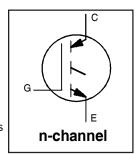
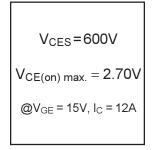
# International IOR Rectifier

# IRG4BC30WPbF


#### INSULATED GATE BIPOLAR TRANSISTOR


#### **Features**

- Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications
- Industry-benchmark switching losses improve efficiency of all power supply topologies
- 50% reduction of Eoff parameter
- Low IGBT conduction losses
- · Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability
- Lead-Free



- · Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode)
- · Of particular benefit to single-ended converters and boost PFC topologies 150W and higher
- · Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz)







#### **Absolute Maximum Ratings**

|                                         | Parameter                              | Max.                              | Units |
|-----------------------------------------|----------------------------------------|-----------------------------------|-------|
| V <sub>CES</sub>                        | Collector-to-Emitter Breakdown Voltage | 600                               | V     |
| I <sub>C</sub> @ T <sub>C</sub> = 25°C  | Continuous Collector Current           | 23                                |       |
| I <sub>C</sub> @ T <sub>C</sub> = 100°C | Continuous Collector Current           | 12                                | Α     |
| I <sub>CM</sub>                         | Pulsed Collector Current ①             | 92                                |       |
| I <sub>LM</sub>                         | Clamped Inductive Load Current ②       | 92                                |       |
| V <sub>GE</sub>                         | Gate-to-Emitter Voltage                | ± 20                              | V     |
| E <sub>ARV</sub>                        | Reverse Voltage Avalanche Energy ③     | 180                               | mJ    |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C  | Maximum Power Dissipation              | 100                               | w     |
| P <sub>D</sub> @ T <sub>C</sub> = 100°C | Maximum Power Dissipation              | 42                                | • • • |
| T <sub>J</sub>                          | Operating Junction and                 | -55 to + 150                      |       |
| T <sub>STG</sub>                        | Storage Temperature Range              |                                   | ∞     |
|                                         | Soldering Temperature, for 10 seconds  | 300 (0.063 in. (1.6mm from case ) |       |
|                                         | Mounting torque, 6-32 or M3 screw.     | 10 lbf•in (1.1N•m)                |       |

#### Thermal Resistance

|                 | Parameter                                 | Тур.                                  | Max. | Units |  |
|-----------------|-------------------------------------------|---------------------------------------|------|-------|--|
| $R_{\theta JC}$ | Junction-to-Case                          |                                       | 1.2  |       |  |
| $R_{\theta CS}$ | Case-to-Sink, Flat, Greased Surface       | e-to-Sink, Flat, Greased Surface 0.50 |      |       |  |
| $R_{\theta JA}$ | Junction-to-Ambient, typical socket mount |                                       | 80   |       |  |
| VVt             | Weight                                    | 1.44                                  |      | g     |  |

International ICR Rectifier

### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                  |                                          | 1    |          |      |       |                                                |                        |
|----------------------------------|------------------------------------------|------|----------|------|-------|------------------------------------------------|------------------------|
|                                  | Parameter                                | Min. | Тур.     | Max. | Units | Conditions                                     |                        |
| $V_{(BR)CES}$                    | Collector-to-Emitter Breakdown Voltage   | 600  | —        | _    | V     | $V_{GE}$ = 0V, $I_{C}$ = 250 $\mu$ A           |                        |
| V <sub>(BR)ECS</sub>             | Emitter-to-Collector Breakdown Voltage ④ | 18   | <b>—</b> | _    | V     | $V_{GE}$ = 0V, $I_{C}$ = 1.0A                  |                        |
| $\Delta V_{(BR)CES}/\Delta T_J$  | Temperature Coeff. of Breakdown Voltage  | _    | 0.34     | _    | V/°C  | $V_{GE}$ = 0V, $I_{C}$ = 1.0mA                 |                        |
|                                  |                                          | _    | 2.1      | 2.7  |       | I <sub>C</sub> = 12A                           | V <sub>GE</sub> = 15V  |
| V <sub>CE(ON)</sub>              | Collector-to-Emitter Saturation Voltage  | _    | 2.45     | _    | V     | I <sub>C</sub> = 23A                           | See Fig.2, 5           |
|                                  |                                          | _    | 1.95     |      |       | I <sub>C</sub> = 12A , T <sub>J</sub> = 150°C  |                        |
| $V_{\text{GE(th)}}$              | Gate Threshold Voltage                   | 3.0  | —        | 6.0  |       | $V_{CE}$ = $V_{GE}$ , $I_C$ = 250 $\mu$ A      |                        |
| $\Delta V_{GE(th)}/\Delta T_{J}$ | Temperature Coeff. of Threshold Voltage  | _    | -11      | _    | mV/°C | $V_{CE} = V_{GE}, I_{C} = 250 \mu A$           |                        |
| <b>9</b> fe                      | Forward Transconductance ⑤               | 11   | 16       | _    | S     | $V_{CE} = 100 \text{ V}, I_{C} = 12 \text{A}$  |                        |
| las                              | Zero Gate Voltage Collector Current      | _    | _        | 250  | μA    | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 600V   |                        |
| 'CES                             | Zero date voltage delicator darrent      | _    | _        | 2.0  | μ,,   | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 10V, T | j = 25°C               |
|                                  |                                          | _    | <b>—</b> | 1000 |       | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 600V,  | Г <sub>Ј</sub> = 150°С |
| I <sub>GES</sub>                 | Gate-to-Emitter Leakage Current          | _    | _        | ±100 | nΑ    | V <sub>GE</sub> = ±20V                         |                        |

### Switching Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                     | Parameter                         | Min. | Тур. | Max.     | Units | Conditions                          |
|---------------------|-----------------------------------|------|------|----------|-------|-------------------------------------|
| Qg                  | Total Gate Charge (turn-on)       |      | 51   | 76       |       | I <sub>C</sub> = 12A                |
| Q <sub>ge</sub>     | Gate - Emitter Charge (turn-on)   |      | 7.6  | 11       | nC    | V <sub>CC</sub> = 400V See Fig.8    |
| Q <sub>gc</sub>     | Gate - Collector Charge (turn-on) |      | 18   | 27       |       | V <sub>GE</sub> = 15V               |
| t <sub>d(on)</sub>  | Turn-On Delay Time                |      | 25   | <b>—</b> |       |                                     |
| t <sub>r</sub>      | Rise Time                         |      | 16   | _        | ns    | $T_J = 25^{\circ}C$                 |
| t <sub>d(off)</sub> | Turn-Off Delay Time               |      | 99   | 150      | 115   | $I_C = 12A$ , $V_{CC} = 480V$       |
| t <sub>f</sub>      | Fall Time                         |      | 67   | 100      |       | $V_{GE}$ = 15V, $R_G$ = 23 $\Omega$ |
| Eon                 | Turn-On Switching Loss            |      | 0.13 | _        |       | Energy losses include "tail"        |
| E <sub>off</sub>    | Turn-Off Switching Loss           | T -  | 0.13 | <b>—</b> | mJ    | See Fig. 9, 10, 13, 14              |
| E <sub>ts</sub>     | Total Switching Loss              |      | 0.26 | 0.35     |       |                                     |
| t <sub>d(on)</sub>  | Turn-On Delay Time                |      | 24   | <b>—</b> |       | T <sub>J</sub> = 150°C,             |
| tr                  | Rise Time                         |      | 17   | <b>—</b> | ns    | $I_C = 12A$ , $V_{CC} = 480V$       |
| t <sub>d(off)</sub> | Turn-Off Delay Time               |      | 150  | <b>—</b> | 115   | $V_{GE}$ = 15V, $R_G$ = 23 $\Omega$ |
| t <sub>f</sub>      | Fall Time                         |      | 150  | _        |       | Energy losses include "tail"        |
| Ets                 | Total Switching Loss              |      | 0.55 | _        | mJ    | See Fig. 11,13, 14                  |
| LE                  | Internal Emitter Inductance       |      | 7.5  | _        | nΗ    | Measured 5mm from package           |
| C <sub>ies</sub>    | Input Capacitance                 |      | 980  | <u> </u> |       | V <sub>GE</sub> = 0V                |
| Coes                | Output Capacitance                |      | 71   | <b>—</b> | pF    | V <sub>CC</sub> = 30V See Fig. 7    |
| C <sub>res</sub>    | Reverse Transfer Capacitance      |      | 18   | l —      |       | f = 1.0MHz                          |

