

MP62180/MP62181

3.3V/5V, Single-Channel 2A **Current-Limited Power Distribution Switch**

The Future of Analog IC Technology

DESCRIPTION

The MP62180/MP62181 Power Distribution Switch features internal current limiting to prevent damage to host devices due to faulty load conditions. The MP62180/MP62181 operates from a 3.3V or 5V nominal input voltage and includes an 85mΩ Power MOSFET to handle up to 2A continuous load with a 2.8A typical current limit. The MP62180/MP62181 has built-in protection for both over current and increased thermal stress. For over-current protection (OCP), the device will limit the current by going into a constant current mode.

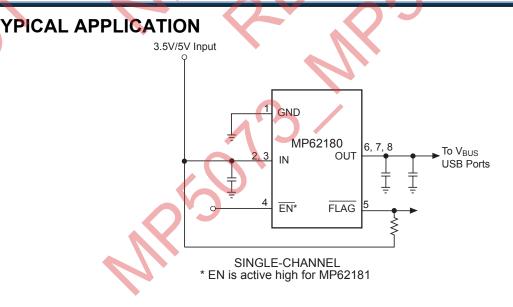
When continuous output overload condition exceeds power dissipation of the package, the thermal protection will shut the part off. The device will recover once the device temperature reduces to approx 120°C.

The MP62180/MP62181 is available in QFN8E, MSOP8E and SOIC8 packages.

FEATURES

- 2A Continuous Current
- 2.8A accurate Current Limit
- 2.7V to 5.5V Supply Range
- 90uA Quiescent Current
- 75mΩ MOSFET

.

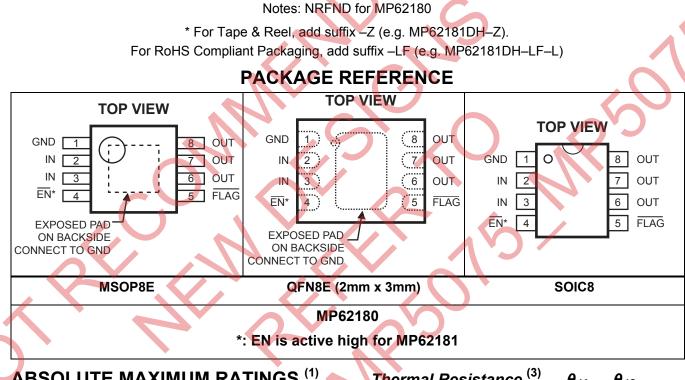

- Thermal-Shutdown Protection
- Under-Voltage Lockout
- 8ms FLAG Deglitch Time •
- No FLAG Glitch During Power Up
- **Reverse Current Blocking**
- Active High & Active Low Options

APPLICATIONS

- Smartphone and PDA
- Portable GPS Device
- Notebook PC .
- Set-top-box
- Telecom and Network Systems
- PC Card Hot Swap
- USB Power Distribution

All MPS parts are lead-free, halogen free, and adhere to the RoHS directive. For MPS green status, please visit MPS website under Quality Assurance.

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.



www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.

Part Number	Enable	Switch	Maximum Continuous Load Current	Typical Short- Circuit Current @ T _A =25C	Package	Top Marking	Free Air Temperature (T _A)
MP62180DS					SOIC8	62180DS	
MP62180DD	Active Low				QFN8E (2mm x 3mm)	62180DD	
MP62180DH		Single	2A	2.8A	MSOP8E	62180DH	–40°C to +85°C
MP62181DH	Active High				MSOP8E	62181DH	

ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS (1)

IN0.3V	' to +6.0V
EN, FLAG, OUT to GND0.3V	
Continuous Power Dissipation $(T_A = +$	·25°C) ⁽²⁾
MSOP8E	2.3W
QFN8E (2mm x 3mm)	2.3W
SOIC8	1.4W
Junction Temperature	150°C
Lead Temperature	
Storage Temperature	
Operating Temperature40°C	to +85°C

Thermal Resistance (*)	$\boldsymbol{\theta}_{JA}$	$\boldsymbol{\theta}_{JC}$	
MSOP8E	55	12	°C/W
QFN8E (2mm x 3mm)	55	12	°C/W
SOIC8.			

Notes:

- 1) Exceeding these ratings may damage the device.
- The maximum allowable power dissipation is a function of the 2) maximum junction temperature $T_J(MAX)$, the junction-toambient thermal resistance θ_{JA} and the ambient temperature T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D(MAX)=(T_J(MAX)- T_A)/ θ_{JA} . Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- Measured on JESD51-7, 4-layer PCB. 3)

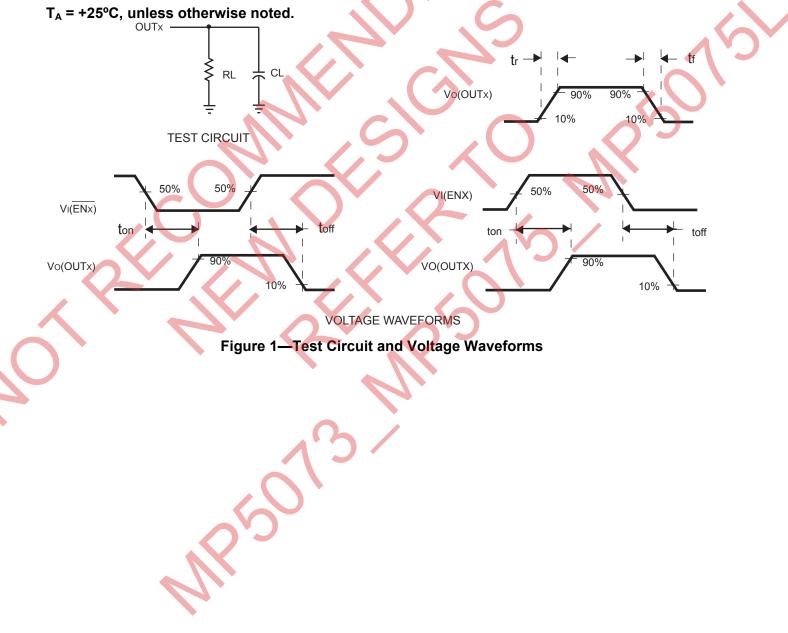
www.MonolithicPower.com MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.

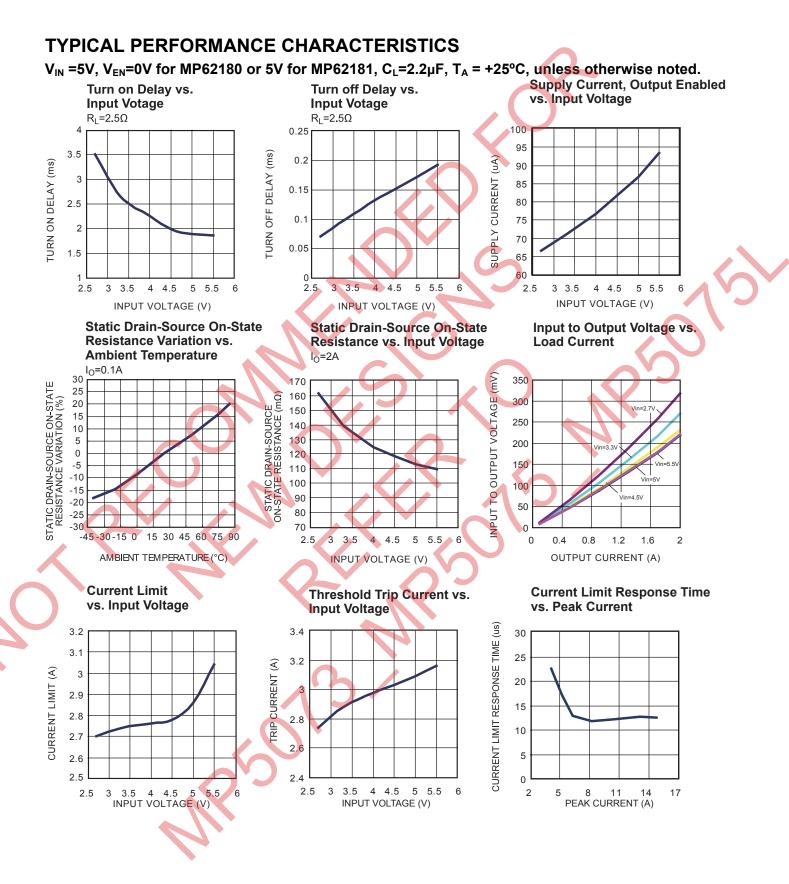
ELECTRICAL CHARACTERISTICS (4)

 V_{IN} =5V, T_A =+25°C, unless otherwise noted.

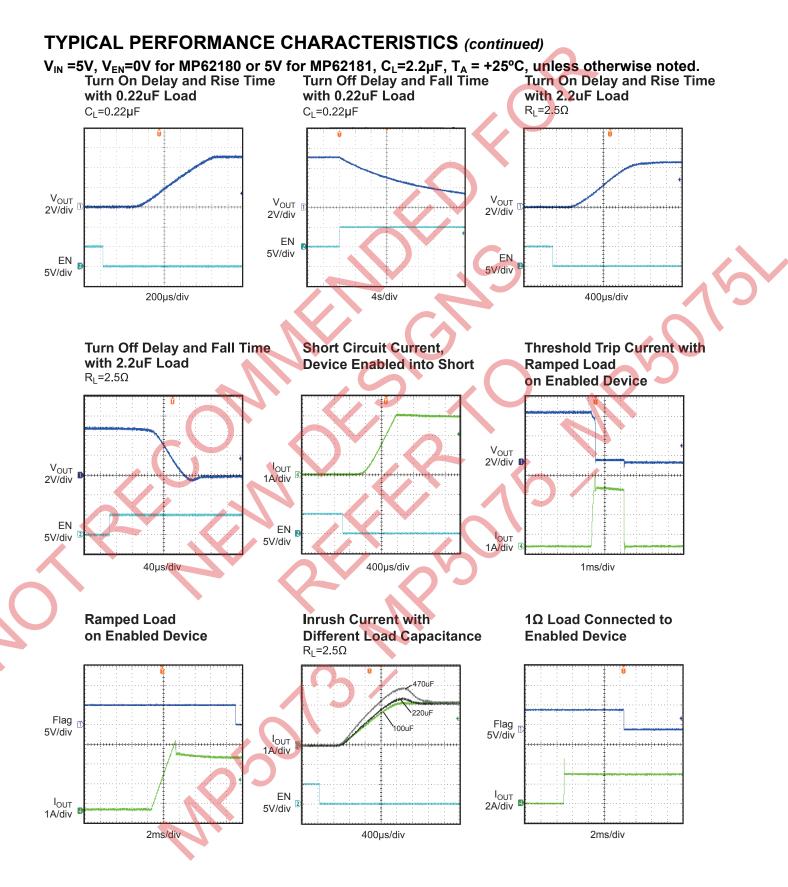
Damanastan					
Parameter	Condition	Min	Тур	Max	Units
IN Voltage Range		2.7		5.5	V
Supply Current	Device Active, I _{OUT} =0		90	120	μA
Shutdown Current	Device Disable, V _{OUT} =float, V _{IN} =5.5V		1		μA
Off Switch Leakage	Device Disable, V _{IN} =5.5V		1		μA
Current Limit		2.1	2.8	3.5	Α
Trip Current	Current Ramp (slew rate≤100A/s) on Output		3.1	4	А
Under-voltage Lockout	Rising Edge	1.95		2.65	V
Under-voltage Hysteresis	S		250		mV
	MSOP8E		75	120	mΩ
FET On Resistance	I _{OUT} =100mA (-40°C≤ T _A QFN8E ≤85°C) (2mm x 3mm)		75	120	mΩ
	SOIC8		85	130	mΩ
EN Input Logic High Voltage		2			V
EN Input Logic Low Voltage				0.8	V
FLAG Output Logic Low Voltage	I _{SINK} =5mA			0.4	V
FLAG Output High Leakage Current	V _{IN} =V _{FLAG} =5.5V			1	μA
Thermal Shutdown			140		°C
Thermal Shutdown Hysteresis			20		°C
V _{OUT} Rising Time, Tr ⁽⁵⁾	V_{IN} =5.5V, C _L =1uF, R _L =5 Ω		0.9		ms
	V_{IN} =2.7V, C _L =1uF, R _L =5 Ω		1.7		ms
V _{OUT} Falling Time, Tf ⁽⁶⁾	V_{IN} =5.5V, C _L =1uF, R _L =5Ω			0.5	ms
	$V_{IN}=2.7V, C_L=1uF, R_L=5\Omega$			0.5	ms
Turn On Time, Ton ⁽⁷⁾	C _L =100μF, R _L =5Ω			3	ms
Turn Off Time, Toff ⁽⁸⁾	C _L =100μF, R _L =5Ω			10	ms
FLAG Deglitch Time		4	8	15	ms
EN Input Leakage		-1			μA
Reverse Leakage Current	OUT=5.5V, IN=GND		0.2		μA

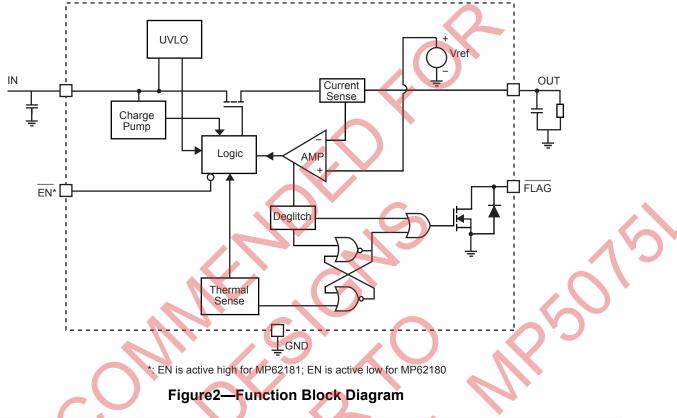
NOTE:


- 4) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.
 5) Measured from 10% to 90%.
- 6)
- Measured from 90% to 10%. Measured from (50%) EN signal to (90%) output signal. 7)
- 8) Measured from (50%) EN signal to (10%) output signal.


PIN FUNCTIONS

Pin # SOIC8	Pin # MSOP8E	Pin # QFN8E	Name	Description
1	1	1	GND	Ground.
2, 3	2, 3	2, 3	IN	Input Voltage. Accepts 2.7V to 5.5V input.
4	4	4	EN	Active Low: (MP62180), Active High: (MP62181)
5	5	5	FLAG	IN-to-OUT Over-current, active-low output flag. Open-Drain.
6, 7, 8	6, 7, 8	6, 7, 8	OUT	IN-to-OUT Power-Distribution Output (for all 3 output pins)


TYPICAL PERFORMANCE CHARACTERISTICS



FUNCTION BLOCK DIAGRAM

DETAILED DESCRIPTION

Over Current

When the load exceeds trip current (minimum threshold current triggering constant-current mode) or a short is present, MP62180/MP62181 switches into to a constant-current mode (current limit value). MP62180/MP62181 will be shutdown only if the overcurrent condition stays long enough to trigger thermal protection.

Trigger overcurrent protection for different overload conditions occurring in applications:

- The output has been shorted or overloaded before the device is enabled or input applied. MP62180/MP62181 detects the short or overload and immediately switches into a constant-current mode.
- A short or an overload occurs after the device is enabled. After the current-limit circuit has been tripped (reached the trip current threshold), the device switches into constantcurrent mode. However, high current may

flow for a short period of time before the current-limit circuit can react.

3) Output current has been gradually increased beyond the recommended operating current. The load current rises until the trip current threshold is reached or until the thermal limit of the device is exceeded. The MP62180/MP62181 is capable of delivering current up to the trip current threshold without damaging the device. Once the trip threshold has been reached, the device switches into its constant-current mode.

Flag Response

The FLAG pin is an open drain configuration. This FAULT will report a fail mode after an 8ms deglitch timeout. This is used to ensure that no false fault signals are reported. This internal deglitch circuit eliminates the need for extend components. The FLAG pin is not deglitched during an over temp. or a voltage lockout.

MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited. © 2018 MPS. All Rights Reserved.

Thermal Protection

The purpose of thermal protection is to prevent damage in the IC by allowing exceptive current to flow and heating the junction. The die temperature is internally monitored until the thermal limit is reached. Once this temperature is reached, the switch will turn off and allow the chip to cool. The switch has a built-in hysteresis.

Under-voltage Lockout (UVLO)

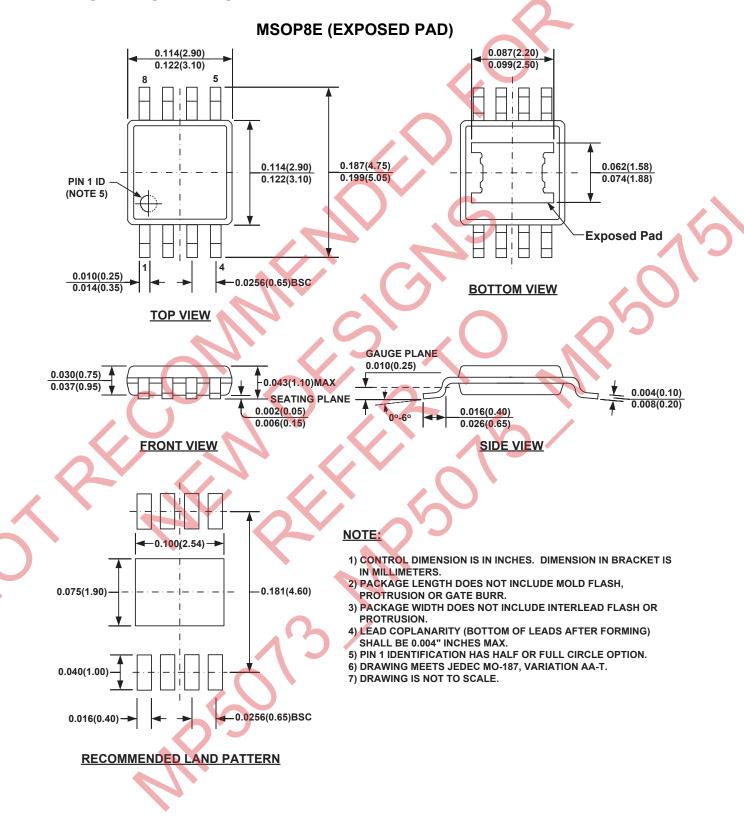
This circuit is used to monitor the input voltage to ensure that the MP62180/MP62181 is operating correctly.

This UVLO circuit also ensures that is no operation until the input voltage reaches the minimum spec.

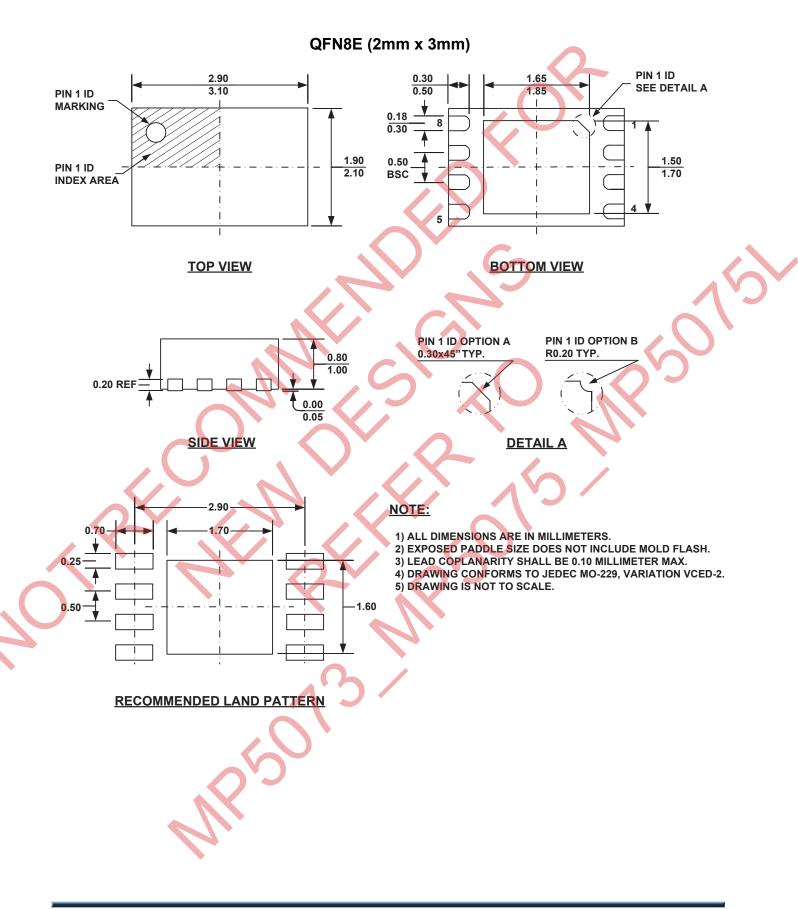
Enable

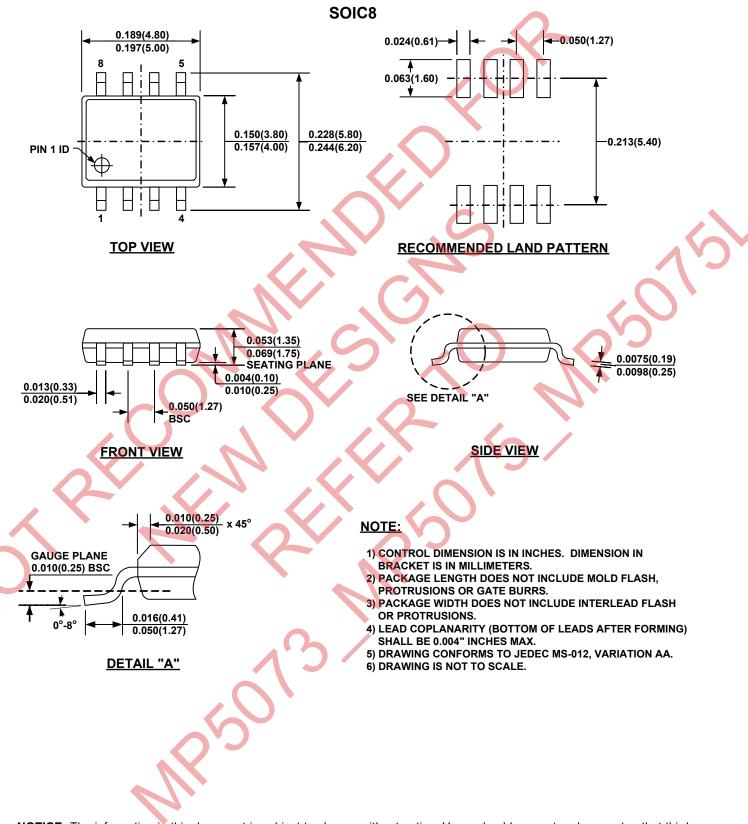
The logic pin disables the switch to reduce overall supply current .Once the EN pin reaches logic enable threshold, the MP62180/MP62181 is enabled.

APPLICATION INFORMATION


Power-Supply Considerations

Over 10μ F capacitor between IN and GND is recommended. This precaution reduces powersupply transients that may cause ringing on the input and improves the immunity of the device to short-circuit transients.


In order to achieve smaller output load transient ripple, placing a high-value electrolytic capacitor on the output pin(s) is recommended when the load is heavy.


PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.