

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Octal Bus Transceivers

These octal bus transceivers are designed for asynchronous two-way communication between data buses. Control function implementation minimizes external timing requirements. These circuits allow data transmission from the A bus to B or from the B bus to A bus depending upon the logic level of the direction control (DIR) input. Enable input (\overline{G}) can disable the device so that the buses are effectively isolated.

OUTPUT

3-State

Open-Collector

Open-Collector

3-State

FUNCTION TABLE

LS640

LS642

B data to A bus

A data to B bus

Isolation

OPERATION

LOGIC

Inverting

True

Inverting

True

LS641

LS645

B data to A bus

A data to B bus

Isolation

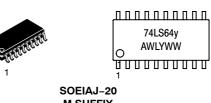
ON

ON Semiconductor[™]

http://onsemi.com

MARKING DIAGRAMS

AWLYYWW


PDIP-20 N SUFFIX CASE 738

LS64y AWLYYWW

0

<u>ТЕНЕНЕНЕ</u> 1 SOIC-20

DW SUFFIX CASE 751D

M SUFFIX CASE 967

WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

V _{OH}	Output Voltage – High		5.5
I _{OL}	Output Current – Low		24

H = HIGH Level, L = LOW Level, X = Irrelevant

DEVICE

LS640

LS641

LS642

LS645

DIR

L

Н

Х

CONTROL

INPUTS

G

L

L

н

Symbol

V_{CC}

TΔ

GUARANTEED OPERATING RANGES (SN74LS640, SN74LS645)

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-3.0	mA
	0	5		-15	mA
I _{OL}	Output Current – Low			24	mA

GUARANTEED OPERATING RANGES (SN74LS641, SN74LS642)

Min

4.75

0

Тур

5.0

25

Max

5.25

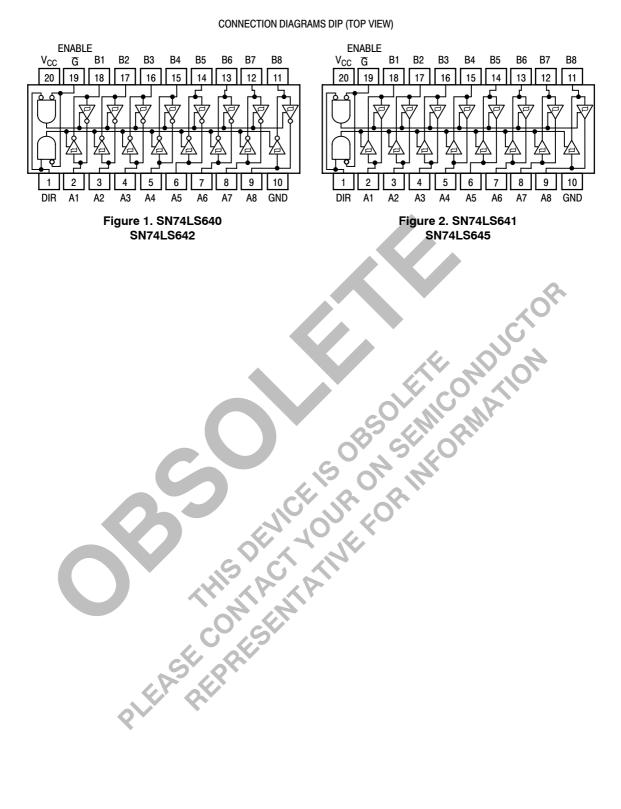
70

Unit

v

°C

v


mΑ

Parameter

Temperature Range

Supply Voltage

Operating Ambient

SN74LS640 • [\$N74LS645

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

	I Parameter			Limits			Test Conditions		
Symbol			Min	Тур	Max	Unit			
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage f		
V _{IL}	Input LOW Voltage		Input LOW Voltage				0.6	V	Guaranteed Input LOW Voltage for All Inputs
Vıĸ	Input Clamp Diode Vo	ltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
			2.4	3.4		V	V _{CC} = MIN, I _{OH} = 3.0 mA		
√он	/ _{OH} Output HIGH Voltage		2.0			V	V _{CC} = MIN, I _{OH} = MAX		
	Output LOW Voltage			0.25	0.4	N	$I_{OL} = 12 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN},$		
V _{OL}				0.35	0.5	V	V _{IN} = V _{IL} or V _{IH} per Truth Table		
OZH	Output Off Current HIGH				20	μA	V _{CC} = MAX, V _{OUT} = 2.7 V		
l _{ozL}	Output Off Current LC	W			-400	μA	$V_{CC} = MAX, V_{OUT} = 0.4 V$		
	A or B, DIR or G				20	μΑ	$V_{CC} = MAX, V_{IN} = 2.7 V$		
н	Input HIGH Current	DIR or G			0.1	mA	$V_{CC} = MAX, V_{IN} = 7.0 V$		
		A or B	4		0.1	mA	$V_{CC} = MAX, V_{IN} = 5.5 V$		
IL	Input LOW Current				-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
OS	Output Short Circuit C	Current (Note 1)	-40		-225	mA	V _{CC} = MAX		
	Power Supply Current Total Output HIGH				70				
lcc	Total, Output LOW				90	mA	V _{CC} = MAX		
	Total at HIGH Z				95				
	than one output should		, nor for n	nore than	1 second				
CHARA	ACTERISTICS (T _A = 2	5°C, V _{CC} = 5.0 V)			\mathbf{O}	7			

