
MPR121 Hookup Guide




CONTRIBUTORS: TONI_K

MPR121 Overview

If you are interested in adding the �magic� of touch to control your

electronics project, a capacitive touch sensor might be the way to go. This

hookup guide will show you how to use the MPR121QR2 sensor.

The MPR121QR2 is a capacitive touch sensor controller that makes it very

easy to integrate capacitive touch sensing into your project. It

communicates via I C, and works by measuring the capacitance of twelve

electrode points. When an object comes close to the electrode connector,

the measured capacitance changes. This signals the MPR121 that

something has touched a �button�. The IC is also capable of driving LEDs or

basic GPIO functionality on electrode pins 4 through 11, giving you a lot of

freedom for setting up your project. The sensor works from 1.6V to 3.3V.

The sensor isn�t very current-hungry, drawing only around 29 µA when

sampling every 16 milliseconds.

Materials

To work through this tutorial, you are going to need one of the three

versions of the MPR121 sensor:

� MPR121 Capacitive Touch Sensor Breakout Board

� Touch Shield

� MPR121 Capacitive Touch Keypad

You will also want a soldering iron, some hookup wires and a

microcontroller capable of I C communication. For our examples, we will be

using an Arduino Uno. You will also need some kind of material to act as a

capacitive sensing surface (also known as an electrode, which is not to be

confused with the character Electrode). Generally, aluminum foil works well.

However, you could also use coins, conductive paint, or copper tape.

2

2

Page 1 of 24

Suggested Reading

The MPR121 is very easy to get started using, especially with the example

code. However, if you haven�t worked with Arduino previously or aren�t

familiar with I C communication, you should check out the tutorials below.

� What is an Arduino

� I C Communication

� How to Use a Breadboard

� How to Solder

Capacitive Touch Sensor Breakout
Board

The breakout board is the most versatile option of the three MPR121

products. You can wire it up to any kind of electrode you want, and, as it is

a simple breakout board, does not have a particular microcontroller footprint

it favors.

The breakout board has 4 pins that need to be connected to your

microcontroller at a minimum to get communication going: the power lines

and the I C lines. However, for our example, we are going to be also

connecting the IRQ pin to more easily detect a change on one of the

electrodes.

Connections

MPR121 Breakout → Arduino Uno

� 3.3V → 3.3V

� SCL → A5

� SDA → A4

2

2

2

Page 2 of 24

� GND → GND

� IRQ → D2

You will also want to connect the Electrode/LED pins to your electrode

material you selected previously. You will want to make sure you have a

good, solid connection between your material and your board, so make

sure you thoroughly solder your connections.

Check out the Fritzing diagram below for how your connections should look.

The yellow squares represent whatever material you decide to use for your

electrodes.

Communicating with the Breakout
Board

To communicate with your breakout board, you will need the Arduino

sketch available as a zip file here. Alternatively, you can also find the most

up-to-date firmware for working with the breakout board available on

GitHub. Let�s take a look and see exactly what the code is doing.

#include "mpr121.h"
#include <Wire.h>

int irqpin = 2; // Digital 2
boolean touchStates[12]; //to keep track of the previous t

ouch states

In this first section of the code, the MPR121 library and the Wire library are

initialized. The Wire library makes I C communication easy to use on the

Arduino. The sketch also defines digital pin 2 as the IRQ pin connection,

and creates 12 instances of the boolean variable touchStates.

For the second section of the code, we define the irqpin as an INPUT,

telling the Arduino to monitor the digital signal coming in over that pin.

Serial communication is also started at 9600 bps, s well as the Wire and

mpr121 libraries.

2

Page 3 of 24

void setup(){

pinMode(irqpin, INPUT);
digitalWrite(irqpin, HIGH); //enable pullup resistor

 Serial.begin(9600);
 Wire.begin();

mpr121_setup();

 }

The main loop of the code is incredibly simple, as it only calls a single

function.

void loop(){

readTouchInputs();

 }

The function is actually described in the next section of the code. The

Arduino requests the electrode states from the sensor in the first section,

and the least significant bits and most significant bits are defined for the

sensor.