#### Notes:

- 1 Repetitive rating;  $V_{GE}$  = 20V, pulse width limited by max. junction temperature. ( See fig. 13b )
- $@~V_{CC}$  = 80%(V\_{CES}), V\_{GE} = 20V, L = 10µH, R  $_{G}$  = 23 $\!\Omega_{\rm t}$  (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- ④ Pulse width  $\leq 80\mu s$ ; duty factor  $\leq 0.1\%$ .
- ⑤ Pulse width 5.0µs, single shot.

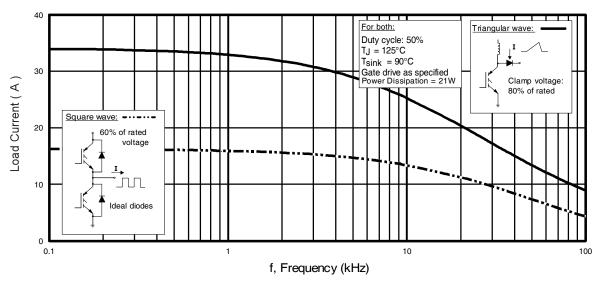



Fig. 1 - Typical Load Current vs. Frequency (For square wave,  $|=|_{RMS}$  of fundamental; for triangular wave,  $|=|_{PK}$ )

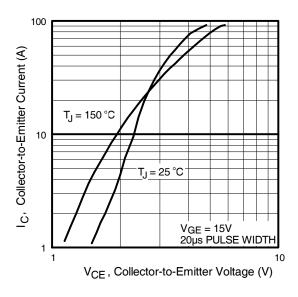



Fig. 2 - Typical Output Characteristics

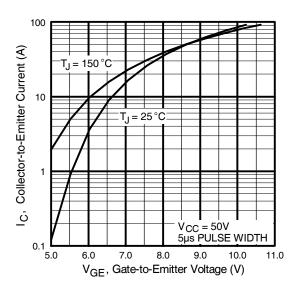
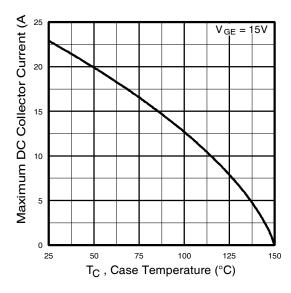



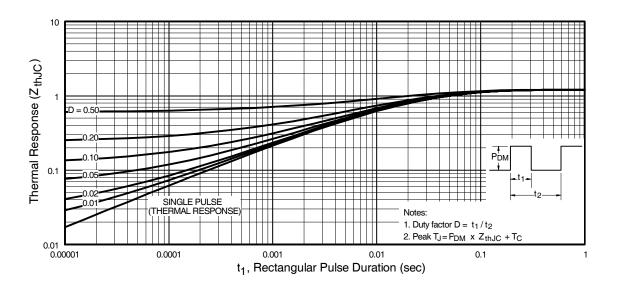
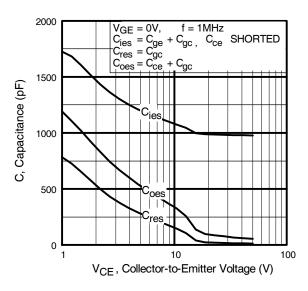

Fig. 3 - Typical Transfer Characteristics

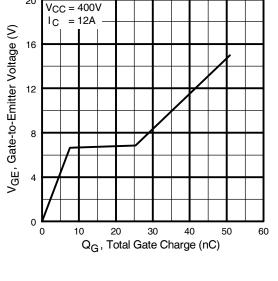


3.0 VGE = 15V 80 us PULSE WIDTH IC = 24 A IC = 12 A IC = 6 A IC =

**Fig. 4 -** Maximum Collector Current vs. Case Temperature

**Fig. 5** - Collector-to-Emitter Voltage vs. Junction Temperature



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

# International TOR Rectifier

## IRG4BC30WPbF



**Fig. 7 -** Typical Capacitance vs. Collector-to-Emitter Voltage



**Fig. 8** - Typical Gate Charge vs. Gate-to-Emitter Voltage

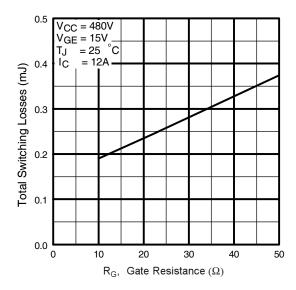
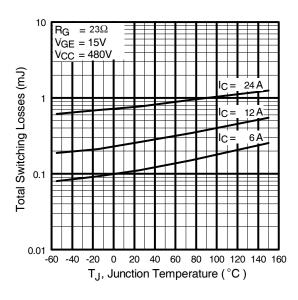
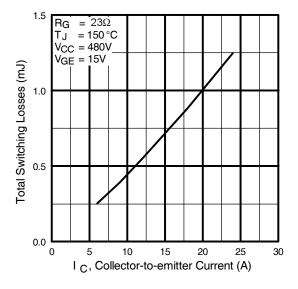





Fig. 9 - Typical Switching Losses vs. Gate Resistance



**Fig. 10** - Typical Switching Losses vs. Junction Temperature

International **TOR** Rectifier



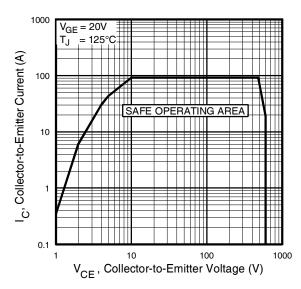
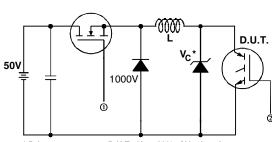
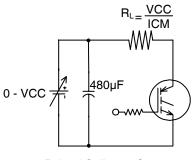




Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

# International TOR Rectifier


# IRG4BC30WPbF



\* Driver same type as D.U.T.; Vc = 80% of Vce(max)

\* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

Fig. 13a - Clamped Inductive Load Test Circuit



Pulsed Collector Current Test Circuit

Fig. 13b - Pulsed Collector Current Test Circuit

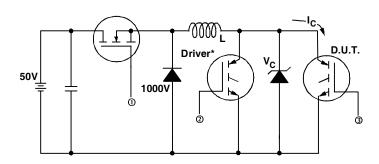
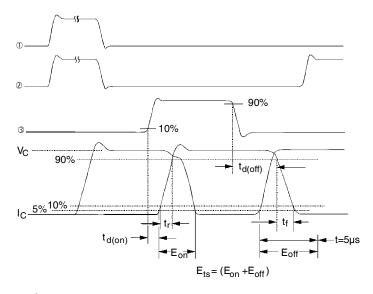
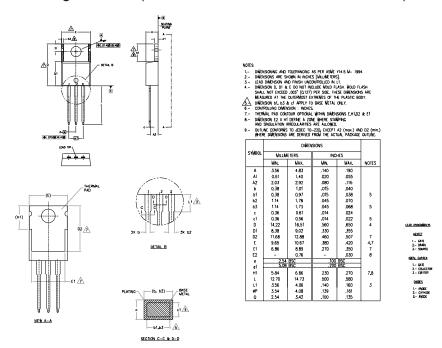
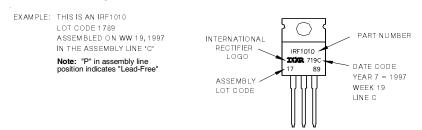




Fig. 14a - Switching Loss Test Circuit


\* Driver same type as D.U.T., VC = 480V




**Fig. 14b** - Switching Loss Waveforms



### TO-220AB Package Outline (Dimensions are shown in millimeters (inches))



#### TO-220AB Part Marking Information



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice.



**IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 02/2010