

AHV12V2KVR5MAP

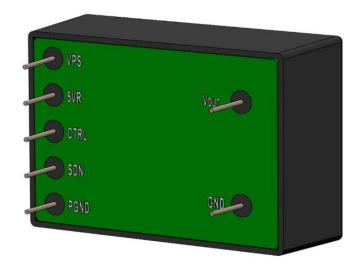


Figure 1. Physical Photo of AHV12V2KVR5MAP

FEATURES

Low Power Consumption

High Efficiency

High Stability

Small Output Ripple, Time Drift, and Temperature Drift

Overload and Short Circuit Protection

Continuous Linear Adjustment for Output Voltage

Metal Enclosure for Zero EMIS

Easy Control and Installation

APPLICATIONS

This power module, AHV12V2KVR5MAP, is designed for achieving DC-DC conversion from low voltage to high voltage.

DESCRIPTION

AHV12V2KVR5MAP is a combination of switching step-up technology and linear regulation, which converts the low input voltage into a stable high output voltage. It comes with

output short-circuit protection and a wide range of output voltage adjustments. This high voltage power supply also features ultra-small size, light weight, moisture proof, shockproof, metal enclosure, and zero EMIs. This is a high stability high voltage power supply, ideal for photomultiplier tube, optical measurement, light control technology, nuclear physics, medical equipment, precision instruments, etc.

SHUTDOWN MODE OPERATION

A logic low <0.8V or a 0V on the SDN pin will turn the device off. When SDN is in logic high >1.2V or left unconnected, the product is working well.

SAFETY PRECAUTIONS

The internal protection circuit is provided in the high voltage power supply, but the high voltage short circuit shall be avoided.

Make sure the circuit is insulated perfectly, especially between the high voltage output and the surroundings so as to avoid electronic shock.

SPECIFICATIONS

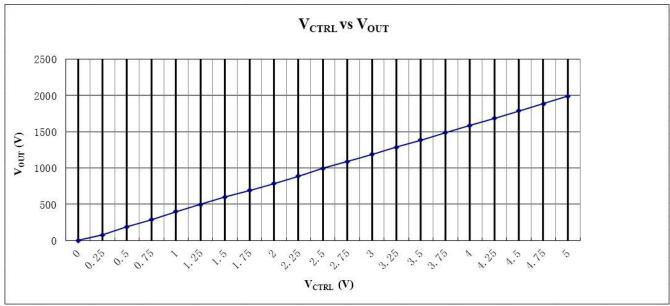
Table 1. Characteristics. $T_A = 25$ °C, unless otherwise noted

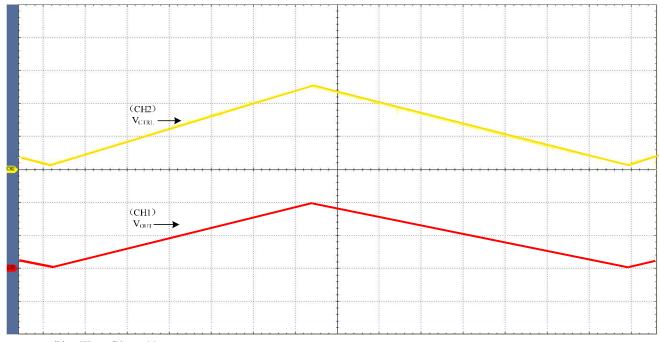
Par	ameter	Symbol	Condition	Min.	Тур.	Max.	Unit/Note
Input	Voltage	$V_{ m VPS}$		11	12 13		V
Quiescent	Quiescent Input Current		$I_{OUT} = 0mA$	50	60	70	mA
Full Load	Input Current	I_{INFLD}	$I_{OUT} = 0.5 \text{mA}$	300	350 400		mA
Input Voltage	Regulation Ratio	$\Delta V_{OUT}/\Delta~V_{VPS}$	$V_{VPS} = 11V \text{ to } 13V$		0.2		%
Outpo	ut Voltage	$V_{ m OUT}$	$I_{OUT} = 0$ to 0.5 mA	0	2000		V
Maximum (Output Current	I _{OUTMAX}	$V_{VPS} = 11V$ to $13V$		0.5		mA
Stability of R	eference Voltage	$V_{ m REF}$	−20 ~ 50°C	4.98	5	5.02	V
Load					4		ΜΩ
Regulation Mode				0 ~ 5V or 10k			
				po	potentiometer		
Control Input v	s. Output Linearity	$\Delta V_{REF}/\Delta V_{OUT}$			<0.2		%
Load Reg	gulation Rate		0 to 0.5mA		≤0.05		%
Instantaneous Short Circuit Current		I_{SC}			< 500		mA
Shutdown Supply Current		I_{SHDN}				18	mA
Shutdown Logic Input Current		I_{LOGIC}				3	uA
Shutdown Logic Low		$V_{ m INL}$				0.8	V
Shutdown Logic High		$V_{ m INH}$		1.2			V
Full Load Efficiency		η			≥70		%
Temperatu	Temperature Coefficient		−20 ~ 50°C		< 0.01		%/°C
Time Drift	Short Time Drift				< 0.5		%/ min
	Long Time Drift				<1		%/h
Output Voltage Temperature Stability			−20 ~ 50°C		<±1		%
Operating Temperature Range		T_{opr}		-20		55	°C
Storage Temperature Range		T_{stg}		-40		85	°C
External Dimensions				55×35×20		mm	
Weight					210		g
					0.46		lbs
					7.4		Oz

