Memory FRAM

4 M (256 K × 16) Bit

MB85RE4M2T

■ DESCRIPTIONS

The MB85RE4M2T is an FRAM (Ferroelectric Random Access Memory) chip consisting of 262,144 words × 16 bits of nonvolatile memory cells fabricated using ferroelectric process and silicon gate CMOS process technologies.

The MB85RE4M2T is able to retain data without using a back-up battery, as is needed for SRAM.

The memory cells used in the MB85RE4M2T can be used for 10¹³ read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E2PROM. The MB85RE4M2T uses a pseudo-SRAM interface that is compatible with conventional asynchronous SRAM. The MB85RE4M2T provides a RESET function which initializes all data in FRAM memory array to "0".

■ FEATURES

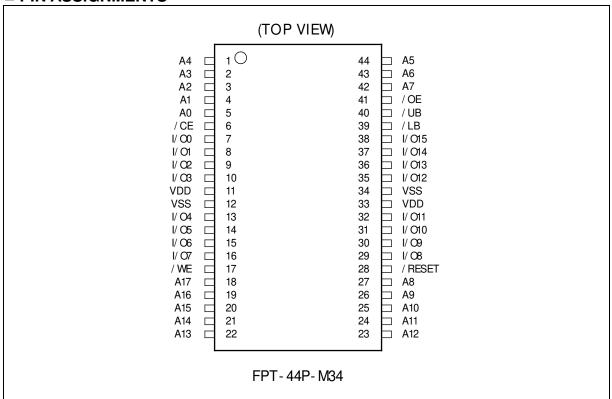
• Bit configuration : $262,144 \text{ words} \times 16 \text{ bits}$

• LB and UB data byte control : Available Configuration of 524,288 words × 8 bits

Read/write endurance
 Data retention
 Operating power supply voltage
 10¹³ times / 16 bits
 10 years (+85 °C)
 1.8 V to 3.6 V

• Low power operation : Operating power supply current 20 mA (Max)

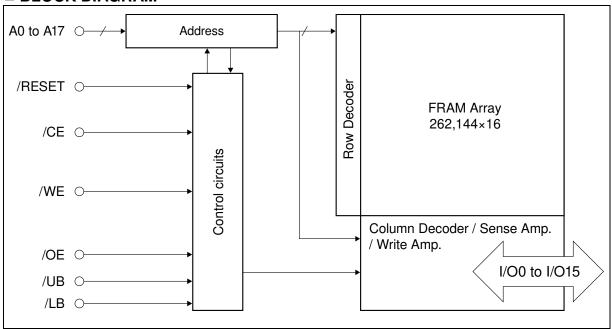
Standby current 150 µA (Max)


• Operation ambient temperature range : - 40 °C to + 85 °C

• Package : 44-pin plastic TSOP (FPT-44P-M34)

RoHS compliant

■ PIN ASSIGNMENTS



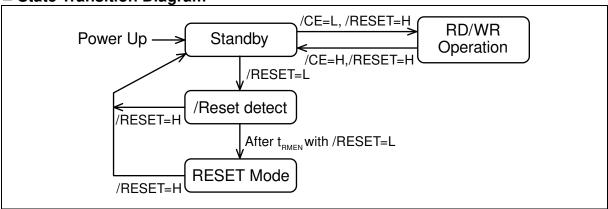
MB85RE4M2T

■ PIN DESCRIPTIONS

Pin Number	Pin Name	Functional Description
1 to 5, 18 to 22,	A0 to A17	Address Input pins
23 to 27, 42 to 44		Select 262,144 words in FRAM memory array by 18 Address
		Input pins. When these address inputs are changed during /CE
		equals to "L" level, reading operation of data selected in the
		address after transition will start.
7 to 10, 13 to 16,	I/O0 to I/O15	Data Input/Output pins
29 to 32, 35 to 38		These are 16 bits bidirectional pins for reading and writing.
6	/CE	Chip Enable Input pin
		In case the /CE equals to "L" level and /RESET equals to "H"
		level, device is activated and enables to start memory access.
		In writing operation, input data from I/O pins are latched at the
		rising edge of /CE and written to FRAM memory array.
17	/WE	Write Enable Input pin
		Writing operation starts at the falling edge of /WE.
		Input data from I/O pins are latched at the rising edge of /WE
		and written to FRAM memory array.
41	/OE	Output Enable Input pin
		When the /OE is "L" level, valid data are output to data bus.
		When the /OE is "H" level, all I/O pins become high impedance
		(High-Z) state.
28	/RESET	Reset Mode Input pin
		When the /RESET becomes to "L" level, all data in FRAM
		memory array are initialized to "0" through a RESET mode.
		During reading and writing operation, /RESET pin shall be hold
		"H" level.
39, 40	/LB, /UB	Lower/Upper byte Control Input pins
		In case /LB or /UB equals to "L" level, it enables
		reading/writing operation of I/O0 to I/O7 or I/O8 to I/O15
		respectively. In case /LB and /UB equal to "H" level, all I/O
		pins become High-Z state.
11, 33	VDD	Supply Voltage pins
		Connect all two pins to the power supply.
12, 34	VSS	Ground pins
		Connect all two pins to ground.

■ BLOCK DIAGRAM

■ FUNCTIONAL TRUTH TABLE


Operation Mode	/CE	/WE	/OE	A0 to A17	/RESET	
Reset	×	×	×	×	L	
Standby	Н	×	×	×	Н	
Read	↓	Н	L	H or L	Н	
Address Access Read	L	Н	L	↑ or ↓	Н	
Write(/CE Control)*1	↓	L	×	H or L	Н	
Write(/WE Control)*1*2	L	↓	×	H or L	Н	
Address Access Write*1*3	L	↓	×	↑ or ↓	Н	
Pre-charge	1	×	×	×	Н	
Note: H= "H" level, L= "L" level, \uparrow = Rising edge, \downarrow = Falling edge, \times = H, L, \downarrow or \uparrow						

^{*1:} In writing cycle, input data is latched at early rising edge of /CE or /WE.

^{*2:} In writing sequence of /WE control, there exists time with data output of reading cycle at the falling edge of /CE.

^{*3:} In writing sequence of Address Access Write, there exists time with data output of reading cycle at the address transition.

■ FUNCTIONAL TRUTH TABLE OF BYTE CONTROL

Operation Mode	/WE	/OE	/LB	/UB	I/O0 to I/O7	I/O8 to I/O15
Read(Without Output)	Н	Н	×	×	Hi-Z	Hi-Z
Read(Willout Output)	Н	×	Н	Н	Hi-Z	Hi-Z
Read(I/O8 to I/O15)			Н	L	Hi-Z	Output
Read(I/O0 to I/O7)	Н	L	L	Н	Output	Hi-Z
Read(I/O0 to I/O15)			L	L	Output	Output
Write(I/O8 to I/O15)			Н	L	×	Input
Write(I/O0 to I/O7)	↑	×	L	Н	Input	×
Write(I/O0 to I/O15)			L	L	Input	Input

Note: H= "H" level, L= "L" level, \uparrow = Rising edge, \downarrow = Falling edge, \times = H, L, \downarrow or \uparrow Hi-Z= High Impedance

In case the byte reading or writing are not selected, /LB and /UB pins shall be connected to GND pin.

■ ABABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit	
Parameter	Syllibol	Min	Max	Ullit
Power Supply Voltage*	$V_{ m DD}$	- 0.5	+ 4.0	V
Input Pin Voltage*	V_{IN}	- 0.5	$V_{DD} + 0.5 \ (\le 4.0)$	V
Output Pin Voltage*	V_{OUT}	- 0.5	$V_{DD} + 0.5 \ (\le 4.0)$	V
Operation Ambient Temperature	T_A	- 40	+ 85	°C
Storage Temperature	Tstg	- 55	+ 125	°C

^{*:} All voltages are referenced to VSS (ground 0 V).

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit		
Parameter	Syllibol	Min	Тур	Max	Ullit
Power Supply Voltage*	$V_{ m DD}$	1.8	3.3	3.6	V
High Level Input Voltage*	$V_{ m IH}$	$V_{DD} \times 0.8$	_	$V_{DD} + 0.3$	V
Low Level Input Voltage*	$V_{ m IL}$	- 0.3	_	$V_{DD} \times 0.2$	V
Operation Ambient Temperature	T_A	- 40	_	+ 85	°C

^{*:} All voltages are referenced to VSS (ground 0 V).

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

Parameter	Symbol	Condition	V	'alue		Unit
Farameter	Symbol	Condition	Min	Тур	Max	Ullit
Input Leakage Current	$ { m I}_{ m LI} $	$V_{\rm IN} = 0V$ to $V_{\rm DD}$	_	_	5	μΑ
Output Leakage Current	$ I_{LO} $	$V_{OUT} = 0V$ to V_{DD} /CE = V_{IH} or /OE = V_{IH}	_	_	5	μΑ
Operating Power Supply Current*1	I_{DD}	$/CE = 0.2 \text{ V}, I_{out} = 0 \text{ mA}$	_	TBD	20	mA
Standby Current	I_{SB}	$\label{eq:reservoir_constraints} \begin{split} /RESET &\geq V_{DD} - 0.2V \\ /CE, /WE, /OE &\geq V_{DD} - 0.2V \\ /LB, /UB &\geq V_{DD} - 0.2V \\ Others &\geq V_{DD} - 0.2V \text{ or } \leq 0.2V \end{split}$	_	TBD	150	μА
Reset Current	${ m I}_{ m RR}$	$\label{eq:reservoir_constraints} \begin{split} /RESET &= V_{SS} \\ /CE, /WE, /OE &\geq V_{DD} - 0.2V \\ /LB, /UB &\geq V_{DD} - 0.2V \\ Others &\geq V_{DD} - 0.2V \text{ or } \leq 0.2V \end{split}$	_	TBD	20	mA
High Level Output	V _{OH1}	$V_{DD} = 2.7V \text{ to } 3.6V$ $I_{OH} = -1.0\text{mA}$	$V_{DD} \times 0.8$	_		V
Voltage	V_{OH2}	$V_{DD} = 1.8V \text{ to } 2.7V$ $I_{OH} = -100\mu\text{A}$	$V_{DD} - 0.2$	_		V
Low Level Output	V_{OL1}	$V_{DD} = 2.7V \text{ to } 3.6V$ $I_{OL} = 2.0\text{mA}$	_	_	0.4	V
Voltage	V_{OL2}	$V_{DD} = 1.8V \text{ to } 2.7V$ $I_{OL} = 150 \mu\text{A}$	_	_	0.2	v

^{*1:} During the measurement of I_{DD} , all Address and I/O were taken to only change once per active cycle. Iout: output current

2. AC Characteristics

AC Test Conditions

Power Supply Voltage : 1.8 V to 3.6 V Operation Ambient Temperature $: -40 \,^{\circ}\text{C}$ to $+85 \,^{\circ}\text{C}$ Input Voltage Amplitude $: 0 \,^{\circ}\text{V}$ to V_{DD}

Input Rising Time : 3 ns Input Falling Time : 3 ns Input Evaluation Level $: V_{DD}/2$ Output Evaluation Level $: V_{DD}/2$ Output Load Capacitance : 30 pF

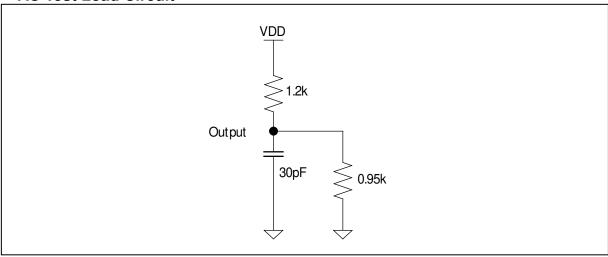
(1) Read Cycle

Parameter	Symbol	Symbol (V _{DD} =1.8V to 2.7)		Value (V _{DD} =2.7V to 3.6V)		Unit
	1	Min	Max	Min	Max	1
Read Cycle time	t_{RC}	TBD	_	150	_	ns
/CE Access Time	t_{CE}		TBD		75	ns
Address Access Time	t_{AA}		TBD		150	ns
/OE Output Data Hold time	t_{OH}	0	_	0	_	ns
Output Data Hold time	t_{OAH}	20	_	20	_	ns
/CE Active Time	t_{CA}	TBD	_	75	_	ns
Pre-charge Time	t_{PC}	TBD	_	75	_	ns
/LB, /UB Access Time	t_{BA}		TBD		20	ns
Address Setup Time	t_{AS}	0	_	0	_	ns
Address Hold Time	$t_{ m AH}$	TBD	_	75	_	ns
/OE Access Time	t_{OE}		TBD		20	ns
/CE Output Floating Time	$t_{\rm HZ}$		TBD		10	ns
/OE Output Floating Time	t _{OHZ}	_	TBD		10	ns
/LB, /UB Output Floating Time	$t_{ m BHZ}$	_	TBD		10	ns
Address Transition Time	t_{AX}		TBD		10	ns

(2) Write Cycle

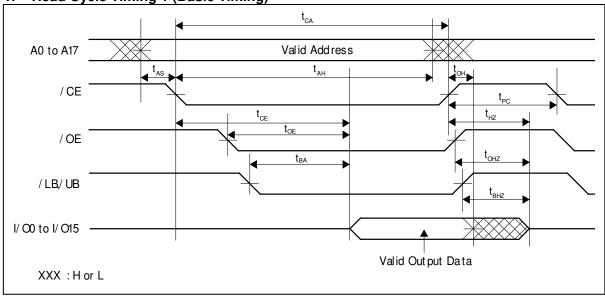
Parameter	Symbol		lue / to 2.7V)			
	Cym.co.	Min	Max	Min	Max	Unit
Write Cycle Time	$t_{ m WC}$	TBD	_	150	_	ns
/CE Active Time	t_{CA}	TBD	_	75	_	ns
/CE↓ to /WE↑ Time	t_{CW}	TBD		75	_	ns
Pre-charge Time	t_{PC}	TBD		75	_	ns
Write Pulse Width	t_{WP}	20		20	_	ns
Address Setup Time	t_{AS}	0		0	_	ns
Address Hold Time	t_{AH}	TBD	_	75	_	ns
/WE↓ to /CE↑ Time	$t_{ m WLC}$	TBD	_	25	_	ns
/UB↓ or /LB↓ to /CE↑ Time	$t_{ m BLC}$	TBD		25	_	ns
Address Transition to /WE↑ Time	t_{AWH}	TBD		150	_	ns
/WE↑ to Address Transition Time	$t_{ m WHA}$	0		0	_	ns
/LB, /UB Setup Time	t_{BS}	2		2	_	ns
/LB, /UB Hold Time	$t_{ m BH}$	0		0	_	ns
Data Setup Time	$t_{ m DS}$	20		20	_	ns
Data Hold Time	$t_{ m DH}$	0		0	_	ns
/WE Output Floating Time	$t_{ m WZ}$		TBD		10	ns
/WE Output Access Time*1	t_{WX}	10		10		ns
Write Setup Time*1	t_{WS}	0		0		ns
Write Hold Time*1	$t_{ m WH}$	0		0		ns

^{*1:} Writing operation applies "Write Cycle Timing 1" or "Write Cycle Timing 2" by the relation of /CE and /WE timing. The values of t_{WX} , t_{WS} and t_{WH} are defined by these operations. The conditions of t_{WS} and t_{WH} are not checked at shipping test.

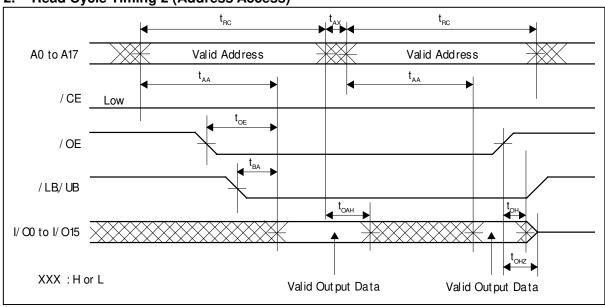

(3) Power ON/OFF Sequence and Reset Cycle

Parameter	Cymbal	Va	lue	Unit
Parameter	Symbol	Min	Max	Ullit
/CE level hold time for Power ON	$t_{ m PU}$	450	_	μs
/CE level hold time for Power OFF	$t_{ m PD}$	85	_	ns
Power supply rising time	$t_{ m VR}$	50	_	μs/V
Power supply falling time	$t_{ m VF}$	100	_	μs/V
Reset mode enable time	$t_{ m RMEN}$	100	_	ms
Reset mode time	$t_{ m RMRT}$	700	_	ms
Reset mode release time	t_{RMEX}	300	_	μs

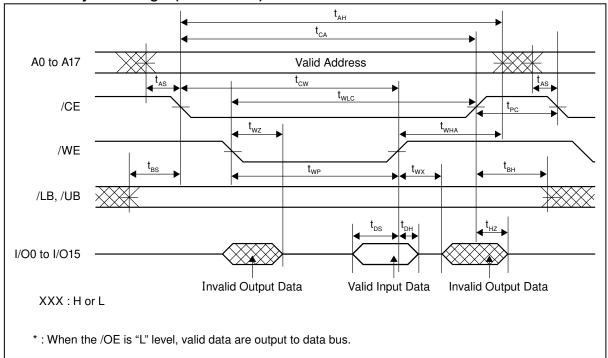
3. Pin Capacitance

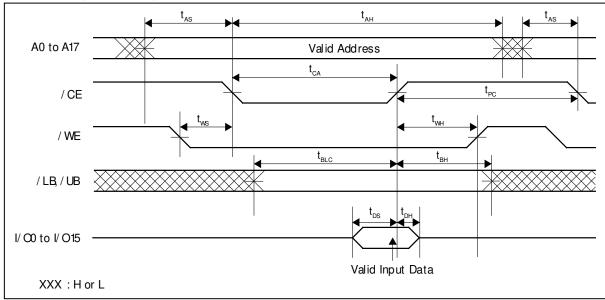

Parameter	Symbol Condition		Value			Unit
Farailletei	Syllibol	Condition	Min	Тур	Max	Ollit
Input Capacitance	C_{IN}	$\mathbf{V} = 2.2 \mathbf{V}$		_	6	pF
Input/Output Capacitance (I/O pin)	$C_{I/O}$	$V_{DD} = 3.3 \text{ V},$ f = 1 MHz, $T_A = +25 ^{\circ}\text{C}$		_	8	pF
/RESET Pin Input Capacitance	C_{RR}	$I = I \text{ MHz}, I_A = +23 \text{ C}$		_	8	pF

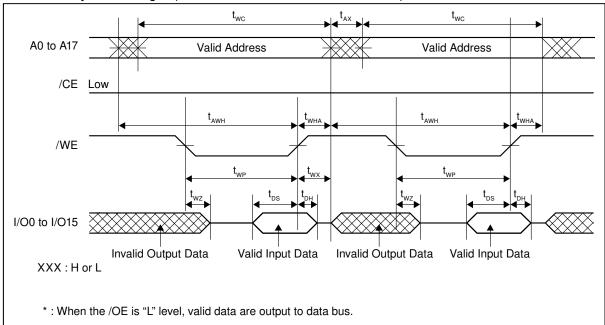
■ AC Test Load Circuit

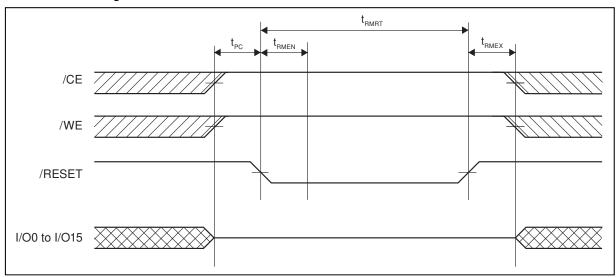


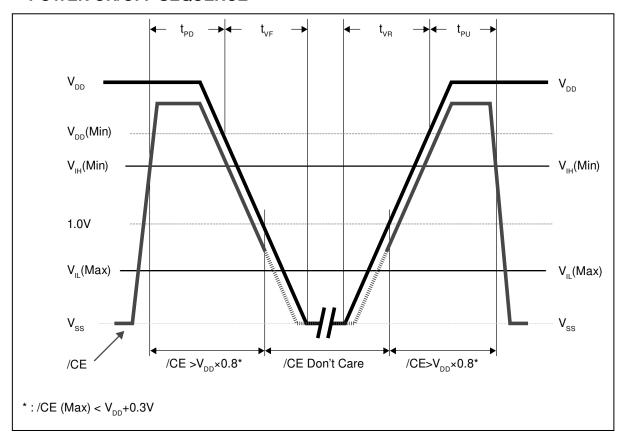
■ TIMING DIAGRAMS


1. Read Cycle Timing 1 (Basic Timing)


2. Read Cycle Timing 2 (Address Access)


3. Write Cycle Timing 1 (/WE Control)

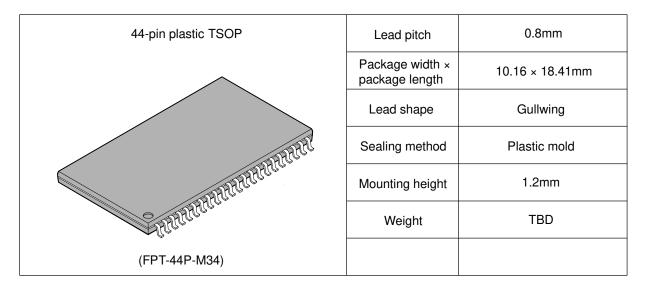

4. Write Cycle Timing 2 (/CE Control)

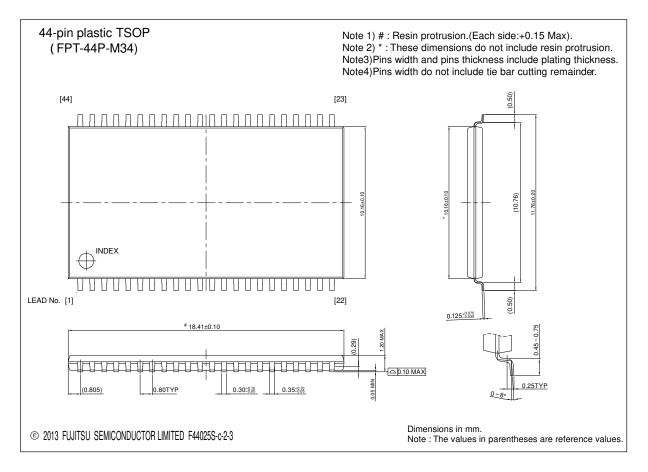

5. Write Cycle Timing 3 (Address Access and /WE Control)

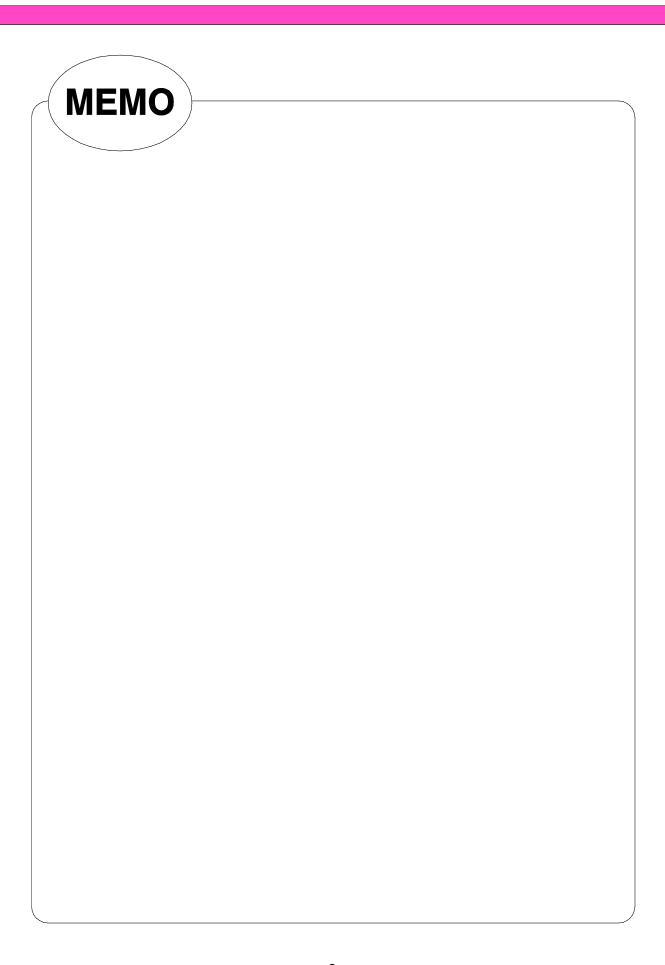
6. Reset Timing

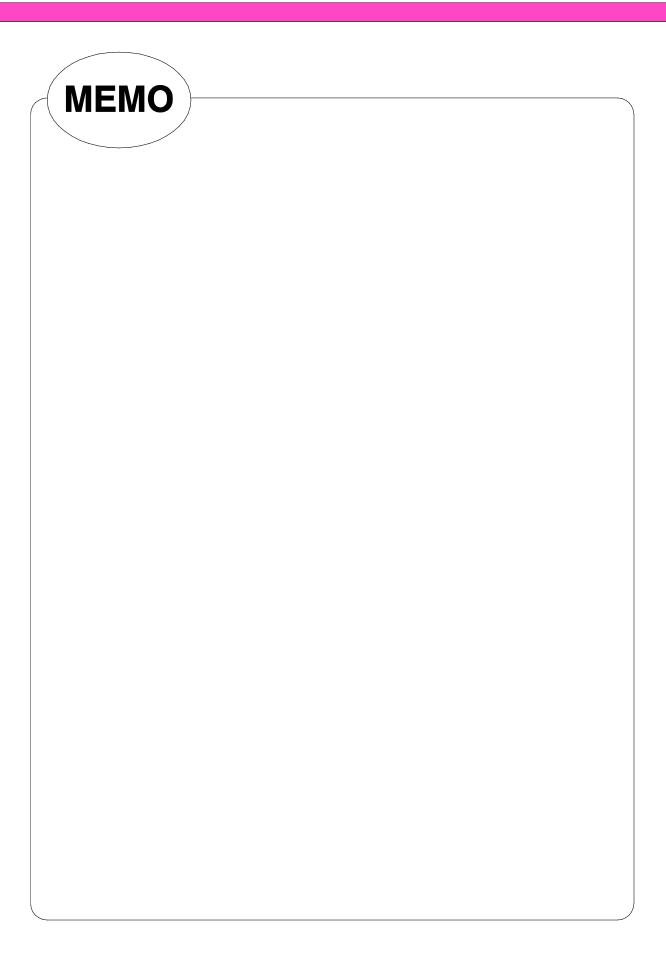
■ POWER ON/OFF SEQUENCE

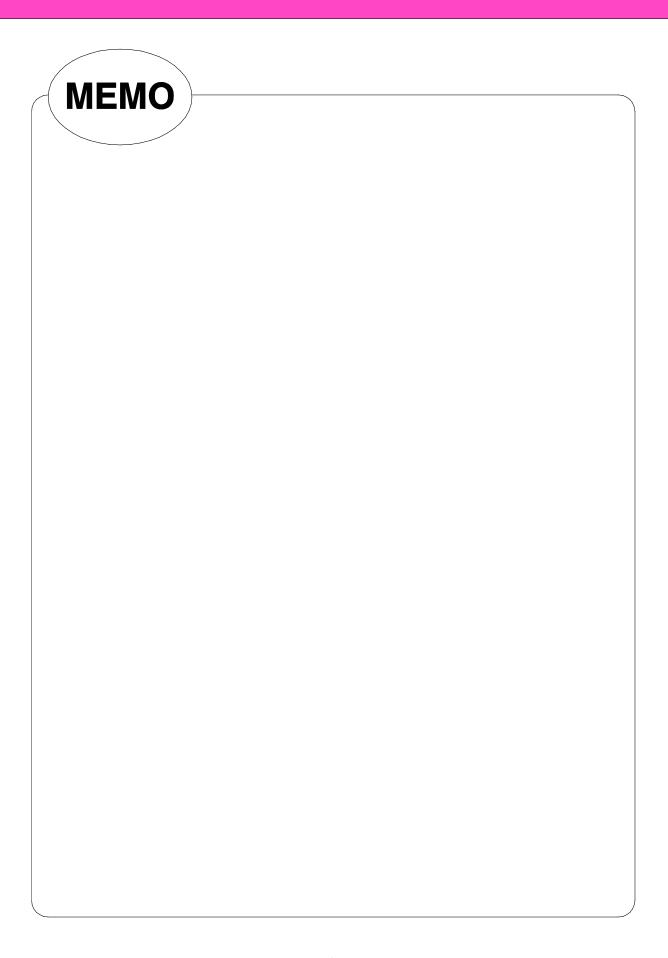
■ NOTES ON USE


- We recommend programming of the device after reflow. Data written before reflow cannot be guaranteed.
- VDD pin is required to be rising from 0 V because turning the power on from an intermediate level may cause malfunctions, when the power is turned on.


■ ORDERING INFORMATION


Part Number	Package	Shipping form	Minimum shipping quantity
MB85RE4M2TFN-G-ASE1	44-pin plastic TSOP (FPT-44P-M34)	Tray	*


^{*:} Please contact our sales office about minimum shipping quantity.


■ PACKAGE DIMENSIONS

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

Asia Pacific

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China Tel: +86-21-6146-3688 Fax: +86-21-6146-3660 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 2/F, Green 18 Building, Hong Kong Science Park, Shatin, N.T., Hong Kong Tel: +852-2736-3232 Fax: +852-2314-4207 http://cn.fujitsu.com/fsp/

http://www.fujitsu.com/kr/fsk/

FUJITŠU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device. Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages arising out of or in

connection with above-mentioned uses of the products.

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein.

All company names, brand names and trademarks herein are property of their respective owners.

Edited: Corporate Planning Department