

ICs for Communications

Multichannel Network Interface Controller for HDLC
MUNICH32

PEB 20320 Version 3.4

User’s Manual 01.2000
DS3

•

For questions on technology, delivery and prices please contact the Infineon Technologies Offices
in Germany or the Infineon Technologies Companies and Representatives worldwide:
see our webpage at http://www.infineon.com

•

PEB 20320

Revision History: Current Version: 01.2000

Previous Version: User’s Manual 1998-06-01 DS2 (V3.4)

Page
(in previous
Version)

Page
(in current
Version)

Subjects (major changes since last revision)

Package P-TQFP-176-1 removed from User’s Manual.

Edition 01.2000
Published by Infineon Technologies AG,
SC,
Balanstraße 73,
81541 München
© Infineon Technologies AG 2000.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for
applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies AG is an approved CECC manufacturer.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales
office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice
you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with
the express written approval of the Infineon Technologies AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be

expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that
device or system.

2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or
maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be en-
dangered.

ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56,
FALC®-E1, FALC®-LH, IDEC®, IOM®, IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE,
ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®-2, SICOFI®-4, SICOFI®-4µC,
SLICOFI® are registered trademarks of Infineon Technologies AG.

ACE™, ASM™, ASP™, POTSWIRE™, QuadFALC™, SCOUT™ are trademarks of Infineon Technologies AG.

PEB 20320

User’s Manual 3 01.2000

Preface
The Multichannel Network Interface Controller for HDLC (MUNICH32) is a Multichannel
Protocol Controller for a wide area of telecommunication and data communication
applications.

Organization of this Document

This User’s Manual is divided into 9 chapters. It is organized as follows:

• Chapter 1, Introduction
Gives a general description of the product and its family, lists the key features, and
presents some typical applications.

• Chapter 2, Functional Description
This chapter provides a detailed description of the interfaces and the protocol modes.

• Chapter 3, Operational Description
Provides a description of MUNICH32 reset procedure and initialization.

• Chapter 4, Detailed Register Description
Gives a detailed description of the shared memory organization.

• Chapter 5, Application Notes

• Chapter 6, Application Hints

• Chapter 7, Electrical Characteristics
Gives a detailed description of all electrical DC and AC characteristics and provides
timing diagrams and values for all interfaces.

• Chapter 8, Package Outlines

• Chapter 9, Appendix
This chapter provides source code examples.

Your Comments

We welcome your comments on this document as we are continuously aiming at
improving our documentation. Please send your remarks and suggestions by e-mail to

sc.docu_comments@infineon.com

Please provide in the subject of your e-mail:
device name (MUNICH32), device number (PEB 20320), device version (Version 3.4),

and in the body of your e-mail:
document type (User’s Manual), issue date (01.2000) and document revision number
(DS3).

PEB 20320

User’s Manual 4 01.2000

PEB 20320

Table of Contents Page

User’s Manual 5 01.2000

1 Introduction .7
1.1 Features .8
1.2 Pin Configuration .11
1.3 Pin Definitions and Functions .12
1.4 Logic Symbol .22
1.5 Functional Block Diagram .23
1.6 System Integration .25

2 Functional Description .32
2.1 Serial Interface .32
2.2 Microprocessor Interface .38
2.2.1 Intel Mode .39
2.2.2 Motorola Mode .43
2.2.3 DMA Priorities .46
2.3 Basic Functional Principles .47
2.4 Detailed Protocol Description .76
2.5 Boundary Scan Unit .126

3 Operational Description .131
3.1 Reset State .131
3.2 Initialization Procedure .132

4 Detailed Register Description .134
4.1 Organization of the Shared Memory .134
4.2 Control and Configuration Section .136
4.2.1 Action Specification (Read Once After Each Action Request Pulse) . . .136
4.2.2 Interrupt Queue Specification .140
4.2.3 Interrupt Information .141
4.2.4 Time Slot Assignment .148
4.2.5 Channel Specification .149
4.2.6 Current Receive and Transmit Descriptor Address 161
4.3 Transmit Descriptor .162
4.4 Receive Descriptor .168

5 Application Notes .173
5.1 Test Loops .173
5.1.1 Test Loop Definitions for the MUNICH32 .173
5.1.1.1 Internal Complete Test Loop .173
5.1.1.2 Internal Channelwise Test Loop .174
5.1.1.3 External Complete Test Loop .174
5.1.1.4 External Channelwise Test Loop .175
5.1.2 Test Loop Activation .176
5.1.3 Test Loop Deactivation and Switching .176
5.1.3.1 Software Operations .177

PEB 20320

Table of Contents Page

User’s Manual 6 01.2000

5.1.3.2 Hardware Reset Operations .177
5.1.4 Test Loop Examples .178
5.1.4.1 Internal Channelwise Test Loop .178
5.1.4.2 External Channelwise Test Loop .180
5.2 MUNICH32 in a LAN/WAN Router .182
5.2.1 Introduction .182
5.2.2 Hardware .183
5.2.3 Software .188
5.2.3.1 Device Driver Module MUNICH32 .191
5.2.3.2 Application Module MROUTE .194
5.2.4 Performance Considerations .197
5.2.5 Final Remarks .201
5.2.6 Adaption of the 68040 µP Signals .203
5.2.7 Schematics .205
5.3 Memory Bus Occupancy for a Single MUNICH32214
5.3.1 Bus Occupancy Calculations .217
5.3.2 Bus Occupancy for Idle Tx Channels .218

6 Application Hints .220
6.1 Frequency Adaption in an Intel 368 Common Bus System220
6.2 MUNICH32 Memory Space Requirement .223
6.3 Serial Interface to different PCM Systems .224
6.3.1 MUNICH32 for SIEMENS Primary Access Interface224
6.3.2 MUNICH32 in Systems with MITEL ST BUS .227

7 Electrical Characteristics .229
7.1 Absolute Maximum Ratings .229
7.2 DC Characteristics .230
7.3 Capacitances .231
7.4 AC Characteristics .231
7.5 Microprocessor Interface Intel Bus Mode .232
7.6 Microprocessor Interface Motorola Bus Mode .235

8 Package Outlines .242

9 Appendix .243
9.1 Source Code Extract MUNICH32 .243
9.2 Source Code .245

PEB 20320

Introduction

User’s Manual 7 01.2000

1 Introduction

The Multichannel Network Interface Controller for HDLC (MUNICH32) is a Multichannel
Protocol Controller, which handles up to 32 data channels of a full duplex PCM highway.
It performs layer 2 HDLC formatting/deformatting or V.110 and X.30 protocols up to
a network data rate of 38.4 Kbit/s as well as transparent transmission for the
DMI mode 0, 1 and 2. The processed data is passed on to an external memory shared
with one or more host processors.

MUNICH32 is compatible with the LAPD ISDN (Integrated Services Digital Network)
protocol specified by CCITT as well as with HDLC, SDLC, LAPB DMI protocols. It
provides any rate adaption for time slot transmission data rate from 64 Kbit/s down to
8 Kbit/s and the concatenation of any time slots to data channels, supporting the ISDN
H0, H11, H12 superchannels.

Due to these functions the MUNICH32 can be used in a wide area of telecommunication
and data communication applications, e.g. in central office switches, for the connection
of a digital PABX to a host computer, as a central D-channel controller to 32 ISDN basic
access D-channels or as a multiplexer for terminals and other peripherals. Up to
4 MUNICH32s can be connected to one PCM highway, so a D-channel controller with
128 channels can be achieved.

P-MQFP-160-1

User’s Manual 8 01.2000

Multichannel Network Interface Controller for HDLC
MUNICH32

 PEB 20320

Version 3.4 CMOS

Type Package

PEB 20320 P-MQFP-160-1

1.1 Features

• Serial Interface
– Up to 32 independent communication channels.
– Serial multiplexed (full duplex) input/output for

2048-, 4096-, 1544- or 1536-Kbit/s PCM
highways.

• Dynamic Programmable Channel Allocation
– Compatible with T1/DS1 24-channel and CEPT

32-channel PCM byte format.

– Concatenation of any, not necessarily consecutive, time slots to superchannels
independently for receive and transmit direction.

– Support of H0, H11, H12 ISDN-channels.
– Subchanneling on each time slot possible.

• Bit Processor Functions (adjustable for each channel)
– HDLC Protocol

– Automatic flag detection and transmission
– Shared opening and closing flag
– Detection of interframe-time-fill change, generation of

interframe-time-fill ‘1’s or flags
– Zero bit insertion
– Flag stuffing and flag adjustment for rate adaption
– CRC generation and checking (16 or 32 bits)
– Transparent CRC option per channel and/or per message
– Error detection (abort, long frame, CRC error, 2 categories

of short frames, non-octet frame content)
– Special short frame mode to allow reception of ‘frames’ with a least on byte

length
– ABORT/IDLE generation

PEB 20320

Introduction

User’s Manual 9 01.2000

– V.110/X.30 Protocol
– Automatic synchronization in receive direction, automatic generation of

the synchronization pattern in transmit direction
– E / S / X bits freely programmable in transmit direction, van be changed

during transmission; changes monitored and reported in receive direction
– Generation/detection of loss of synchronism
– Bit framing with network data rates from 600 bit/s up to 38.4 Kbit/s

– Transparent Mode A
– Slot synchronous transparent transmission/reception without frame structure
– Bit-overwrite with fill/mask bits
– Flag generation, flag stuffing, flag extraction, flag generation

in the abort case with programmable flag
– Transparent Mode B

– Transparent transmission/reception in frames delimited by 00H flags
– Shared opening and closing flag
– Flag stuffing, flag detection, flag generation in the abort case
– Error detection (non octet frame content, short frame, long frame)

– Transparent Mode R
– Transparent transmission/reception with GSM 08.60 frame structure
– Automatic 0000H flag generation/detection
– Support of 40, 391/2, 401/2 octet frames
– Error detection (non octet frame content, short frame, long frame)

– Protocol Independent
– Channel inversion (data, flags, IDLE code)
– Format conventions as in CCITT Q.921 § 2.8
– Data over- and underflow detected

• Processor Interface
– ON-CHIP 64-channel DMA controller with buffer chaining capability.
– Compatible with Motorola 68020 processor family and

Intel 32-bit processor (80386).
– 32 bit data bus and 32 bit address bus (4 Gbyte RAM addressable, Motorola and

Intel non-parity) or 28 bit address bus (256 Mbyte RAM addressable, Intel parity)
– Intel parity mode with data byte parity (4 parity bits)

– Parity check for read accesses
– Parity generation for write accesses

– Interrupt-circular buffer with variable size
– Maskable interrupts for each channel
– µP interface buffer of depth 16 long words for adaptive bus occupation

PEB 20320

Introduction

User’s Manual 10 01.2000

• General
– Connection of up to four MUNICH32 supporting a

128-channel basic access D-channel controller.
– ON-CHIP receive and transmit data buffer; the buffer size is 256 bytes each.
– HDLC protocol or transparent mode, support of ECMA 102, CCITT I4.63 RA2,

V.110, X.30, DMI mode 0, 1, 2 (bit rate adaption), GSM 08.60 TRAU frames.
– LOOP mode, complete loop as well as single channel loop
– JTAG boundary scan test
– Advanced low-power CMOS technology
– TTL-compatible inputs/outputs
– 160 pin P-MQFP package

PEB 20320

Introduction

User’s Manual 11 01.2000

1.2 Pin Configuration
(top view)

Figure 1

ITP03487

Marking

A19

A9

D8

D18
A18

D17

A12

A11

D10
A10

D9

A8

IN
T/

IN
T

D3
1

A2
8/

DP
0

D2
8

D2
7

A2
7

V
SS

RSP
RDATA
CI0

I/M

READY/DSACK

HLDA/BG

BG
AC

K/
PM

HO
LD

/B
R

DS
/P

CH
K

W
,R

/R
;W

D3
0

A3
0/

DP
2

A2
6

D2
6

D2
5

D2
1

A2
1

D2
0

A2
0

Index

D19

D16

D15

A2
2

V
SS D2

9

D3D4SS
VD7 D0D1BE

0
D2A3A4D5A5D6 BE

1

A7

A17

A15

A14
D14

A13
D13

D11

BE
2

B16

BERR

AR

TSP
TCLK
N.C.

HLDAO/BGO

TEST

SCLK
RESET

JTEST3
JTEST2

JTEST0
JTEST1

N.C.

RCLK

CI1

CI3
CI4
N.C.

MUNICH32
PEB 20320

V
SS

V
DD D2

2 SS
V

SS
V V

DD
D2

3
A2

3
D2

4
A2

4
V

SS
V

DD A2
5

V
SS

V
DD

V
SS

V
DD

A2
9/

DP
1

V
SS

V
DD

A3
1/

DP
3

A16

D12

VDD

VSS

V
DD A6 V
DD

V
SS

V
SS

V
DD

V V
SS SS A2 V
DD

V
SS V D

D
V

SS BE
3

V
DD

V
SS

V
SS AD

S/
AS

V
DD

V
SS

N.C.
N.C.

CI2

TDATA

N.C.
N.C.

VSS

VDD

1
160

150

140

130

121

10 20 30 40
41

50

60

70

80
100120 110 8190

VSS

VSS

VDD

VSS
DDV
DDV

DDV

VDD
SSV

V
V

SS
DD

V
VSS

DD

DDV
SSV

SS
VDD

V
VSS

V
VDD

SS

P-MQFP-160-1

PEB 20320

Introduction

User’s Manual 12 01.2000

1.3 Pin Definitions and Functions

Pin Definitions and Functions

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

83, 87, 88, 92,
97, 103, 104,
110, 111, 117,
123, 130, 136,
141, 144, 150,
151, 157, 3, 9,
10, 16, 22, 23,
29, 30, 36, 59,
62, 64, 77

VSS I Ground (0 V)
All pins must have the same level.

73 I/M I Intel Bus Mode or Motorola Bus Mode
By connecting this pin to either VSS or VDD
the bus interface can be adapted to either
Intel or Motorola environment. The data is
interpreted either in Intel or Motorola
manner; i.e. little or big endian convention.
I/M = low: Intel bus mode
I/M = high: Motorola bus mode

39 A31

DP3

O

I/O

Address Bit 31
(Intel non-parity/Motorola) tristate when
unused.
Data Parity 3 (Intel parity mode),
bidirectional tristate line containing/
expecting parity bit of D(31:24).

35 A30

DP2

O

I/O

Address Bit 30
(Intel non-parity/Motorola) tristate when
unused.
Data Parity 2 (Intel parity mode),
bidirectional tristate line containing/
expecting parity bit of D(23:16).

Note: Input pins that are unused in a specific configuration must be strapped to VSS.
I/O or output pins that are unused in a specific configuration must be left open!

PEB 20320

Introduction

User’s Manual 13 01.2000

33 A29

DP1

O

I/O

Address Bit 29
(Intel non-parity/Motorola) tristate when
unused.

Data Parity 1 (Intel parity mode),
bidirectional tristate line containing/
expecting parity bit of D(15:8)

28 A28

DP0

O

I/O

Address Bit 28
(Intel non-parity/Motorola) tristate when
unused

Data Parity 0 (Intel parity mode),
bidirectional tristate line containing/
expecting parity bit of D(7:0)

26, 21, 19, 15,
13, 8, 6, 2, 160,
156, 154, 149,
147, 143, 139,
135, 133, 128,
126, 122, 120,
116, 114, 109,
107, 102

A(27:2) O Address Bus
tristate when unused.

91, 94, 96, 100 BE(3:0) O Byte Enable (Intel bus mode)
The MUNICH32 provides word and long
word transfer. The byte enables determine
the address offset to the address
A31 … A2, the actual word has been
stored to.
Address Offset Size (Motorola mode)
Indicates the number of bytes remaining to
be transferred for this access. These
signals define the active sections of the
data bus.
In both cases these signals are tristate
when unused.
See Chapter 2.2 for details.

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 14 01.2000

38, 34, 32, 27,
25, 20, 18, 14,
12, 7, 5, 1, 159,
153, 148, 146,
142, 138, 134,
132, 127, 125,
121, 119, 115,
113, 108, 106,
101, 99, 95

D(31:0) I/O Data Bus
The data bus lines are bidirectional tristate
lines which interface with the system’s
data bus.

86 DS

PCHK

O

O

Data Strobe (Motorola mode)
This signal indicates that valid data is to be
placed on the data bus (read cycle) or has
been placed on the data bus by the
MUNICH32 (write cycle).

Parity Check (Intel parity mode)
This signal indicates, whether the parity
bits of a read cycle are valid (PCHK high)
or invalid (PCHK low). See Chapter 2.2.1
for details.

84, 93, 89, 98,
105, 112, 118,
124, 129, 131,
137, 140, 145,
152, 158, 4,11,
17, 24, 31, 37,
57, 58, 63, 78

VDD I Supply voltage 5 V ± 5%
All pins must have the same level.

85 ADS

AS

O

O

Address Status (Intel bus mode)
This signal indicates that a valid bus cycle
definition and address are being driven at
the pins.

Address Strobe (Motorola bus mode)
A valid address is transmitted on the
address bus at the falling edge of AS.

In both cases this signal is active low and
tristate when unused.

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 15 01.2000

90 W/R

R/W

O

O

Write/Read (Intel bus mode)
This signal distinguishes write from read
operations.

Read/Write (Motorola bus mode)
This signal distinguishes between read
and write operations.

In both cases this signal is tristate when
unused.

75 READY

DSACK

I

I

Ready (Intel bus mode)
This signal indicates that the current bus
cycle is complete. When READY is
asserted during a read cycle the
MUNICH32 latches the input data and
terminates the cycle. When READY is
asserted during a write cycle the
MUNICH32 terminates the cycle.

Data Transfer Acknowledge (Motorola
bus mode)
This active low input indicates that a data
transfer may be performed. During a read
cycle data becomes valid at the falling
edge of DSACK. The data is latched
internally and the bus cycle is terminated.
During a write cycle the falling edge of
DSACK marks the latching of data and the
bus cycle is terminated.

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 16 01.2000

76 BERR I Bus Error (Intel and Motorola bus mode)
This active low signal informs the
MUNICH32 that a bus cycle error has
occurred. The MUNICH32 terminates the
bus cycle.
In case of an erroneous read cycle in the
control and configuration section an
‘Action Request Fail’ interrupt is generated
and the action is suspended. In case of an
erroneous read cycle in the transmit data
section the corresponding frame is
aborted and a FO interrupt is generated. In
all other cases of read or write cycles
terminated with an error condition no
further actions are performed by the
MUNICH32. Please see Chapter 2.2,
‘Microprocessor Interface’, first paragraph
and Figure 18.
As bus cycles are executed without time
limit this signal prevents a hang-up
situation of the MUNICH32.

74 B16 I Word Operation
Setting this bit to VDD causes the
MUNICH32 to perform 32-bit long word
accesses to the shared memory, setting it
to VSS causes the MUNICH32 to perform
16-bit word accesses on the data lines
D(15:0) only. In 16-bit word access mode
the data lines D(31:16) should be left
open.
This bit is not dynamic and should be set
to VDD in Intel parity mode.

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 17 01.2000

82 HOLD

BR

O

I/O

Bus Hold Request (Intel bus mode)
This signal is driven high when the
MUNICH32 requests the control of the
bus.

Bus Request (Motorola bus mode)
This signal is driven low when the
MUNICH32 requests the control of the bus
and is interpreted when another
MUNICH32 wants to be the bus master.

79 HLDA

BG

I

I

Bus Hold Acknowledge (Intel bus mode)
This active high signal indicates that the
processor has released the control of the
bus. The MUNICH32 starts the bus cycles.

Bus Grant (Motorola bus mode)
This active low signal indicates that the
MUNICH32 may assume the bus
mastership.

81 BGACK

PM

I/O

I

Bus Grant Acknowledge (Motorola bus
mode)
This signal is driven low by the device,
when it has become the bus master. It also
informs the MUNICH32 whether another
device is bus master.

Parity Mode (Intel bus mode)
This signal has to be strapped to VDD
before reset to enable the Intel parity
mode or to VSS before reset to enable the
Intel non-parity mode. It has to be left
strapped during reset and operation.

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 18 01.2000

80 HLDAO

BGO

O

O

Bus Hold Acknowledge Passing ON
(Intel bus mode)
If another MUNICH32 has initiated a
HOLD REQUEST the HOLD
ACKNOWLEDGE is passed on via
HLDAO. The MUNICH32 does not give
another HOLD REQUEST before the
HOLD ACKNOWLEDGE has been
deactivated in order to prevent blocking in
the case of continuous request by one
MUNICH32.

Bus Grant Acknowledge (Motorola bus
mode)
If the MUNICH32 has not requested the
bus mastership it passes on the BUS
GRANT. The MUNICH32 does not give
another BUS REQUEST before the BUS
REQUEST and the BUS GRANT
ACKNOWLEDGE have been deactivated
in order to prevent blocking in the case of
continuous request by one MUNICH32.

66 AR I Action Request
AR must be pulsed low to cause an action
of the MUNICH32. The AR is activated for
updating the mode and channel
configurations, setting a test loop, or
initializing the interrupt queue. The
min. time between Reset and first AR is
500 µs.

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 19 01.2000

40 INT/INT O Interrupt Request
An interrupt is given when a transmission/
reception error is detected, frames are
received or transmitted, or a host initiated
action is performed. The interrupt pulse
signal interacts with a write cycle to the
shared memory. The data written into the
interrupt queue contains the interrupt
specification.
The interrupt is active high for Intel bus
mode and active low for Motorola bus
mode.

44 RCLK I Receive Clock
This clock provides the data clock for RDA
T1/DS1 24-channel 1.544 MHz

24-channel 1.536 MHz
CEPT 32-channel 2.048 MHz

32-channel 4.096 MHz

45 RSP I Receive Synchronization Pulse
This signal provides the reference for the
receive PCM frame synchronization. It
marks the first bit in the PCM frame.

46 RDATA I Receive Data
Serial data is received at this PCM input
port. The MUNICH32 supports the T1/
DS1 24-channel PCM format, the CEPT
32-channel PCM format as well as a 32-
channel PCM format with 4.096-Mbit/s bit
rate.

61 SCLK I System Clock
PCM highway system clock highway
frequency
32-channel 16.384 MHz 2.048 or
4.096 MHz
24-channel 12.288 MHz 1.536 MHz
24-channel 12.352 MHz 1.544 MHz

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 20 01.2000

51 … 47 CI(4:0) I Chip Identification
Up to four MUNICH32 can be connected
to the PCM highway. These inputs define
the start address of the control section
pointer in the shared memory.
CI4 is the polarity of A31 … A22
CI3 is the polarity of A21 … A16
CI2 is the polarity of A15 … A4
CI1 is the polarity of A3
CI0 is the polarity of A2
A1, A0 are always ‘00’

56 … 53 JTEST
(3:0)

I/O Test Pins
The MUNICH32 supports the JTAG
boundary scan test and the JTAG test
standards.

65 TEST I Test
If this bit is set to VDD MUNICH32 works in
a test mode.
For the functional working mode this bit
must be set to VSS.

67 TDATA O Transmit Data
Serial data is sent by this PCM output port
is push-pull for active bits in the PCM
frame and tristate for inactive bits.

68 TSP I Transmit Synchronization Pulse
This signal provides the reference for the
transmit frame synchronization. It marks
the last bit in the PCM frame.

69 TCLK I Transmit Clock
This clock provides the data clock for
TDATA
T1/DS1 24-channel 1.544 MHz

24-channel 1.536 MHz
CEPT 32-channel 2.048 MHz

32-channel 4.096 MHz

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 21 01.2000

60 RESET I Reset

41, 42, 43, 52,
70, 71, 72

N.C. - No Connect
These pins are reserved and should not be
connected

Pin Definitions and Functions (cont’d)

Pin No.
P-MQFP-160-1

Symbol Input (I)
Output (O)

Function

PEB 20320

Introduction

User’s Manual 22 01.2000

1.4 Logic Symbol

Figure 2
MUNICH32 Logic Symbol

ITL03488

Serial
Interface

 (3:0)BE

1)

A31/DP3, A30/DP2, A29/DP1, A28/DP0, A[27:2]

 (31:0)D

30

32

RCLK

RSP

RDATA

TCLK

TSP

TDATA

I/M

W/R R/W

ADS/AS

DS/PCHK

READY/DSACK

BERR

B16

HOLD/BR

HLDA/BG

BGACK/PM

HLDAO/BGO

AR

INT/INT

5
 (4:0)CI

4
TEST

JTEST (3:0)

RESET

SCLK

VDD

VSS

Interface
System

Bus
Microprocessor

Interface

MUNICH32
PEB 20320

1)

PEB 20320

Introduction

User’s Manual 23 01.2000

1.5 Functional Block Diagram

Figure 3
Block Diagram of MUNICH32

ITB03495

BE (3:0) A (31:2) D (31:0)

32

RCLK RSP RDATATCLK TSP TDATA

I/MW/RADS DS READY/ BERR B16HOLD/ HLDA/ HLDAO/ ARINT/

 CI (4:0)

4

TEST JTESTRESET

BGACK
AS DSACK BRR/W BG BGO INT

SCLK

5

Microprocessor Bus Interface

Serial Interface/Formatter Controller Unit

CSR
Configuration and

State RAM

CM
DMA Controller

Formatter
Transmit

TF

TB
Transmit Buffer

Deformatter
Receive

RD

Receive Buffer
RB

CD

MI

/
PM

PEB 20320

Introduction

User’s Manual 24 01.2000

The internal functions of MUNICH32 are partitioned into 8 major blocks.

1. Serial Interface, Formatter Control Unit CD
 – Parallel-Serial conversion, PCM timing, switching of the test loops, controlling of the

multiplex procedure.
2. Transmit Formatter TF

– HDLC frame, bit stuffing, flag generation, flag stuffing and adjustment,
CRC generation, transparent mode transmission and V.110, X.30 80 bit framing.

3. Transmit Buffer TB
– Buffer size of 64 long words allocated to the channels, i.e. eight PCM frames can be

stored before transmission, individual channel capacity programmable.
4. Receive Deformatter RD

– HDLC frame, zero-bit deletion, flag detection, CRC checking, transparent mode
reception and V.110, X.30 80 bit framing.

5. Receive Buffer RB
– Buffer size of 64 long words allocated to the channels, i.e. eight PCM frames can be

stored, individual long words are freely accessible by each channel.
6. Configuration and State RAM CSR

– Since the Transmit Formatter, Receive Deformatter are used in a multiplex manner,
the state and configuration information of each channel has to be stored.

7. DMA Controller CM
– Interrupt processing, memory address calculation, chaining list handling,

chip configuration.
8. µP interface MI

– Motorola/Intel microprocessor interface.

PEB 20320

Introduction

User’s Manual 25 01.2000

1.6 System Integration

The MUNICH32 is designed to handle up to 32 data channels of a PCM highway. It
transfers the data between the PCM highway and a memory shared with a host
processor via a 32-bit µP interface. At the same time it performs protocol formatting and
deformatting as well as rate adaption for each channel independently. The host sets the
operating mode, bit rate adaption method and time slot allocation of each channel by
writing the information into the shared memory.

Using subchanneling each time slot can be shared between up to four MUNICH32s; so
that in one single time slot four different D-channels can be handled by four MUNICH32s.

Figure 4, Figure 5 and Figure 6 give a general overview of system integration of the
MUNICH32.

Figure 4
General System Integration (Intel Bus Mode)

ITS03489

MUNICH32

0

HLDA

1

MUNICH32

HLDA

MUNICH32

2

HLDA

3

MUNICH32

HLDA

CPU

Optional

System Bus

Up to 4
MUNICH32

PCM Highway (2.048 Mbit/s, 1.544 Mbit/s, 1.536 Mbit/s, 4.096 Mbit/s)

CPU

Memory

HO
LD

HL
DA

HO
LD

HL
DA

HL
DA

O

HO
LD

HL
DA

O
HL

DA

HO
LD

HL
DA

O
HL

DA

HO
LD

HL
DA

PEB 20320

Introduction

User’s Manual 26 01.2000

Figure 5
General System Interface (Intel Bus Mode)

Figure 6
General System Interface (Motorola Bus Mode)

ITS03490

MUNICH32 MUNICH32

Memory

CPU

System Bus

PCM Highway (2.048 Mbit/s, 1.544 Mbit/s, 1.536 Mbit/s, 4.096 Mbit/s)

HO
LD

HL
DA

HO
LD

HL
DA

HL
DA

O

ITS03491

MUNICH32 MUNICH32 CPU

Optional

System Bus

Up to 4
MUNICH32

PCM Highway

CPU

Memory

BR BG BG
AC

K

BG
AC

K
BGBR

PEB 20320

Introduction

User’s Manual 27 01.2000

MUNICH32’s bus interface consists of a 32 bit bidirectional data bus (D31 … D0), 32/28
Address lines (A31 … A2, BE3 … BE0) or (A27 … A2, BE3 … BE0), four data byte
parity lines DP(3:0), five lines (W/R/R/W, ADS/AS, DS/PCHK, BERR READY/DSACK)
to control and monitor the bus cycle, one action request and one Interrupt line.

The system bus allocation is controlled by the four signals (HOLD/BR, HLDA/BG,
BGACK, HLDAO/BGO). A mode pin allows the bus interface to be configured for either
Intel or Motorola mode. An operation mode pin B16 enables the transfer of a 32 bit long
word in two consecutive 16 bit word operations.

Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11 illustrate how the MUNICH32
may be used in different applications, like in a Primary Rate Interface, a Router, a Packet
Switch and a Central D-Channel Handler, as part of an ISDN switching system.

Figure 7
Architecture of a Primary Access Board

ITS07372

Host Interface
(Alternative B)

System Bus

Local CPU Bus

CPU (Alternative A)

INT/INT

AR

PCM
System
Interface

CPU Bus Arbitration

2254
FALC54

PEB Controller
Interrupt

Memory
System

System Bus
Controller

Interface
Line

T1/S2 Line

20320
MUNICH32
PEB

Host Interface

PEB 20320

Introduction

User’s Manual 28 01.2000

Figure 8
Architecture of a Central D-Channel Handler

ITS04829

EPIC
PEB 2056

Interrupt
Controller

HSCX
SAB 82525

System Bus

Controller
System Bus

CPU
PEB 20320
MUNICH32

INT/INT

AR

PCM
System
Interface

Local CPU Bus

CPU Bus Arbitration

Memory
System

Signaling HighwayPCM Highway

(Alternative B)
Host Interface

(Alternative A)

R

Host Interface

PEB 20320

Introduction

User’s Manual 29 01.2000

Figure 9
Architecture of a Packet Switch/Router

ITS07374

Controller

System Bus

System Bus

CPU

INT/INT

AR

PCM
System
Interface

Local CPU Bus

CPU Bus Arbitration

Memory

Line Driver

V.24, V.21, V.35, ...

2254
FALC54

PEB

Interrupt System

Controller

Interface
Line

T1/S2 Line

20320
MUNICH32
PEB

SAB 82538
ESCC8

PEB 20320

Introduction

User’s Manual 30 01.2000

Figure 10
MUNICH32 in a System with a RISC CPU

Note: To reduce complexity the host interface is not explicitly shown here.

ITS07371

Interrupt
Controller

System
Memory

System Bus

Controller
System Bus

CPU

Motorola 68020)
with Intel 386 or

(not compatible

INT/INT

AR

PCM
System
Interface

Line
Interface

T1/S2 Line

Local CPU BusLocal CPU Bus

CPU Bus ArbitrationCPU Bus Arbitration

FALC54
PEB 2254

MUNICH32
20320PEB

PEB 20320

Introduction

User’s Manual 31 01.2000

Figure 11
MUNICH32 in a System using Multiport Memory

Note: To reduce complexity the host interface is not explicitly shown here.

ITS07373

System Bus

Controller
Multi Port RAM

CPU

INT/INT

AR

Local CPU BusLocal CPU Bus

CPU Bus ArbitrationCPU Bus Arbitration

System Bus

Memory
Multi Port

20320
MUNICH32
PEB

2254
FALC54

PEB Controller
Interrupt

Memory
System

Controller

Interface
Line

T1/S2 Line

Interface
System
PCM

PEB 20320

Functional Description

User’s Manual 32 01.2000

2 Functional Description

2.1 Serial Interface

The serial interface of MUNICH32 includes a data receive (RDATA) and a data transmit
line (TDATA) as well as the accompanying control signals (RCLK = Receive Clock,
RSP = Receive Synchronization Pulse, TCLK = Transmit Clock, TSP = Transmit
Synchronization Pulse). The timings of the receive and transmit PCM highway are
independent of each other, i.e. the frame positions and clock phases are not correlated.
Data is transmitted and received either at a rate of 2.048 Mbit/s for the CEPT 32-Channel
European PCM format (Figure 14) or 1.544 Mbit/s or 1.536 Mbit/s for the
T1/DS1 24-Channel American PCM format (Figure 12 and Figure 13). MUNICH32 may
also be connected to a 4.096-Mbit/s PCM system (Figure 15), where it handles either
the even- or odd-numbered time slots, so all 64 time slots can be covered by connecting
two MUNICH32s to the PCM highway.

The actual bit rate of a time slot can be varied from 64 Kbit/s down to 8 Kbit/s for the
receive and transmit direction. A fill mask code specified in the time slot assignment
determines the bit rate and which bits of a time slot should be ignored. Any of these
time slots can be combined to a data channel allowing transmission rates from 8 Kbit/s
up to 2.048 Mbit/s.

The frame alignment is established by the transmit and receive synchronization pulse
(TSP, RSP), respectively. The sampled rising edge of TSP identifies the current bit on
the serial line (TDATA) as the last bit of a PCM frame. The sampled rising edge of RSP
indicates that the current bit on the serial line (RDATA) is the first bit of a PCM frame.

The F-bit for the 1.544 MHz T1/DS1 24-channel PCM format is ignored in receive
direction, the corresponding bit is tristate in transmit direction. It is therefore assumed
that this channel is handled by a different device.

For test purposes four different test loops can be switched. In a complete loop all logical
channels are mirrored either from serial data output to input (internal loop) or vice versa
(external loop).

In a channelwise loop one single logical channel is logically mirrored either from serial
data output to input (internal loop) or vice versa (external loop).

A detailed description of the different loops is found in Chapter 4.2.1 and Chapter 5.1.

PEB 20320

Functional Description

User’s Manual 33 01.2000

Figure 12
T1/DS1 Mode PCM Frame Timing 1.544 MHz

Note 1: A box in a bit of the RDATA line means that this bit is ignored (HDLC,
TMB, TMR, V.110/X.30) or received as ‘1’-bit (TMA; one overwrite).

Note 2: The fill/mask bit for the F-bit is not defined. TDATA is tristate for the F-bit, and
the F-bit is ignored in the receive direction.

Note 3: TSP and RSP must have one single rising and falling edge during a
125 µs PCM frame.

ITD03496

T1/DS1 - Mode Receive Frame Timing 1 1 0 1 0 1 1 0

Fill/Mask : Slot 0

Fill/Mask : Slot 0

1 0 0 1 1 0 0 0T1/DS1 - Mode Transmit Frame Timing

TCLK

TSP

TDATA

FILL/MASK

0
SLOT 23SLOT 1SLOT 0

125 µs

PCM - Frame

SLOT 0 SLOT 1SLOT 23

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7F

7 F 0 1 2 3 4 5 6 7

76543210F7

SLOT 23 SLOT 1SLOT 0

FILL/MASK

RDATA

RSP

RCLK

DATA DATA DATA DATA DATA DATA

6

6

PEB 20320

Functional Description

User’s Manual 34 01.2000

Figure 13
T1/DS1 Mode PCM Frame Timing 1.536 MHz

Note 1: A box in a bit of the RDATA line means that this bit is ignored (HDLC,
TMB, TMR, V.110/X.30) or received as ‘1’-bit (TMA; one overwrite).

Note 2: TSP and RSP must have one single rising and falling edge during a
125 µs PCM frame.

ITD03497

T1/DS1 - Mode Receive Frame Timing 1 1 0 1 0 1 1 0

Fill/Mask : Slot 0

Fill/Mask : Slot 0

1 0 0 1 1 0 0 0T1/DS1 - Mode Transmit Frame Timing

TCLK

TSP

TDATA

FILL/MASK

0
SLOT 23SLOT 1SLOT 0

125 µs

PCM - Frame

SLOT 0 SLOT 1SLOT 23

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7 0 1 2 3 4 5 6 7

SLOT 23

FILL/MASK

RDATA

RSP

RCLK

DATA DATA DATA DATA DATA DATA

6

6 765432107

SLOT 1SLOT 0

PEB 20320

Functional Description

User’s Manual 35 01.2000

Figure 14
CEPT Mode PCM Frame Timing

Note 1: A box in a bit of the RDATA line means that this bit is ignored (HDLC,
TMB, TMR, V.110/X.30) or received as ‘1’-bit (TMA; one overwrite).

Note 2: TSP and RSP must have one single rising and falling edge during a
125 µs PCM frame.

ITD03498

CEPT - Mode PCM - Frame Timing 1 1 0 1 0 1 1 0

Fill/Mask : Slot 0

Fill/Mask : Slot 0

1 0 0 1 1 0 0 0CEPT - Mode Transmit Frame Timing

TCLK

TSP

TDATA

FILL/MASK

0
SLOT 31SLOT 1SLOT 0

125 µs

PCM - Frame

SLOT 0 SLOT 1SLOT 31

1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7 0 1 2 3 4 5 6 7

SLOT 31

FILL/MASK

RDATA

RSP

RCLK

DATA

6

6 765432107

SLOT 1SLOT 0

DATADATADATADATA DATA DATA

PEB 20320

Functional Description

User’s Manual 36 01.2000

Figure 15
4.096 Mbit/s PCM Frame Timing

Note 1: A box in a bit of the RDATA line means that this bit is ignored (HDLC,
TMB, TMR, V.110/X.30) or received as ‘1’-bit (TMA; one overwrite).

Note 2: TSP and RSP must have one single rising and falling edge during a
125 µs PCM frame.

ITD03528

0 1 2 3 4 5 6 7

SLOT 0 SLOT 1

76543210

SLOT 31

76543210

125 µs

TSP

RSP

4.096 Mbit/s PCM-format: even numbered slot allocation

4.096 Mbit/s PCM-format: odd numbered slot allocation

RSP

TSP

0 1 2 3 4 5 6 7

SLOT 31

0 1 2 3 4 5 6 7

SLOT 0

76

PEB 20320

Functional Description

User’s Manual 37 01.2000

Figure 16
Example: Programmable Channel Allocation for 32 Time Slots

Figure 17
Example: Programmable Channel Allocation for 24 Time Slots

ITD03499

125 µs

0

0

32 x 64 kbit/s1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 2 1 3 4 1 5 6 7 8 7 9 1

ITD03500

125 µs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 1 2 3 4 5 1 2 63

24 x 64 kbit/s

PEB 20320

Functional Description

User’s Manual 38 01.2000

2.2 Microprocessor Interface

A 64-channel DMA controller (32 channels in receive direction and 32 channels in
transmit direction) with buffer chaining capability is integrated in the MUNICH32. It
provides DMA functions for up to 32 full duplex channels and allows data transfer
between the serial interface and an external memory. The MUNICH32 performs long
word by long word transfers on a 32-bit bidirectional data bus (D(31:0)) and addresses
up to 4 GByte of RAM with a 30-bit address bus (A(31:2)). The chip always works as a
system bus master and can be operated in either a Intel or Motorola environment.
MUNICH32 receives commands and data from the host processor via the shared
memory. The host stores the action specification containing configuration initialization
and monitor commands in the memory. Afterwards the host informs the MUNICH32 by
generating an action request pulse (AR line). The MUNICH32 reacts by reading the
action specification and informs the microprocessor by appending the respective
interrupt information to the interrupt queue. In addition, the INT/INT line is activated
during the write access belonging to the interrupt specification.

The timing of the microprocessor interface is established according to the Intel 80386 or
Motorola 68020 processor. The system clock (SCLK) provides the fundamental timing
for the µP interface and is the internal device clock. Each bus cycle performs a long word
(B16 = 1) or a word (B16 = 0) transfer and takes four system clock periods in the fastest
case, any number of wait clock cycles can be inserted.

MUNICH32’s architecture is based on a 32-bit data structure. Therefore MUNICH32
performs long word operations preferably. While the word operation mode is selected the
long word operation is divided into two consecutive word operations. In the case of a
read access the data of the two words are connected together to build a 32-bit long word
before processing.

For a read access first the MSB bytes of a long word will be transferred and then the
LSB bytes via D(15:0).
For a write access first the LSB-bytes of a long word will be transferred and then the
MSB bytes via D(15:0).
The signal B16 cannot be changed dynamically and should be set to ‘1’ in Intel parity
mode (parity mode is not available in 16-bit word Intel mode).

Mode Operation Mode B16 BE(3–0) Access

Intel

Motorola

 1
 0
 0

 1
 0
 0

 0H
 3H
 CH

 0H
 8H
 AH

long word
MSB word
LSB word

long word
MSB word
LSB word

PEB 20320

Functional Description

User’s Manual 39 01.2000

2.2.1 Intel Mode

The Intel mode has two submodes – parity mode (even parity) and non parity mode – to
be chosen by strapping PM to ‘1’ or ‘0’ respectively.

In Intel mode the lower (higher) ordered byte of a long word (D31 … D0) is assigned to
the lower (higher) ordered physical address.

The read or write bus cycle is controlled by the signals W/R, ADS and READY as shown
in Figure 18, Figure 19. Each bus cycle consists of two bus states (S1, S2). During state
S1 the address signals and bus cycle definition signals are driven valid. Simultaneously,
the address status ADS is asserted to indicate their availability. The bus cycles are
terminated by asserting READY. READY is ignored on the first bus state S1 and
sampled at the end of the following state S2. If READY is not asserted in S2 then wait
cycles SW are inserted until a bus cycle end is detected. During a read cycle the
MUNICH32 floats its data signals to allow external memory to drive the data bus.

The input data and parity bits DP3–0 (if parity mode is selected) is latched when READY
is asserted. During a write cycle MUNICH32 drives the data signals and parity bits DP3–
0 (if parity mode is selected) beginning in the second clock period of S1 until the first
clock period following the cycle acknowledgment READY. If a bus cycle error indicated
by BERR has occurred, the MUNICH32 terminates the bus cycle. In case of a read cycle
in the control and configuration section an action request fail interrupt is generated and
the action is suspended. In case of a read cycle in the transmit data section the
corresponding frame is aborted and a FO interrupt is generated. In all other cases of read
or write cycles terminated with an error condition no actions are performed.

A 4-bit data byte parity bus DP3–0 is used in Intel mode if parity mode is selected by
strapping PM to ‘1’. During a read access DP3–0 is supposed to contain the parity of
D(31:24), D(23:16), D(15:8) and D(7:0) respectively. A low active output PCHK indicates
whether the parity was correct (PCHK = 1) or wrong (PCHK = 0) in the clock cycle after
the data/parity is latched. PCHK stays low 1 or 2 clock cycles. No further action is taken
as consequence to a parity fail.

As the memory access is performed by using one common system bus, bus
management is done with the signals HOLD, HLDA and HLDAO as shown in Figure 20.

The wired or HOLD line is driven high whenever one of the MUNICH32s has to perform
a bus transfer. The activated HOLD ACKNOWLEDGE indicates that the bus control will
be released. If the specific device has activated the HOLD itself, it will start the memory
access. Otherwise it will pass the signal to the next cascaded device. Several memory
accesses may be required if the MUNICH32 has not been granted access recently.
In this example of four MUNICH32 devices sharing the same bus,
each device will generate four memory cycles, giving a total of 16 cycles per
HOLD/HLDA/HLDAO tenure. In order to prevent blocking in the case of continuous
request by one device, the MUNICH32 does not generate another HOLD REQUEST
before the HOLD ACKNOWLEDGE has been deactivated.

PEB 20320

Functional Description

User’s Manual 40 01.2000

If the HOLD ACKNOWLEDGE is driven low while the MUNICH32 is performing a bus
cycle, the bus is released later than two clock periods after de-assertion of HOLD
ACKNOWLEDGE. The current bus cycle is finished with a bus cycle error. This action
should be followed by an ASP.RES as described in Chapter 4.2.1.

Figure 18
Read Cycle Timing Diagram (Intel mode)

ITD03501

S1 S2 S1 S2 S1 S2SW WS
READ READ BERR

SCLK

BE(3:0)

W/R

ADS

READY

[DP3-DP0], D(31:0)

BERR

Tristate

A31-A2

[A27-A2]

[PCHK]

PEB 20320

Functional Description

User’s Manual 41 01.2000

Figure 19
Write Cycle Timing Diagram (Intel mode)

ITD03502

WRITE WRITE BERR

SCLK

BE(3:0)

W/R

ADS

READY

[DP3-DP0], D(31:0)

BERR

Tristate

A31-A2

[A27-A2]

INT

[PCHK]

PEB 20320

Functional Description

User’s Manual 42 01.2000

Figure 20
Bus Management for Intel Bus Mode

Note 1: Bus Cycle means, that the MUNICH32 under consideration starts a read or
write access at most 4 clock periods after HLDA is asserted after its HOLD. The
MUNICH32 terminates the cycle typically two clock periods after the last
bus cycle.

Note 2: In the Bus Management example it is assumed that the MUNICH32 under
consideration has a higher priority than the other bus master. HOLD (internal) is
therefore the internal request generated by the MUNICH32, HOLD (external)
the signal on the external HOLD line, being the OR combination of the HOLD
signal generated by the MUNICH32 and the other bus master(s).

Note 3: A typical configuration example for a system with several bus masters is given
in Figure 4 and Figure 5.

ITD03503

SCLK

HOLD (extern)

HOLD (intern)

HLDA

HLDAO

Bus Cycle
Max. 4 Clock Periods

~ ~
~~

MUNICH32
gets the Bus gets the Bus

Another Bus Master
requests
No Bus

TristateTristate

Tristate Tristate

PEB 20320

Functional Description

User’s Manual 43 01.2000

2.2.2 Motorola Mode

In Motorola mode the bus is used in an asynchronous manner. The bus operation uses
the handshake lines (AS, DS, DSACK and BERR) to control data transfer as shown in
Figure 21, Figure 22. Address strobe AS indicates the validity of an address on the
address bus (A31 … A2) and of the bus definition R/W (Read or Write cycle). It is
asserted half a clock cycle after the beginning of a bus cycle. The data strobe DS signal
is used as a condition for valid data of a write cycle. MUNICH32 asserts DS one full clock
cycle after the assertion of AS during a write cycle. The data is placed on the bidirectional
data bus (D31 … D0) half a clock cycle after AS is driven low. For a read cycle,
MUNICH32 asserts DS to signal the external memory to drive the data on the bus. DS
is asserted at the same time as AS during a read cycle. The data is latched with the last
falling edge of the clock for that cycle.

The bus cycle is terminated if the data transfer acknowledge (DSACK) is asserted with
the falling edge of the third clock period. Otherwise MUNICH32 inserts wait cycles until
DSACK is recognized. AS and DS are driven high half a clock period before bus cycle
end.

The bus error BERR is also a bus cycle termination indicator. It can be used in the
absence as well as in conjunction with DSACK. If an abnormal termination has occurred
during a read cycle, MUNICH32 generates an interrupt and aborts the corresponding
transmit channel. For a write cycle no further action is performed.

As the MUNICH32 is used in a multi-bus-master application, bus arbitration has to be
done to avoid simultaneous system bus access by more than one master. In Motorola
mode the bus arbitration protocol of the 68020 is established using the signals BR, BG,
BGACK and BGO as shown in Figure 23. The wired-or Bus Request (BR) is driven low
to indicate to the processor that one of the MUNICH32s requires control of the bus. The
activated Bus Grant (BG) signals the availability of the system bus. If the MUNICH32 has
activated the bus request itself, it asserts the wired-or Bus Grant Acknowledge to
indicate that it has assumed bus mastership. Otherwise it will pass the BUS GRANT
signal to the device cascaded next (BGO). At the same time it releases the Bus Request.
After finishing the last bus cycle, the Bus Grant Acknowledge is deactivated and the Bus
Grant is passed on. In order to prevent blocking in the case of continuous request by one
device, MUNICH32 does not generate another Bus Request before the external Bus
Request and Bus Grant Acknowledge have been deactivated.

After getting the bus mastership MUNICH32 drives the bus and starts the first bus cycle
one clock after assertion of BGACK. After finishing the memory access it releases the
bus and de-asserts BGACK at the same time.

PEB 20320

Functional Description

User’s Manual 44 01.2000

Figure 21
Read Bus Cycle Timing Diagram for Motorola Bus Mode

Figure 22
Write Bus Cycle Timing Diagram for Motorola Bus Mode

ITD03504

READ READ BERR

SCLK

A31-A2, BE (3:0)

R/W

AS

DSACK

D (31:0)

BERR

Tristate

DS

ITD03505

WRITE WRITE BERR

SCLK

A31-A2, BE (3:0)

R/W

AS

DSACK

D (31:0)

BERR

Tristate

DS

INT

PEB 20320

Functional Description

User’s Manual 45 01.2000

Figure 23
Bus Management for Motorola Mode

Note: 1. In the Bus Management example it is assumed that the MUNICH32 under
consideration has a higher priority than the other bus master. BR and BGACK
are wired AND lines to be pulled to ‘1’ by an external signal.

2. A typical configuration example for a system with several bus masters is given
in Figure 6.

ITD03506

SCLK

BR (extern)

BR (intern)

BGACK (extern)

BGACK (intern)

BGO

BG

Max. 4 Clock Periods

~ ~
~~

MUNICH32
gets the Bus gets the Bus

Another Bus Master No Bus
requests

PEB 20320

Functional Description

User’s Manual 46 01.2000

2.2.3 DMA Priorities

Prioritization of Queueing DMA Cycles

The MUNICH32 will perform all pending accesses on the same bus tenure.

Note: Several bus transactions may be required if the MUNICH32 has not been given
access to the system bus for a long period of time. This is often seen in multi-
master systems where several MUNICH32 devices share the system bus.

Priority Interrupt

Highest priority Receive link list including accesses to the descriptors

Transmit link list including accesses to the descriptors

Lowest priority Configuration of a channel (action requests)

PEB 20320

Functional Description

User’s Manual 47 01.2000

2.3 Basic Functional Principles

MUNICH32 is a Multichannel Network Interface Controller for HDLC, offering a variety
of additional features like subchanneling, data channels comprising of one or more
time slots, DMI 0, 1, 2 transparent or V.110/X.30 transmission and programmable rate
adaption. MUNICH32 performs formatting and deformatting operations in any network
configuration, where it implements, together with a microprocessor and a shared
memory, the bit oriented part (flag, bit stuffing, CRC check) of the layer 2 (data link
protocol level) functions of the OSI reference model.

The block diagram is shown in Figure 3. MUNICH32 is designed to handle up to 32 data
channels of a 1.536/1.544 Mbit/s T1/DS1 24-channel, 2.048-Mbit/s CEPT 32-channel or
a 4.096-Mbit/s 32-channel PCM highway. The device provides transmission for all bit
rates from 8 Kbit/s up to 2.048 Mbit/s of packed data in HDLC format or of data in a
transparent format supporting the DMI mode (0, 1, 2) or V.110/X.30 mode. Tristating of
the transmission line as well as switching a channelwise or complete loop are also
possible. An on-chip 64-channel DMA generator controls the exchange of data and
channel control information between the MUNICH32 and the external memory.

The MUNICH32 processes receive and transmit data independently for each time slot
and transmission direction respectively (blocks TF = Transmit Formatter, RD = Receive
Deformatter). The frame counters are reset by the rising edges of the RSP or TSP line.
The processing units TF and RD work with a multiplex management, i.e. there exists only
one protocol handler, which is used by all channels in a time sharing manner (see
Figure 24 and Figure 25). The actual configuration, e.g. transmission mode, channel
assignment, fill/mask code or state of the protocol handlers is retrieved from the
Configuration and State RAM (CSR) at the beginning of the time slot and reloaded to the
CSR at the end. The control unit (CD) controls the access to the CSR and allows writing
of reconfiguration information only if the continuous transfer of the configuration
information between the CSR and the formatters (TF and RD) will not be disturbed. In
receive direction, 32 unpacked data bits are first accumulated and then stored into an
on-chip receive buffer (RB) for transfer to the shared memory. As soon as the RB
receives 32 bits for a channel it requests access to the parallel microprocessor bus. The
on-chip transmit buffer (TB) is always kept full of data ready for transmission. The TB will
request more data when 32 bits become available in the ITBS. These buffers allows a
flexible access to the shared memory in order to prevent data underflow (Tx) and data
overflow (Rc).

The transmit buffer (TB) has a size of 64 long words (= 256 bytes). In this buffer, data of
8 PCM frames can be stored for each data channel. In this case, there are max. 1 ms
between access to the shared memory and data supply to the Transmit Formatter. In
order to meet these requirements a variable and programmable part of the buffer (ITBS)
must be allocated to each data channel (see Figure 26).

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 48

01.2000

 F
ig

u
re 24

M
u

ltip
lex M

an
ag

em
en

t R
eceive D

irectio
n

RDATA Bit 0 1Bit 2Bit

SCLK

Active

RCLK

(external)
Channel
Receive

1X

Channel

Active
Receive

0X

(internal)

2X

for into RD
Load CD, CSR Data

X1 Phase of RD, CM
Protocol Operation

Bit 7Bit ~ ~~~ 0 1Bit

for into RD
Load CSR Data

~~
~ ~~~

~~

1X

no Operation of RD,
Wait Phase Reload RD

into CSR

X 3

2X

2X

Operation disabled
RD Protocol

Data into CSR
Channel Config
might write new

RDATA

CSRCD RD

CSR
1X

...

CMRD

CSR
X

Operation disabled
RD ProtocolCM might write new

Channel Config
Data into CSR

CSR

Protocol
Operation disabled

FIFO CM

CSR
X1

RD

RDATA

CD

2

RD

ITD04397

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 49

01.2000

 F
ig

u
re 25

M
u

ltip
lex M

an
ag

em
en

t T
ran

sm
it D

irectio
n

ITD04398

TDATA

TCLK

Active Transmit
Channel (external)

SCLK

Active Transmit
Channel (internal)

X X

Load CSR Data

TF Protocol
Operation disabled

Protocol Operation
Phase of TF, CM
might write new
Channel Config
Data into CSR Data into CSR

Channel Config
CM might write new
no Operation of TF

Wait Phase

Operation disabled
TF Protocol

into CSR, CD
Reload TF

X

X X

Bit 7 0Bit Bit 1 Bit 6 Bit 7 0Bit

CSR

CSR TF

CM

X

...
CSR

CMFIFO

CSR

CD

TF

TDATA

~ ~
~ ~

~ ~ ~~
~~

~~
~ ~

~ ~

0

1 20

1

1

X2

X0

X1 X1

for into TFX1

TF

PEB 20320

Functional Description

User’s Manual 50 01.2000

For example:
a) 2.048-Mbit/s PCM highway

32 × 64-Kbit/s data channels (8 bits are sent with each PCM frame). Two long words
of the buffer are allocated to each data channel.

b) 1 × 2.048-Kbit/s data channel
The maximum buffer size for one channel (63 long words) is allocated to this data
channel.

c) 6 × 256-Kbit/s and 8 × 64 Kbit/s data channels.
Eight long words of the buffer are allocated to each of the 6 data channels with
256 Kbit/s and two long words are assigned to each of the 8 data channels with a
transmission rate of 64 Kbit/s.

The choice of the individual buffer size of each data channel can be made in the channel
specification (shared memory). The buffer size of one channel is changeable without
disturbing the transmission of the other channels.

Figure 26
Partitioning of TB

ITD04396

CD

TF

Unused

TB

Active Transmit
Channel (internal) Used as Address Offset for TB

ITBS of Channel X 1

64 Long Words0X

X 3

2X

ITBS of Channel

ITBS of Channel

ITBS of Channel

PEB 20320

Functional Description

User’s Manual 51 01.2000

The receive buffer (RB) is a FIFO buffer and also has a size of 64 long words, which
allows storing the data of eight complete PCM frames before transferring to the shared
memory.

Figure 27
Partitioning of RB

The data transfer to the shared memory is performed via a 32-bit microprocessor
interface working either in SIEMENS/Intel or Motorola bus mode. Figure 28 shows the
division of the shared memory required for each MUNICH32:

– Configuration start address located at a programmable address
– Control and configuration section
– An interrupt circular queue with variable size
– Descriptor and data sections for each channel.

ITD04447

64 Long Words

Active Receive
Channel (internal)

Stored in RB
together with Data/Status
Word from RD

CD

RD

RB

PEB 20320

Functional Description

User’s Manual 52 01.2000

Figure 28
Memory Division for up to four MUNICH32

Interrupt
Queue

Receive
Descriptor

DATA
Receive Receive

DATA

Descriptor
Receive

Descriptor
Receive

Channel 31 spec.

Channel 0 spec.

Time-Slot Assignment

INTERRUPT QUEUE Spec.
ACTION SPEC.

Transmit
Descriptor

DATA
TransmitTransmit

DATA

Descriptor
Transmit

Transmit
Descriptor

Control Start
Address

CI(4:0)

Control and
Configuration
section

section
Configuration
Control and

CI(4:0)

Descriptor
Transmit

Transmit
Descriptor

DATA
Transmit Transmit

DATA

Descriptor
Transmit

ACTION SPEC.
INTERRUPT QUEUE Spec.

Time-Slot Assignment

Channel 0 spec.

Channel 31 spec.

Receive
Descriptor

Receive
Descriptor

DATA
ReceiveReceive

DATA

Descriptor
Receive

Queue
Interrupt

Interrupt
Queue

Receive
Descriptor

DATA
Receive Receive

DATA

Descriptor
Receive

Descriptor
Receive

Channel 31 spec.

Channel 0 spec.

Time-Slot Assignment

INTERRUPT QUEUE Spec.
ACTION SPEC.

Transmit
Descriptor

DATA
TransmitTransmit

DATA

Descriptor
Transmit

Transmit
Descriptor

CI(4:0)

Control and
Configuration
section

section
Configuration
Control and

CI(4:0)

Descriptor
Transmit

Transmit
Descriptor

DATA
Transmit Transmit

DATA

Descriptor
Transmit

ACTION SPEC.
INTERRUPT QUEUE Spec.

Time-Slot Assignment

Channel 0 spec.

Channel 31 spec.

Receive
Descriptor

Receive
Descriptor

DATA
ReceiveReceive

DATA

Descriptor
Receive

Queue
Interrupt

ITD03507

Control Start
Address

Control Start
Address

Control Start
Address

Current Receive Descriptor Address 0 ... 31
Current Transmit Descriptor Address 31...0

0 ... 31Current Transmit Descriptor Address
31...0Current Receive Descriptor Address

Current Receive Descriptor Address 0 ... 31
Current Transmit Descriptor Address 31...0

Current Receive Descriptor Address 0 ... 31
Current Transmit Descriptor Address 31...0

PEB 20320

Functional Description

User’s Manual 53 01.2000

The shared memory allocated for each transmit and receive channel is organized as a
chaining list of buffers set up by the host. Each chaining list is composed of descriptors
and data sections. The descriptor contains the pointer to the next descriptor, the start
address and the size of a data section. It also includes control information like frame end
indication, transmission hold and rate adaption with interframe time-fill.

In the transmit direction the MUNICH32 reads a transmit descriptor, calculates the data
address, writes the current transmit descriptor address into the CCS, and fills the on-chip
transmit buffer. When the data transfer of the specified section is completed, the
MUNICH32 releases the buffer, and branches to the next transmit descriptor. If a frame
end is indicated the HDLC, TMB or TMR frame will be terminated and a specified number
of the interframe time-fill byte will be sent in order to perform rate adaption. If frame end
is found in a transmit descriptor TMA channel the specified number of programmable
TMA flags is appended to the data in the descriptor. If frame end is found in a transmit
descriptor of a V.110/X.30 channel the frame is aborted (after the data in the descriptor
are sent) by finishing the current 10-octet frame with ‘zeros’ and sending 2 more 10-octet
frames with ‘zeros’ which leads to a loss of synchronism on the peer side. An adjustment
for the inserted zeros in HDLC is programmable, which leads to a reduction of the
specified number of interframe time-fill by 1/8

th of the number of zero insertions. This can
be used to send long HDLC frames with a more or less fixed data rate in spite of the zero
insertions. A maskable interrupt is generated before transmission is started again.

PEB 20320

Functional Description

User’s Manual 54 01.2000

The following Sections give Examples of Typical Transmit Situations for the
Individual Modes

Variable Size Frame Oriented Protocols (HDLC, TMB, TMR)

Normal operation, handling of frame end (FE) indication and hold (H) indication.

Note: 1. FNUM0 must be set to zero.

2. Flag = 7EH for HDLC
00H for TMB, TMR

IC = 7EH for HDLC and IFTF = 0
FFH for HDLC and IFTF = 1
00H for TMB, TMR

3. After sending the FNUM2 – 1 IC characters the device starts polling the hold bit
in the transmit descriptor once for each further sent IC character. It also rereads
the pointer to the next transmit descriptor once with each poll of the hold
indication. The pointer to the next transmit descriptor can be changed while
HOLD = 1 is set. The value of the pointer, (read in the poll where HOLD = 0) is
used as the next descriptor address. If more than 6 IC characters will be sent,
the use of the Transmit Hold (TH) should be considered as an alternative to
using the descriptor hold bit. See Chapter 5.3.2.

PEB 20320

Functional Description

User’s Manual 55 01.2000

Figure 29

IT
D0

44
46

FE
=0

H
=

0
0

=
H

1=
FE

FE
=1

H
=

1

Fl
ag

Da
ta

4

.
.

.
.

...

Da
ta

 1
Da

ta
 2

Da
ta

 3

Tr
an

sm
it

De
sc

rip
to

rs

Da
ta

Se
ct

io
ns

...

FN
UM

1+
1

3
Da

ta

Po
ll

H=
1?

Po
ll

H=
0

Ne
xt

Tr
an

sm
it

De
sc

r.
De

sc
r.

Tr
an

sm
it

Ne
xt

De
sc

r.
Tr

an
sm

it
Ne

xt

FN
UM

0
FN

UM
1

FN
UM

2

Da
ta

 4

(D
at

a
1,

 D
at

a
2)

Fl
ag

,

FN
UM

2
..

.

Fl
ag

ΙC
,

,
CΙ

...
Fr

am
e

(
Fr

am
e

)
Fr

am
e

(
)

...
ΙC

,
CΙ

Fl
ag

,
CΙ

,
Fl

ag
ΙC

,
,

CΙ
CΙ

...
,

PEB 20320

Functional Description

User’s Manual 56 01.2000

Fixed Size Frame Oriented Protocols (V110/X.30)

Normal operation, E, S, X change (indicated by the V.110-bit in the transmit descriptor)

Example for TRV = ‘11’

Note: 1. FNUM must be 0 for all transmit descriptors.