			Limits						
			LS640			LS645			
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Unit	Test Conditions
t _{PLH} t _{PHL}	Propagation Delay A to B	0	6.0 8.0	10 15	2	8.0 11	15 15	ns	
t _{PLH} t _{PHL}	Propagation Delay B to A		6.0 8.0	10 15	Å	8.0 11	15 15	ns	C _L = 45 pF,
t _{PZL} t _{PZH}	Output Enable Time G, DIR to A	0	31 23	40 40		31 26	40 40	ns	$R_L = 667 \Omega$
t _{PZL} t _{PZH}	Output Enable Time G, DIR to B	5	31 23	40 40		31 26	40 40	ns	
t _{PLZ} t _{PHZ}	Output Disable Time G, DIR to A	19	15 15	25 25		15 15	25 25	ns	
t _{PLZ} t _{PHZ}	Output Disable Time G, DIR to B		15 15	25 25		15 15	25 25	ns	C _L = 5.0 pF

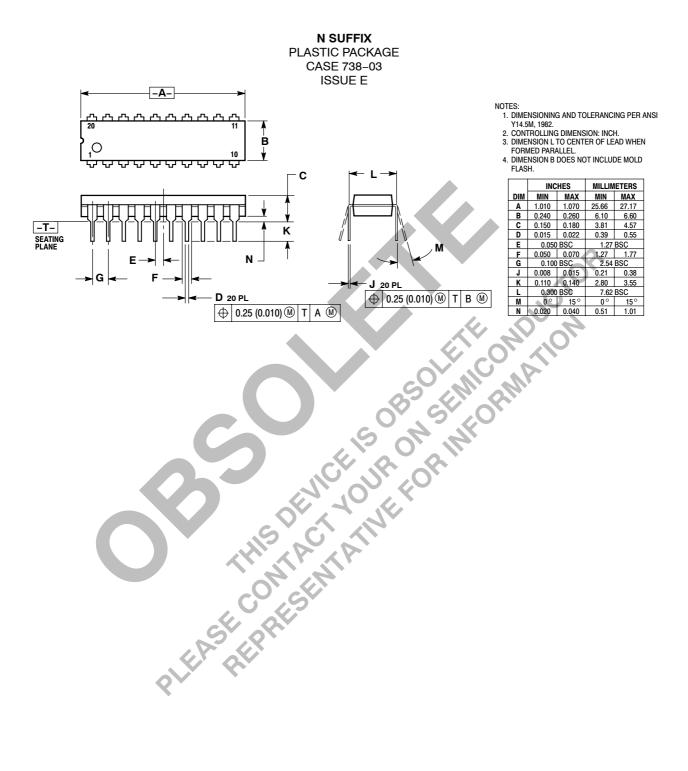
SN74LS641 • [\$N74LS642

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

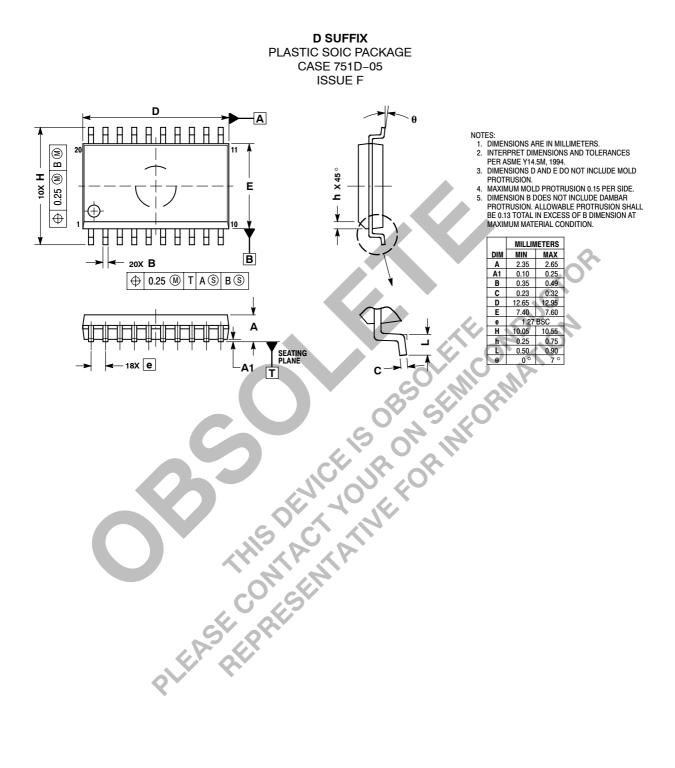
			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Inpu All Inputs	t HIGH Voltage for
V _{IL}	Input LOW Voltage			0.6	V	Guaranteed Inpu All Inputs	t LOW Voltage for
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V_{CC} = MIN, I_{IN} =	–18 mA
I _{OH}	Output HIGH Current			100	μA	V _{CC} = MIN, V _{OH} = MAX	
V	Output LOW Voltage		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}			0.35	0.5	V	I _{OL} = 24 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
	H Input HIGH Current			20	μΑ	V_{CC} = MAX, V_{IN}	= 2.7 V
IIH				-0.1	mA	$V_{CC} = MAX, V_{IN}$	= 7.0 V
IIL	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
	Power Supply Current Total, Output HIGH			70			С.
I _{CC}	Total, Output LOW			90	mA	V _{CC} = MAX	64
	Total at HIGH Z			95			

