vs. Drain Current

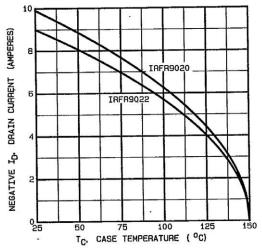
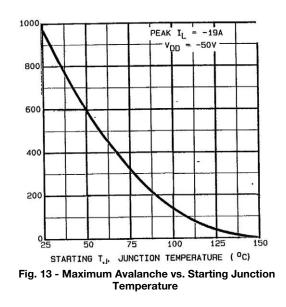



Fig. 12 - Maximum Drain Current vs. Case Temperature

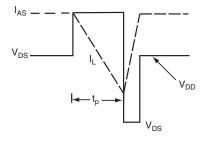
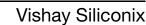



Fig. 15 - Unclamped Inductive Waveforms

S21-0771-Rev. E, 19-Jul-2021

5

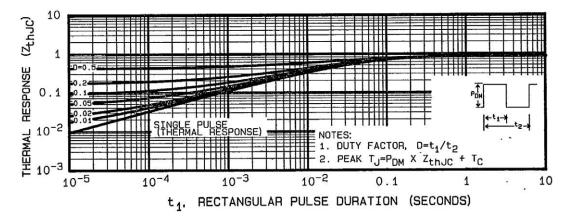
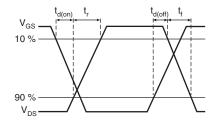
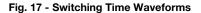




Fig. 16 - Maximum Effective Transient Thermal Impedance, Junction-to-Case vs. Pulse Duration

www.vishay.com

SHA

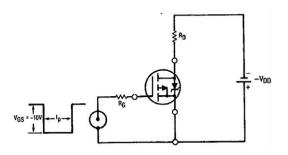
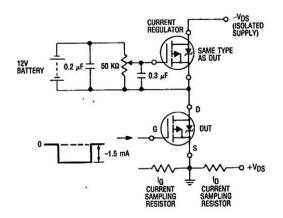
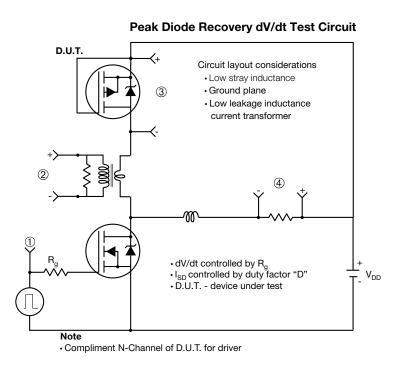


Fig. 18 - Switching Time Test Circuit

Fig. 19 - Basic Gate Charge Waveform




Fig. 20 - Gate Charge Test Circuit

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Vishay Siliconix

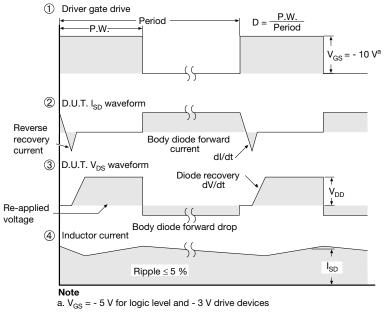
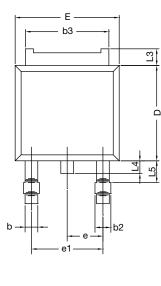
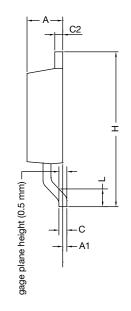
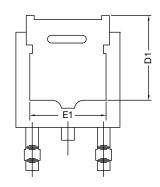


Fig. 21 - For P-Channel

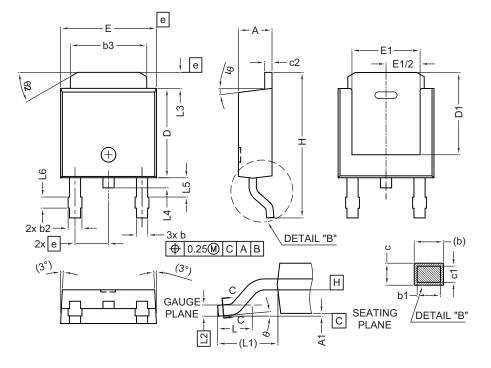

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?90350.





TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y


	MILLIN	METERS
DIM.	MIN.	MAX.
A	2.18	2.38
A1	-	0.127
b	0.64	0.88
b2	0.76	1.14
b3	4.95	5.46
С	0.46	0.61
C2	0.46	0.89
D	5.97	6.22
D1	4.10	-
E	6.35	6.73
E1	4.32	-
Н	9.40	10.41
е	2.28	BSC
e1	4.56	BSC
L	1.40	1.78
L3	0.89	1.27
L4	-	1.02
L5	1.01	1.52

Note

• Dimension L3 is for reference only

VERSION 2: FACILITY CODE = N

	MILLIMETERS				
DIM.	MIN.	MAX.			
A	2.18	2.39			
A1	-	0.13			
b	0.65	0.89			
b1	0.64	0.79			
b2	0.76	1.13			
b3	4.95	5.46			
С	0.46	0.61			
c1	0.41	0.56			
c2	0.46	0.60			
D	5.97	6.22			
D1	5.21	-			
E	6.35	6.73			
E1	4.32	-			
e	2.29	BSC			
Н	9.94	10.34			

	MILLIMETERS				
DIM.	MIN.	MAX.			
L	1.50	1.78			
L1	2.74	ref.			
L2	0.51 BSC				
L3	0.89	1.27			
L4	-	1.02			
L5	1.14	1.49			
L6	0.65	0.85			
θ	0°	10°			
θ1	0°	15°			
θ2	25°	35°			