TESTING DATA

I. DC Testing

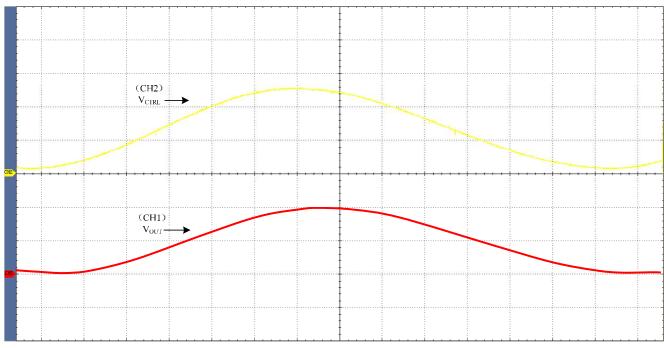
High voltage power supply testing data (Test condition: the load is $4\,\mathrm{M}\Omega$)




Figure 2. V_{CTRL} vs. V_{OUT}

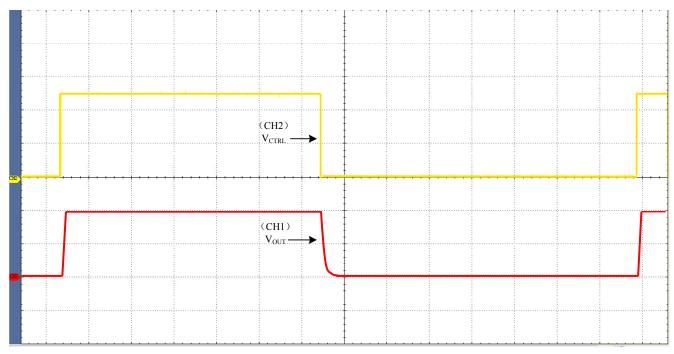
II. AC Testing

Waveform curve and rise & fall time are tested by using the control voltage supplied by signal generator. Under the testing condition of modulation frequency 0.1Hz, control voltage $0.25 \sim 5V$, and $4M\Omega$ load, the output voltage is $40 \sim 1000V$.

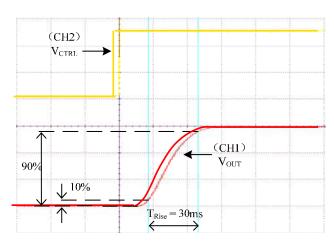

Note: as shown in the figures below, the output voltage is represented by yellow line and the control voltage by red line.

AHV12V2KVR5MAP

CH1: 500V/Div CH2: 2V/Div M: 500ms V_{CERL} : 0.25V ~ 5V V_{OUT} : 40V ~ 1000V

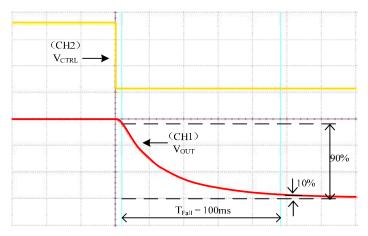

Figure 3. Triangle Wave

CH1: 500V/Div CH2: 2V/Div M: 500m $V_{CIRL}\text{: }0.25V \sim 5V \quad V_{OUT}\text{: }40V \sim 1000V$


Figure 4. Sine Wave

AHV12V2KVR5MAP

CH1: 500V/Div CH2: 2V/Div M: 500ms V_{CTRL} : 0.25V ~ 5V V_{OUT} : 40V ~ 1000V


Figure 5. Square Wave

 $V_{CTRL}\text{: }0.25V\sim5V \qquad V_{OUT}\text{: }40V\sim1000V$

Figure 6. Rise Time

As shown in Figure 6, when a square wave of $0.25V\sim5V$, F=0.10Hz is applied to Control, measure the waveform. The rise time is about 30ms.

 $V_{CTRL}\text{: }0.25V\sim5V \qquad V_{OUT}\text{: }40V\sim1000V$

Figure 7. Fall Time

As shown in Figure 7, when a square wave of $0.25V \sim 5V$, F=0.10Hz is applied to Control, measure the waveform. The fall time is about 100ms.

THE CONNECTION DIAGRAM OF MODULE'S PERIPHERAL CIRCUIT

The leads colors in the figures below are identical with those in the physical AHV12V2KVR5MAP.

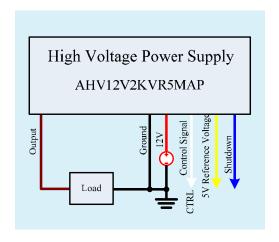


Figure 8. Control by External Signal Source

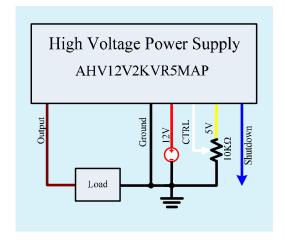


Figure 9. Constant Output Voltage

NAMING PRINCIPLE

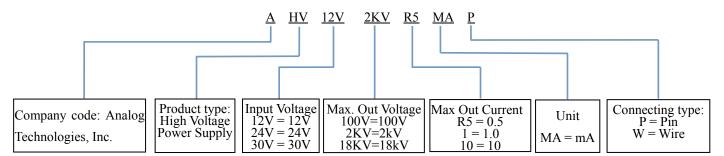


Figure 10. Naming Principle of AHV12V2KVR5MAP

BLOCK DIAGRAM

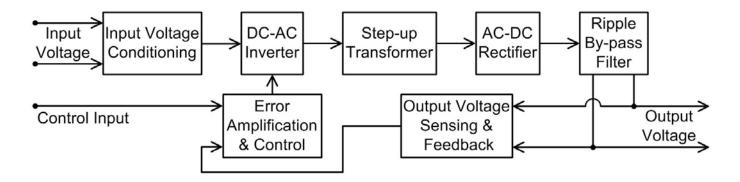


Figure 11. Block Diagram

DIMENSIONS

I. Pin layout

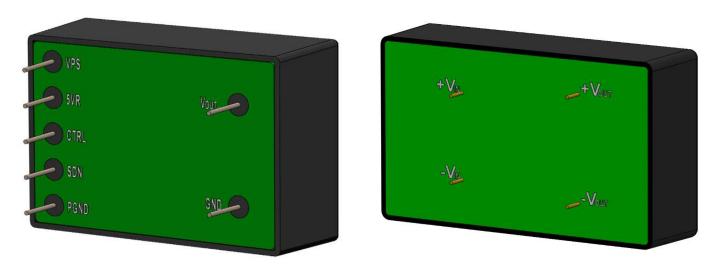


Figure 12. Pin Layout for AHV12V2KVR5MAP

II. Dimension of AHV12V2KVR5MAP.

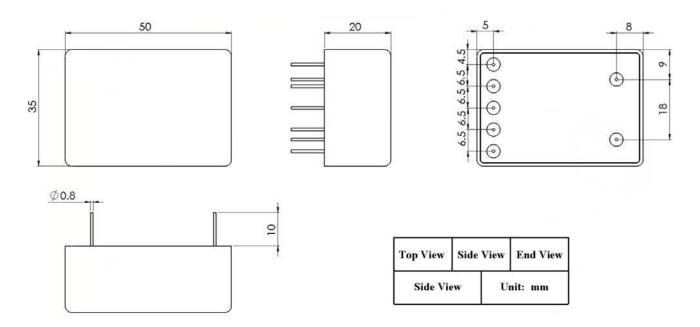


Figure 13. Dimensions for AHV12V2KVR5MAP

PRICES

Quantity	1~9pcs	10~49pcs	50~99pcs	≥100pcs
AHV12V2KVR5MAP	\$109	\$99	\$89	\$79

High Voltage Power Supply

AHV12V2KVR5MAP

NOTICE

- 1. ATI warrants performance of its products for one year to the specifications applicable at the time of sale, except for those being damaged by excessive abuse. Products found not meeting the specifications within one year from the date of sale can be exchanged free of charge.
- 2. ATI reserves the right to make changes to its products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete.
- 3. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Testing and other quality control techniques are utilized to the extent ATI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
- 4. Customers are responsible for their applications using ATI components. In order to minimize risks associated with the customers' applications, adequate design and operating safeguards must be provided by the customers to minimize inherent or procedural hazards. ATI assumes no liability for applications assistance or customer product design.
- 5. ATI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of ATI covering or relating to any combination, machine, or process in which such products or services might be or are used. ATI's publication of information regarding any third party's products or services does not constitute ATI's approval, warranty or endorsement thereof.
- 6. IP (Intellectual Property) Ownership: ATI retains the ownership of full rights for special technologies and/or techniques embedded in its products, the designs for mechanics, optics, plus all modifications, improvements, and inventions made by ATI for its products and/or projects.