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

tpLH tpHL Propagation Delay, A to B 17 16 25 25 19 14 25 25 ns tpLH Propagation Delay, A to B 17 25 25 14 19 25 25 ns tpLH Propagation Delay, to M 17 25 25 14 19 25 25 ns	onditions
tplH tpHL Propagation Delay, A to B 17 16 25 25 19 14 25 25 ns tplH Propagation Delay, tpLH 17 25 25 19 25 14 ns	onditions
tend A to B 16 25 14 25 ns tpLH Propagation Delay, 17 25 19 25 ns	
	= 45 pF,
	= 667 Ω
tpLH Propagation Delay, G, DIR to B 25 40 28 40 ns	

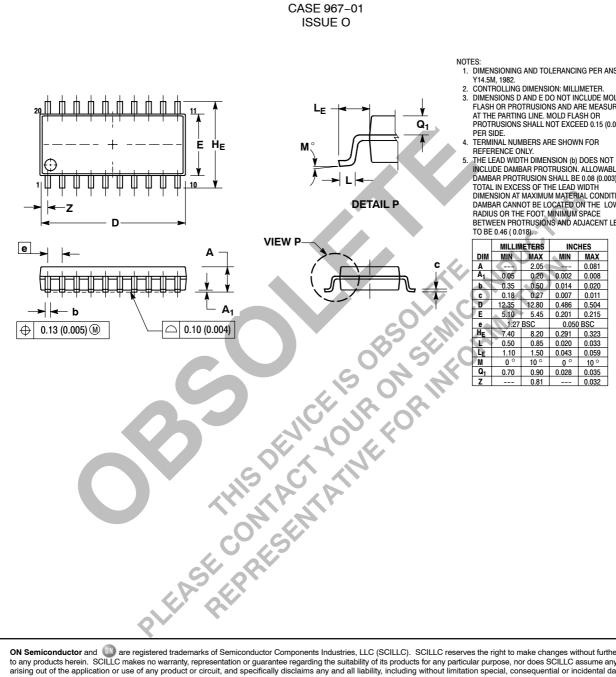

DEVICE ORDERING INFORMATION

Device Order Number	Package Type	Tape and Reel Size
SN74LS640N	PDIP-20	1440 Units/Box
SN74LS640DW	SOIC-WIDE	2500/Tape and Reel
SN74LS640DWR2	SOIC-WIDE	2500/Tape and Reel
SN74LS640M	SOEIAJ-20	See Note 2
SN74LS640MEL	SOEIAJ-20	See Note 2
SN74LS641N	PDIP-20	1440 Units/Box
SN74LS641DW	SOIC-WIDE	2500/Tape and Reel
SN74LS641DWR2	SOIC-WIDE	2500/Tape and Reel
SN74LS641M	SOEIAJ-20	See Note 2
SN74LS641MEL	SOEIAJ-20	See Note 2
SN74LS642N	PDIP-20	1440 Units/Box
SN74LS642DW	SOIC-WIDE	2500/Tape and Reel
SN74LS642DWR2	SOIC-WIDE	2500/Tape and Reel
SN74LS642M	SOEIAJ-20	See Note 2
SN74LS642MEL	SOEIAJ-20	See Note 2
SN74LS645N	PDIP-20	1440 Units/Box


2. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

teconserver version of the server version of

PACKAGE DIMENSIONS



PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

M SUFFIX SOEIAJ PACKAGE

DIMENSIONING AND TOLERANCING PER ANSI

- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- TERMINAL NUMBERS ARE SHOWN FOR
- INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD

	MILLIÑ	IETERS	INCHES					
DIM	MIN	MAX	MIN	MAX				
Α	2.05			0.081				
A ₁	0.05 0.20		0.002	0.008				
b	0.35 0.50		0.014	0.020				
C	0.18	0.27	0.007	0.011				
D	12.35	12.80	0.486	0.504				
E	5.10	5.45	0.201	0.215				
e	1.27 BSC		0.050 BSC					
H _E	7.40	7.40 8.20		0.323				
1	0.50	0.85	0.020	0.033				
LE	1.10 1.50		0.043	0.059				
М	0 °	10 °	0 °	10 °				
Q1	0.70	0.90	0.028	0.035				
Z		0.81		0.032				

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative