

Product Data Sheet

Features

HIGH CURRENT CARRY AND HIGH VOLTAGE

Inert gas filled arc chamber suitable for high voltage switching

COMPACT STRUCTURE, LOW NOISE

Small, low-profile design with low noise while carrying or switching loads

COIL ECONOMIZER

Economized coil for low power consumption

SAFE FOR EXPLOSIVE ENVIRONMENTS

No arc leakage due to a hermetically sealed design

HIGH RELIABILITY DESIGN

Hermetic sealing creates a stable environment for high voltage switching

NO SPECIFIC MOUNTING ARRANGEMENT

Mountable in any orientation without reduction of performance

VARIOUS APPLICATIONS

Battery disconnect, EV charging, energy storage systems, photovoltaics, power control, circuit protection and much more

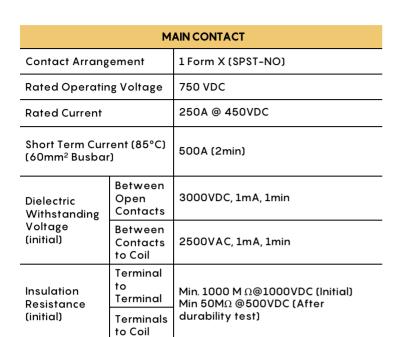
Sealing Type: Ceramic

- ✓ Bottom mount/side mount options available
- √ Bi-directional

Certification Information

- 1. Meet RoHS (2011/65/EU)
- 2. CE certified

Nomenclature


Series code:
"AEVE250" = AEVE250

Coil Voltage Code:
"B" = 12VDC
"C" = 24VDC

Options (applied in this order):
Blank = Std. Options (Bottom Mount, Without Aux)
"S" = Side Mount Version

Product Data Sheet

EXPECTED LIFE		
Electrical Life (Make Only) 140A @ 20VDC	75,000 Cycles	
Electrical Life (Break Only) 250A @ 450VDC	1,000 Cycles	
Electrical Life (Break Only) 2000A @ 500VDC	1 Cycle	
Mechanical Life	200,000 Cycles	

8,000A (5ms) (No fire or explosion)

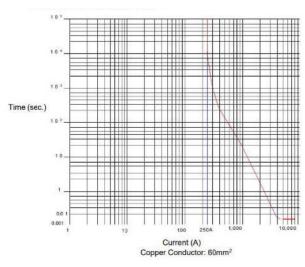
Max.125mV (250A)

2000A @ 500 VDC, 1 Cycle

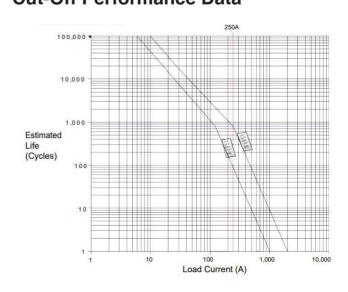
EXPECTED LIFE		
Electrical Life (Make Only) 140A @ 20VDC	75,000 Cycles	
Electrical Life (Break Only) 250A @ 450VDC	1,000 Cycles	
Electrical Life (Break Only) 2000A @ 500VDC	1 Cycle	
Mechanical Life	200,000 Cycles	

OPERATE / RELEASE TIME **Operate Time** 30ms, Max. @20°C (includes bounce) Release Time 10ms, Max @20°C

ENVIRONMENTAL DATA			
Shock	Functional	196m/s² Sine half-wave pulse	
	Destructive	490m/s² Sine half-wave pulse	
Operating	Temperature	-40 to +85 °C	
Humidity		5% to 85%RH	
Weight		0.88Lb (0.4kg)	


COIL DATA			
Nominal Voltage	12VDC	24VDC	
Max. Pick-up Voltage (20°C)	9VDC	18VDC	
Min. Drop-out Voltage (20°C)	0.5VDC	1VDC	
Max. Inrush Current (20°C)	6W	6W	
Average Holding Current (20°C)	24 Ω	96 Ω	

Current Carry vs. Time Performance

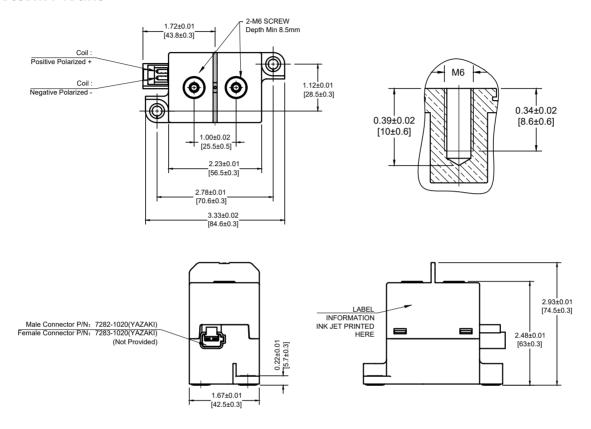

Short Circuit Current

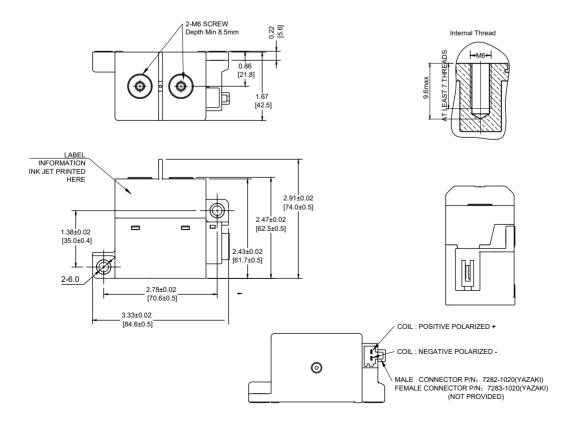
Contact Voltage Drop

(initial) **Breaking Limit**

Cut-Off Performance Data

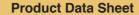
Rev E - 22-Mar-2023 Page |2




Product Data Sheet

Outline Dimensions: inches (mm)

Bottom Mount



Side Mount

Page |3 Rev E - 22-Mar-2023

Application Notes

- To prevent loosening, split washers should be used whenever the contactor is installed. All terminals or conductors
 must be in direct contact with the contactor's main terminals. Please control the tightening torque of each part within
 the specified range in the table below. If the torque exceeds the recommended range, it may cause damage to the
 sealed cavity and thread damage.
 - Static contact torque: 53.1 lb. in 70.8 lb. in (6.0-8.0 N.m)
 - Installation torque: 26.5 lb. in 35.4 lb. in (3.0-4.0 N.m)
- 2. Products with polarity marked on the load end must be used correctly according to the product label. When the load connection polarity is reversed, the electrical characteristics in this data sheet cannot be guaranteed.
- 3. It is necessary to design a surge absorbing circuit to absorb the reverse electromotive force of contactor coil. Use of diodes should be avoided. Diodes connected in parallel with coils will greatly prolong the release time of contactors, which may reduce the service life of products. Products with polarity marked on the load end must be used correctly according to the product marking. When the load connection polarity is reversed, the electrical characteristics promised in this manual cannot be guaranteed.
- 4. Avoid installing the contactor in a strong magnetic field environment (near transformers or magnets) and avoid placing the contactor near objects with heat radiation.
- 5. When continuous current is applied to the contacts of the relay, and the coil is turned on immediately after the power is cut off. At this time, as the temperature of the coil increases, the resistance of the coil will also increase, which will increase the pull-in voltage of the product, which may result in exceeding the rated pull-in voltage. In this case, the following measures should be taken to reduce the load current; limit the continuous power-on time or use a coil voltage higher than the rated pull-in voltage.
- 6. When the voltage applied to both ends of the coil exceeds the maximum allowable applied voltage, the coil temperature may rise and lead to coil damage and inter-layer short circuit.
- 7. The rating in the contact parameters is the value at the time of the resistive load. When using an inductive load with L/R > 1ms, connect a surge current protection device in parallel with the inductive load. If no measures are taken, the electrical life may be degraded and the continuity may be poor. Please consider sufficient margin space in the design.
- 8. Coil drive power must be greater than coil power or it will reduce performance capability.
- 9. Please do not allow debris and oil to adhere to the main terminals; Make sure that the main terminals are in reliable contact with the load conductor, otherwise the temperature rise of the terminal / conductor connection may be too high due to the excessive contact resistance.
- 10. The load conductor must have the corresponding current load capacity and heat dissipation capacity (it is recommended to use wire with min 4mm₂), to prevent overheating and affecting the life of the contactor.
- 11. Do not use if dropped.
- 12. It is impossible to determine all the performance parameters of contactors in each specific application, therefore, customers should choose the products matching them according to their own conditions of use. If in doubt, contact Altran. The customer will be responsible for validating that the products meet their application.
- 13. Altran reserves the right to make changes as needed. Customers should reconfirm the contents of the specification or ask for us to supply a new specification if necessary.

Page |4 Rev E - 22-Mar-2023