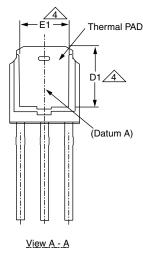
Notes

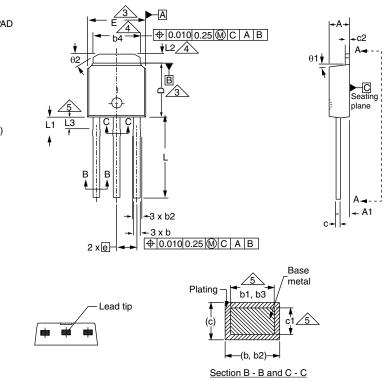
• Dimensioning and tolerance confirm to ASME Y14.5M-1994

• All dimensions are in millimeters. Angles are in degrees

• Heat sink side flash is max. 0.8 mm

Radius on terminal is optional


ECN: E22-0399-Rev. R, 03-Oct-2022 DWG: 5347


2

Case Outline for TO-251AA (High Voltage)

OPTION 1:

	MILLIMETERS		INCHES			MILLIMETERS		INCHES	
DIM.	MIN.	MAX.	MIN.	MAX.	DIM.	MIN.	MAX.	MIN.	MAX
А	2.18	2.39	0.086	0.094	D1	5.21	-	0.205	-
A1	0.89	1.14	0.035	0.045	Е	6.35	6.73	0.250	0.26
b	0.64	0.89	0.025	0.035	E1	4.32	-	0.170	-
b1	0.65	0.79	0.026	0.031	е	2.29	BSC	2.29	BSC
b2	0.76	1.14	0.030	0.045	L	8.89	9.65	0.350	0.38
b3	0.76	1.04	0.030	0.041	L1	1.91	2.29	0.075	0.09
b4	4.95	5.46	0.195	0.215	L2	0.89	1.27	0.035	0.05
С	0.46	0.61	0.018	0.024	L3	1.14	1.52	0.045	0.06
c1	0.41	0.56	0.016	0.022	θ1	0'	15'	0'	15'
c2	0.46	0.86	0.018	0.034	θ2	25'	35'	25'	35'
D	5.97	6.22	0.235	0.245		•	•	•	•

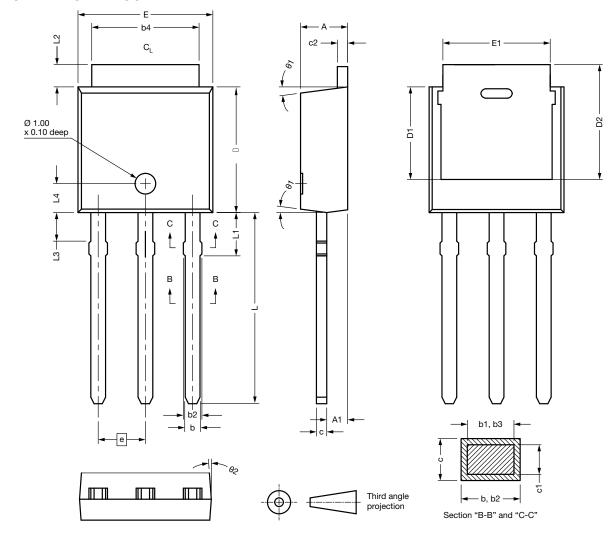
DWG: 5968

Notes

- Dimensioning and tolerancing per ASME Y14.5M-1994
- Dimension are shown in inches and millimeters
- Dimension D and E do not include mold flash. Mold flash shall not exceed 0.13 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- Thermal pad contour optional with dimensions b4, L2, E1 and D1
- Lead dimension uncontrolled in L3
- Dimension b1, b3 and c1 apply to base metal only
- Outline conforms to JEDEC® outline TO-251AA

Revision: 27-Dec-2021

1


Document Number: 91362

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

OPTION 2: FACILITY CODE = N

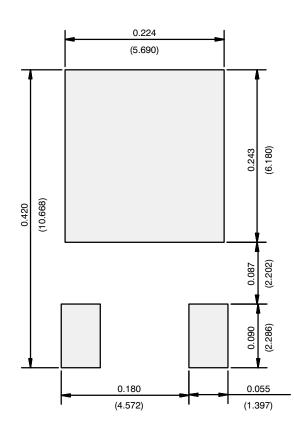
www.vishay.com

VISHAY

DIM.	MIN.	NOM.	MAX.		DIM.	MIN.	NOM.	MAX
А	2.180	2.285	2.390	1	D2	5.380	-	-
A1	0.890	1.015	1.140		E	6.350	6.540	6.73
b	0.640	0.765	0.890		E1	4.32	-	-
b1	0.640	0.715	0.790		е	2.29	BSC	
b2	0.760	0.950	1.140		L	8.890	9.270	9.65
b3	0.760	0.900	1.040		L1	1.910	2.100	2.29
b4	4.950	5.205	5.460		L2	0.890	1.080	1.27
С	0.460	-	0.610		L3	1.140	1.330	1.52
c1	0.410	-	0.560		L4	1.300	1.400	1.50
c2	0.460	-	0.610		θ1	0°	7.5°	15°
D	5.970	6.095	6.220	1 [θ2	4°	-	-
D1	4.300	-	-	1 Г				

Notes

Dimensioning and tolerancing per ASME Y14.5M-1994


• All dimension are in millimeters, angles are in degrees

• Heat sink side flash is max. 0.8 mm

2

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.