Page 4 of 24

void readTouchInputs(){

if(!checkInterrupt()){

//read the touch state from the MPR121
 Wire.requestFrom(0x5A,2);

 byte LSB = Wire.read();

 byte MSB = Wire.read();

 uint16_t touched = ((MSB << 8) | LSB); //16bits that make
up the touch states

for (int i=0; i < 12; i++){ // Check what electrodes wer
e pressed

if(touched & (1<<i)){

if(touchStates[i] == 0){

//pin i was just touched
 Serial.print("pin ");
 Serial.print(i);
 Serial.println(" was just touched");

 }else if(touchStates[i] == 1){

//pin i is still being touched
 }

 touchStates[i] = 1;
 }else{

if(touchStates[i] == 1){

 Serial.print("pin ");
 Serial.print(i);
 Serial.println(" is no longer being touched");

//pin i is no longer being touched
 }

 touchStates[i] = 0;

 }

 }

 }
}

The Arduino scans each electrode and prints out a message over serial if

an electrode is triggered as being touched. The Arduino will then print out a

message as soon as the electrode is no longer being touched.

Page 5 of 24

The last major section of the code defines the threshold values for each

electrode. Each electrode must have a touch threshold and a release

threshold for the Arduino to compare the current state of the electrode.

Page 6 of 24

void mpr121_setup(void){

set_register(0x5A, ELE_CFG, 0x00);

// Section A ­ Controls filtering when data is > baseline.

set_register(0x5A, MHD_R, 0x01);

set_register(0x5A, NHD_R, 0x01);

set_register(0x5A, NCL_R, 0x00);

set_register(0x5A, FDL_R, 0x00);

// Section B ­ Controls filtering when data is < baseline.

set_register(0x5A, MHD_F, 0x01);

set_register(0x5A, NHD_F, 0x01);

set_register(0x5A, NCL_F, 0xFF);

set_register(0x5A, FDL_F, 0x02);

// Section C ­ Sets touch and release thresholds for each el

ectrode

set_register(0x5A, ELE0_T, TOU_THRESH);

set_register(0x5A, ELE0_R, REL_THRESH);

set_register(0x5A, ELE1_T, TOU_THRESH);

set_register(0x5A, ELE1_R, REL_THRESH);

set_register(0x5A, ELE2_T, TOU_THRESH);

set_register(0x5A, ELE2_R, REL_THRESH);

set_register(0x5A, ELE3_T, TOU_THRESH);

set_register(0x5A, ELE3_R, REL_THRESH);

set_register(0x5A, ELE4_T, TOU_THRESH);

set_register(0x5A, ELE4_R, REL_THRESH);

set_register(0x5A, ELE5_T, TOU_THRESH);

set_register(0x5A, ELE5_R, REL_THRESH);

set_register(0x5A, ELE6_T, TOU_THRESH);

set_register(0x5A, ELE6_R, REL_THRESH);

set_register(0x5A, ELE7_T, TOU_THRESH);

set_register(0x5A, ELE7_R, REL_THRESH);

set_register(0x5A, ELE8_T, TOU_THRESH);

set_register(0x5A, ELE8_R, REL_THRESH);

set_register(0x5A, ELE9_T, TOU_THRESH);

set_register(0x5A, ELE9_R, REL_THRESH);

Page 7 of 24

set_register(0x5A, ELE10_T, TOU_THRESH);

set_register(0x5A, ELE10_R, REL_THRESH);

set_register(0x5A, ELE11_T, TOU_THRESH);

set_register(0x5A, ELE11_R, REL_THRESH);

// Section D

// Set the Filter Configuration

// Set ESI2

set_register(0x5A, FIL_CFG, 0x04);

// Section E

// Electrode Configuration

// Set ELE_CFG to 0x00 to return to standby mode

set_register(0x5A, ELE_CFG, 0x0C); // Enables all 12 Electr

odes

// Section F

// Enable Auto Config and auto Reconfig

/*set_register(0x5A, ATO_CFG0, 0x0B);

 set_register(0x5A, ATO_CFGU, 0xC9); // USL = (Vdd­0.7)/vdd*
256 = 0xC9 @3.3V set_register(0x5A, ATO_CFGL, 0x82); // LS

L = 0.65*USL = 0x82 @3.3V

 set_register(0x5A, ATO_CFGT, 0xB5);*/ // Target = 0.9*USL

= 0xB5 @3.3V

set_register(0x5A, ELE_CFG, 0x0C);

}

It looks like a lot of code, but it simply repeating the procedure of setting the

threshold values for each electrode pin.

The last two functions in the example sketch simply check the status of the

irqpin to determine if the IC is signaling that an electrode has been

touched. The very last function set_register simply runs the Arduino

through the standard steps in the Wire library to write the registers to the

IC.

Page 8 of 24

boolean checkInterrupt(void){

return digitalRead(irqpin);

}

void set_register(int address, unsigned char r, unsigned char

v){

 Wire.beginTransmission(address);

 Wire.write(r);

 Wire.write(v);

 Wire.endTransmission();

}

Now that you have a basic understanding of the code, let�s start reading the

data. Open up the sketch from the file you downloaded earlier, and upload

it to your Arduino. Once it is uploaded, open the Serial monitor in the

Arduino IDE. You should start seeing the Arduino print out sentences if you

press any electrodes or release any electrodes.

Touch Shield

The Touch Shield is an Arduino R3 compatible shield that enables

capacitive touch capabilities for your project using the MPR121 IC. The

shield itself has 9 touch pads on it (conveniently numbered 1-9 in a 3x3

grid), and has headers for 3 additional electrode connections.

The shield connects directly to the 3.3V pin on the Arduino. There is no on-

board voltage regulation on the VCC line, so keep that in mind if you intend

to use this with a 5V Arduino Pro board. However, there is an onboard logic

level converter to step down 5V levels to the 3.3V for the sensor�s I C lines.

This shield is designed to interface with an Arduino Uno R3. You can use

other microcontrollers as well with the same footprint, such as the Arduino

Mega. You will need access to the I C pins, SDA and SCL. Other than that,

you will need access to the 3.3V and GND pins and to digital pin 2. This

connects to the INT pin on the MPR121 sensor.

2

2

Page 9 of 24

We generally use stackable headers for attaching shields to Arduino

boards, but you can use standard male headers if you prefer. The R3

Stackable Header Kit is the easiest option to use if you are planning on

stackable headers. For detailed instructions on how to assemble your

shield, have a look at our Shield Tutorial.

The shield also has 3 pins labeled ELE9, ELE10, and ELE11. These

correspond to electrodes 9,10, and 11 on the MPR121 chip. You can solder

additional buttons or connections on to these pins at this time if you want

more than the 9 buttons already available on the shield. However, you don�t

have to do this to get the shield to function. It�s up to you!

Check out the Fritzing diagram below to see how your shield should look if

you have added buttons on to your shield on pins ELE9, ELE10, and

ELE11.

Note: The yellow squares represent whatever material you�ve chosen to

use as your electrode.

Once you�ve got your shield all hooked up, let�s start pulling data from the

shield!

Communicating with the Shield

Once you�ve got your shield assembled, it�s time to start talking to it! You

can download the example code here, or find the most up-to-date version in

the GitHub repository.

Open up the Touch_Sensor_Shield_Example.ino file. The other files set the

register definitions for the MPR121 chip, so you shouldn�t need to mess

with these at all.

Page 10 of 24

// Match key inputs with electrode numbers

#define ONE 8

#define TWO 5

#define THREE 2

#define FOUR 7

#define FIVE 4

#define SIX 1

#define SEVEN 6

#define EIGHT 3

#define NINE 0

//extras (not connected to button)

#define ELE9 9

#define ELE10 10

#define ELE11 11

//interupt pin

int irqPin = 2; // D2

First thing the code shows is the pin definitions. This is laying out the

keypad functionality (ONE, TWO, etc.) and defining which electrode pin

corresponds to each number. As the comment states, electrode pins 9, 10

and 11 are not currently connected to anything, but if you did solder on

additional buttons to those pins on the shield, you can change this.

The interrupt pin is also defined as D2. This can�t be modified without some

hardware hacking on the shield, so keep that in mind if you are interfacing

additional hardware into your set up.

Page 11 of 24

void setup()

 {

//make sure the interrupt pin is an input and pulled hig

h

pinMode(irqPin, INPUT);

digitalWrite(irqPin, HIGH);

//configure serial out

 Serial.begin(9600);

// initalize I2C bus. Wiring lib not used.

i2cInit();

// initialize mpr121

mpr121QuickConfig();

// Create and interrupt to trigger when a button

// is hit, the IRQ pin goes low, and the function getNum

ber is run.

attachInterrupt(0,getNumber,LOW);

// prints 'Ready...' when you can start hitting numbers

 Serial.println("Ready...");

 }

The setup loop starts by setting the interrupt pin as an input and pulling it

high. The serial bus is started at 9600 bps. Next, the code initializes the I C

communication lines without using the Wiring library.

The MPR121 chip is then configured with the proper sensitivity settings on

the electrodes. The final step in the setup loop creates an interrupt in the

code that will trigger when any of the buttons are hit.

void loop()

{

//You can put additional code here. The interrupt will run i

n the backgound.

}

The loop function is actually empty currently, as the button presses use the

interrupt we created in the setup loop. If you did have additional hardware

you wanted to incorporate into your project, the code for it can live in this

loop.

The last two functions in the example code tell the Arduino to check the

electrode states for a button press and what to print out when a button

press is detected.

2

Page 12 of 24

void getNumber()

{

int touchNumber = 0;

 uint16_t touchstatus;

char digits;

 touchstatus = getTouchStatus();

for (int j=0; j<12; j++) // Check how many electrodes were

pressed

 {

if ((touchstatus & (1<<j)))

 touchNumber++;

 }

if (touchNumber == 1)

 {

if (touchstatus & (1<<SEVEN))

 {

 digits = '7';

 }

else if (touchstatus & (1<<FOUR))

 {

 digits = '4';

 }

else if (touchstatus & (1<<ONE))

 {

 digits = '1';

 }

else if (touchstatus & (1<<EIGHT))

 {

 digits = '8';

 }

else if (touchstatus & (1<<FIVE))

 {

 digits = '5';

 }

else if (touchstatus & (1<<TWO))

 {

 digits = '2';

 }

else if (touchstatus & (1<<NINE))

 {

 digits = '9';

 }

else if (touchstatus & (1<<SIX))

 {

 digits = '6';

Page 13 of 24

 }

else if (touchstatus & (1<<THREE))

 {

 digits = '3';

 }

 Serial.println(digits);

 }

//do nothing if more than one button is pressed, or if all a

re released

else if (touchNumber == 0)

 ;

else

 ;

}

The function getTouchStatus() actually returns at 16-bit value which gives

the status of each button. The status of 1 indicates that an electrode is

being activated.

language: c

 int getTouchStatus()

{

 int touch;

 touch = mpr121Read(0x01) << 8;

 touch |= mpr121Read(0x00);

 return touch;

}

Now that you have basic communication up and running with your shield,

you can start integrating this into projects. If you haven�t yet connected

anything to electrodes 9, 10 and 11, consider adding in additional buttons

here. You will also need to update the code. You�ll want to add the following

block of code into the example sketch right before

Serial.println(digits); . You can change the digits values to have the

buttons output different values instead of �A�, �B�, or �C�.

Page 14 of 24

else if (touchstatus & (1 << ELE9))

{

 digits = 'A';

}

else if (touchstatus & (1 << ELE10))

{

 digits = 'B';

}

else if (touchstatus & (1 << ELE11))

{

 digits = 'C';

}

Capacitive Touch Keypad

The Capacitive Touch Keypad is very similar to the MPR121 breakout

board, but instead of having to attach your own electrodes, this board

comes with a 12-pin keypad built-in.

The keypad has 5 lines that need to be connected to your microcontroller,

including the power lines, the IRQ line and the I C lines.

Connections

MPR121 Keypad → Arduino Uno

� 3.3V → 3.3V

� SCL → A5

� SDA → A4

� GND → GND

2

Page 15 of 24

� IRQ → D2

Check out the Fritzing diagram below to verify your connections.

This diagram shows the bottom side of the keypad, in order to show you the

location of the I C address jumper. In this diagram, the jumper is set to 0,

but if you need to have 2 keypads on the same I C bus, you can change

one of them to be set to 1.

Now that you�ve got your keypad hooked up properly, let�s get

communicating with it!

Communicating with the Keypad

In order to communicate with your keypad, you�ll want to download the

example sketch available here. Alternatively, you can check for the most

up-to-date firmware available in the GitHub repository.

This sketch is designed to allow the keypad to function as a phone keypad.

Check out the pin mapping below to see how the numbered pads will print

over the Serial terminal.

Actual Keypad → Phone Keypad Printout

� 3 → 1

� 7 → 2

� 11 → 3

� 2 → 4

� 6 → 5

� 10 → 6

� 1 → 7

� 5 → 8

� 9 → 9

� 0 → *

� 4 → 0

� 8 → #

This is defined in the first section of the code, shown below. The I C

address is also defined, along with setting digital pin 2 to be assigned as

the IRQ pin connection point.

2

2

2

Page 16 of 24

#include "mpr121.h"
#include "i2c.h"

#define MPR121_R 0xB5 // ADD pin is grounded
#define MPR121_W 0xB4 // So address is 0x5A

#define PHONE_DIGITS 10 // 10 digits in a phone number

// Match key inputs with electrode numbers
#define STAR 0
#define SEVEN 1
#define FOUR 2
#define ONE 3
#define ZERO 4
#define EIGHT 5
#define FIVE 6
#define TWO 7
#define POUND 8
#define NINE 9
#define SIX 10
#define THREE 11

int irqpin = 2; // D2

uint16_t touchstatus;
char phoneNumber[PHONE_DIGITS];

The second section of the code is the basic initialization of the serial

communication port at 9600 bps, as well as setting the IRQ pin as an input

on the Arduino. It also starts the configuraton of the MPR121 IC.

void setup()

{
pinMode(irqpin, INPUT);
digitalWrite(irqpin, HIGH);

 Serial.begin(9600);
 DDRC |= 0b00010011;

 PORTC = 0b00110000; // Pull­ups on I2C Bus
i2cInit();

delay(100);

mpr121QuickConfig();

}

Page 17 of 24

The main loop in the code simply scans the MPR121 electrodes and looks

for a phone number to be entered on the keypad. This is the function

getPhoneNumber() . The code then prints out the phone number dialed over

the serial monitor.

void loop()

{
getPhoneNumber();

 Serial.print("\nDialing... ");
for (int i=0; i<PHONE_DIGITS; i++)

 Serial.print(phoneNumber[i]);

while(1)

 ;
}

As you can see in the function loop for getPhoneNumber() , the Arduino

checks the touchstatus register for each electrode and prints out the

assigned value for any electrodes that are registering a touch. It also

includes an error if multiple buttons are pressed simultaneously, printing

over the serial monitor to tell the user to touch only one button.

Page 18 of 24

void getPhoneNumber()

{
int i = 0;

int touchNumber;

 Serial.println("Please Enter a phone number...");

while(i<PHONE_DIGITS)

 {
while(checkInterrupt())

 ;
 touchNumber = 0;

 touchstatus = mpr121Read(0x01) << 8;

 touchstatus |= mpr121Read(0x00);

for (int j=0; j<12; j++) // Check how many electrodes wer
e pressed
 {

if ((touchstatus & (1<<j)))

 touchNumber++;
 }

if (touchNumber == 1)

 {
if (touchstatus & (1<<STAR))

 phoneNumber[i] = '*';

else if (touchstatus & (1<<SEVEN))

 phoneNumber[i] = '7';

else if (touchstatus & (1<<FOUR))

 phoneNumber[i] = '4';

else if (touchstatus & (1<<ONE))

 phoneNumber[i] = '1';

else if (touchstatus & (1<<ZERO))

 phoneNumber[i] = '0';

else if (touchstatus & (1<<EIGHT))

 phoneNumber[i] = '8';

else if (touchstatus & (1<<FIVE))

 phoneNumber[i] = '5';

else if (touchstatus & (1<<TWO))

 phoneNumber[i] = '2';

else if (touchstatus & (1<<POUND))

 phoneNumber[i] = '#';

else if (touchstatus & (1<<NINE))

 phoneNumber[i] = '9';

else if (touchstatus & (1<<SIX))

 phoneNumber[i] = '6';

else if (touchstatus & (1<<THREE))

Page 19 of 24

 phoneNumber[i] = '3';

 Serial.print(phoneNumber[i]);
 i++;
 }

else if (touchNumber == 0)

 ;
else

 Serial.println("Only touch ONE button!");
 }
}

The next section of the code simply steps through the I C communication to

read data from the MPR121 IC.

byte mpr121Read(uint8_t address)
{
 byte data;

i2cSendStart();

i2cWaitForComplete();

i2cSendByte(MPR121_W); // write 0xB4
i2cWaitForComplete();

i2cSendByte(address); // write register address
i2cWaitForComplete();

i2cSendStart();

i2cSendByte(MPR121_R); // write 0xB5
i2cWaitForComplete();

i2cReceiveByte(TRUE);

i2cWaitForComplete();

 data = i2cGetReceivedByte(); // Get MSB result
i2cWaitForComplete();

i2cSendStop();

cbi(TWCR, TWEN); // Disable TWI
sbi(TWCR, TWEN); // Enable TWI

return data;

}

The function mpr121Write() is then defined, which again, steps through

the I C process of writing commands to the MPR121 sensor.

2

2

Page 20 of 24

void mpr121Write(unsigned char address, unsigned char data)

{

i2cSendStart();

i2cWaitForComplete();

i2cSendByte(MPR121_W);// write 0xB4

i2cWaitForComplete();

i2cSendByte(address); // write register address

i2cWaitForComplete();

i2cSendByte(data);

i2cWaitForComplete();

i2cSendStop();

}

The mpr121QuickConfig() function is then defined. In this function, all 12

of the electrodes are enabled, and the touch and release thresholds for all

of the sensors are set. The filtering registers are also configured.

Page 21 of 24

void mpr121QuickConfig(void)

{

// Section A

// This group controls filtering when data is > baseline.

mpr121Write(MHD_R, 0x01);

mpr121Write(NHD_R, 0x01);

mpr121Write(NCL_R, 0x00);

mpr121Write(FDL_R, 0x00);

// Section B

// This group controls filtering when data is < baseline.

mpr121Write(MHD_F, 0x01);

mpr121Write(NHD_F, 0x01);

mpr121Write(NCL_F, 0xFF);

mpr121Write(FDL_F, 0x02);

// Section C

// This group sets touch and release thresholds for each ele

ctrode

mpr121Write(ELE0_T, TOU_THRESH);

mpr121Write(ELE0_R, REL_THRESH);

mpr121Write(ELE1_T, TOU_THRESH);

mpr121Write(ELE1_R, REL_THRESH);

mpr121Write(ELE2_T, TOU_THRESH);

mpr121Write(ELE2_R, REL_THRESH);

mpr121Write(ELE3_T, TOU_THRESH);

mpr121Write(ELE3_R, REL_THRESH);

mpr121Write(ELE4_T, TOU_THRESH);

mpr121Write(ELE4_R, REL_THRESH);

mpr121Write(ELE5_T, TOU_THRESH);

mpr121Write(ELE5_R, REL_THRESH);

mpr121Write(ELE6_T, TOU_THRESH);

mpr121Write(ELE6_R, REL_THRESH);

mpr121Write(ELE7_T, TOU_THRESH);

mpr121Write(ELE7_R, REL_THRESH);

mpr121Write(ELE8_T, TOU_THRESH);

mpr121Write(ELE8_R, REL_THRESH);

mpr121Write(ELE9_T, TOU_THRESH);

mpr121Write(ELE9_R, REL_THRESH);

mpr121Write(ELE10_T, TOU_THRESH);

mpr121Write(ELE10_R, REL_THRESH);

mpr121Write(ELE11_T, TOU_THRESH);

mpr121Write(ELE11_R, REL_THRESH);

// Section D

// Set the Filter Configuration

// Set ESI2

mpr121Write(FIL_CFG, 0x04);

Page 22 of 24

// Section E

// Electrode Configuration

// Enable 6 Electrodes and set to run mode

// Set ELE_CFG to 0x00 to return to standby mode

mpr121Write(ELE_CFG, 0x0C); // Enables all 12 Electrodes

//mpr121Write(ELE_CFG, 0x06); // Enable first 6 electrod

es

// Section F

// Enable Auto Config and auto Reconfig

/*mpr121Write(ATO_CFG0, 0x0B);

 mpr121Write(ATO_CFGU, 0xC9); // USL = (Vdd­0.7)/vdd*256 = 0
xC9 @3.3V mpr121Write(ATO_CFGL, 0x82); // LSL = 0.65*USL =

0x82 @3.3V

 mpr121Write(ATO_CFGT, 0xB5);*/ // Target = 0.9*USL = 0xB

5 @3.3V

}

The final section of the sketch simply reads the IRQ pin for an indication

that an electrode has been pressed. It then returns either a 1 or 0 as the

value for checkInterrupt() variable.

byte checkInterrupt(void)

{

if(digitalRead(irqpin))

return 1;

return 0;

}

Now that you know how the keypad works and communicates with the

Arduino, you can start customizing your project and going further.

Resources and Going Further

Now that you�ve figured out how to use the various versions of the MPR121

IC, what kind of cool projects can you come up with? If you have any

questions still, check out the additional resources below, or feel free to

leave a comment on the tutorial.

Resources

� Example Code

� MPR121 Datasheet

� Breakout Board Schematic

� Breakout Board Eagle Files

Page 23 of 24

� Touch Shield Schematic

� Touch Shield Eagle Files

� Touch Keypad Schematic

� Touch Keypad Eagle Files

Other I C Projects and Products

All of these tutorials have I C communication. They can also both be used

in conjunction with this sensor to act as a display for the button triggers or

to monitor the temperature as well.

� OpenSegment Hook-Up Guide

� TMP006 Hook-Up Guide

2

2

Page 24 of 24

2/12/2015https://learn.sparkfun.com/tutorials/mpr121-hookup-guide?_ga=1.37706406.725293211.1423760740