2. The actual E-, S-, X-bits have to be in the first transmit descriptor after reset.

3. As shown in the example the contiguous parts of a data section belonging to
one descriptor are sent in contiguous frames (DATA 1(1) are the bytes 0 – 3 of
DATA 1, DATA 1(2) are the bytes 4 – 7 of DATA 1). If the end of a data section
is reached within a frame, the frame is continued with data from the next data
section belonging to a transmit descriptor with the bit V.110 = 0
(DATA 2(2) = byte 4 of DATA 2, DATA 3(1) = byte 0 – 2 of DATA 3).

4. The E-, S-, X-bits are only changed from one frame to the next not within a
frame. The change occurs in the first frame which does not contain data of the
previous data section.

5. Neither FE nor H may be set to 1 during a normal operation of the mode. They
both lead to an abort of the serial interface.

PEB 20320

Functional Description

User’s Manual 57 01.2000

Figure 30

IT
D

04
44

4

N
ex

t
Tr

an
sm

it
D

es
cr

.

N
O

=2

V1
10

=1

FE
=0

H
 =

0
0

=0
=

H
0=

FE V1
10

N
O

=8
5=

N
O

V1
10

FE
=0

H
=

0 =
0

1
=0

=
H

0=
FE V1

10

N
O

=2

0
=0

=
H

0=
FE V1

10

N
O

=9

Fr
am

e
(E

, S
, X

, D
at

a
1

)

(1
)

(2
)

(1
)

(2
)

(1
)

(2
)

.
.

.
.

.

..
.

10
 O

ct
et

s
10

 O
ct

et
s

10
 O

ct
et

s
10

 O
ct

et
s

10
 O

ct
et

s

E,
 S

, X
,

D
at

a
1

E´
, S

´,
X´

,

Tr
an

sm
it

D
es

cr
ip

to
rs

D
at

a
Se

ct
io

ns

...
00

D
es

cr
.

Tr
an

sm
it

N
ex

t

D
es

cr
.

Tr
an

sm
it

N
ex

t

D
es

cr
.

Tr
an

sm
it

N
ex

t

D
es

cr
.

Tr
an

sm
it

N
ex

t

Fr
am

e
(E

, S
, X

, D
at

a
1

)

Fr
am

e
(E

, S
, X

, D
at

a
2

)

Fr
am

e
(E

, S
, X

, D
at

a
2,

 D

at
a

3

)
Fr

am
e

(E
´,

S´
, X

´,
D

at
a

3

)

D
at

a
2

D
at

a
3

PEB 20320

Functional Description

User’s Manual 58 01.2000

Fixed Size Frame Oriented Protocols (V.110/X.30)

Handling of frame end (FE) indication

Note: 1. FNUM must be ‘0’ for all transmit descriptors.

2. The frame (E, S, X, DATA 2(2)) is the beginning of a 10-octet frame. It stops with
the octet no. y, containing the last data bit of DATA 2 to be sent.

3. Since y = 1, …, 10 the 20 + y times 00H characters sent afterwards cause the
peer station to recognize 3 consecutive 10-octet frames with frame error which
leads to a loss of synchronism in the peer station.

4. For y = 10 DATA 2 is identical to DATA 2(1) and 30 times 00H characters are
sent after frame (E, S, X, DATA 1(2), DATA 2(1)).

5. The E-, S-, X-bits are supposed to be loaded by an earlier transmit descriptor
in the example. A descriptor changing them (with V.110-bit set) can be put
between, before or after the descriptors in the example. It will change these bits
according to the rules discussed previously.

PEB 20320

Functional Description

User’s Manual 59 01.2000

Figure 31

IT
D0

44
48

V1
10

FE
=0

H
=

0 =
0

0
=0

=
H

1=
FE V1

10
V1

10

FE
=0

H
=

0 =
0

Fr
am

e
(

(1
)

)
Fr

am
e

(
(2

)
)

00
,..

...
.,0

0
2

Da
ta

Da
ta

3
)

(1
)

(
Fr

am
e

.
.

.
.

...

10
 O

ct
et

s
10

-y
 O

ct
et

s
20

+y
 O

ct
et

s
10

 O
ct

et
s

Da
ta

 1
Da

ta
 2

Da
ta

 3

Tr
an

sm
it

De
sc

rip
to

rs

Da
ta

Se
ct

io
ns...

E,
S,

X,

10
 O

ct
et

s

,
X,

S,
E,

(1
)

2
Da

ta
Da

ta
1

Fr
am

e
(

(2
)

)

y=
1,

...
,1

0

1
Da

ta
E,

S,
X,

E,
S,

X,

PEB 20320

Functional Description

User’s Manual 60 01.2000

Fixed Size Frame Oriented Protocols (V110/X.30)

Handling of hold (H) indication

Figure 32

IT
D0

44
49

V1
10

FE
=0

H
=

0 =
0

0
=1

=
H

1=
FE V1

10
V1

10

FE
=0

H
=

0 =
0

Fr
am

e
(

(1
)

)
Fr

am
e

(
(2

)
)

00
,..

...
.,0

0
2

Da
ta

Da
ta

3
)

(1
)

(
Fr

am
e

.
.

.
.

...

10
 O

ct
et

s
10

-y
 O

ct
et

s
20

+y
 O

ct
et

s
10

 O
ct

et
s

Da
ta

 1
Da

ta
 2

Da
ta

 3

Tr
an

sm
it

De
sc

rip
to

rs

Da
ta

Se
ct

io
ns

...
E,

S,
X,

10
 O

ct
et

s

,
X,

S,
E,

(1
)

2
Da

ta
Da

ta
1

Fr
am

e
(

(2
)

)

y=
1,

...
,1

0

00
00

...
00

00

Po
ll

H=
1?

Po
ll

H=
0

E,
S,

X,
1

Da
ta

E,
S,

X,

PEB 20320

Functional Description

User’s Manual 61 01.2000

Time Slot Oriented Protocol (TMA)

Normal operation, handling of frame end (FE) indication and hold (H) indication.

Note: 1. FNUM must be set to zero.

2. TC = FFH for TMA and FA = 0
the programmed flag with TMA and FA = 1

3. After sending the FNUM2 – 1 IC characters the device starts polling the hold bit
in the transmit descriptor once for each further sent IC character. It also rereads
the pointer to the next transmit descriptor once with each poll of the hold
indication. The pointer to the next transmit descriptor can be changed while
HOLD = 1 is set. The value of the pointer, (read in the poll where HOLD = 0) is
used as the next descriptor address. If more than 6 IC characters will be sent,
the use of the Transmit Hold (TH) should be considered as an alternative to
using the descriptor hold bit. See Chapter 5.3.2.

PEB 20320

Functional Description

User’s Manual 62 01.2000

Figure 33

IT
D0

44
45

FE
=0

H
=

0
0

=
H

1=
FE

FE
=1

H
=

1

TC
Da

ta
 4

.
.

.
.

...

Da
ta

 1
Da

ta
 2

Da
ta

 3

Tr
an

sm
it

De
sc

rip
to

rs

Da
ta

Se
ct

io
ns

...

FN
UM

1+
1

Da
ta

 3
TC

, T
C,

 T
C,

...
...

..T
C,

 T
C

Po
ll

H=
1?

Po
ll

H=
0

Ne
xt

Tr
an

sm
it

De
sc

r.
De

sc
r.

Tr
an

sm
it

Ne
xt

De
sc

r.
Tr

an
sm

it
Ne

xt

FN
UM

0
FN

UM
1

FN
UM

2

Da
ta

 4

Da
ta

 1
Da

ta
 2

Ti
m

e-
Sl

ot
Bo

un
da

rie
s

TC
,..

...
...

...
...

...
.,T

C
TC

, T
C,

...
...

...
...

.T
C,

FN
UM

2
..

.

..
.

...
...

...
.

..

PEB 20320

Functional Description

User’s Manual 63 01.2000

An activated transmission hold (hold bit in descriptor) prevents the MUNICH32 from
sending more data. If a frame end has not occurred just before, the current frame will be
aborted and an interrupt generated. Afterwards, the interframe time-fill bytes will be
issued until the transmission hold indication is cleared. There is a further transmit hold
(TH) bit in the Channel Specification (CCS) in addition to the hold bit in the descriptor.
Setting the transmit hold (TH) bit by issuing a channel command will prevent further
polling of the transmit descriptor (see Chapter 5.3.2).

This hold bit (CCS.TH) is interpreted in the CD; it causes the transmit formatter to stay
in the idle state and to send interframe time-fill after finishing the current frame. In the
case of a very short frame (< ITBS), this frame will stay in the TF and not be sent until
CCS.TH is removed. (In case of X.30/V.110 the current frame is aborted).

This means that the buffer TB is not emptied from the TF side after the current frame,
but still requests further data from the shared memory until it is filled. In the case of the
descriptor hold on the other hand, the TF empties the TB and there are no further data
requests from the shared memory until the descriptor hold is withdrawn. Then TB is filled
again and the TF is activated only after enough data are provided in the TB to prevent a
data underrun.

The Reaction to the Transmit Hold Bit is now Discussed for the Different Modes in
the Following Sections

Variable Size Frame Oriented Protocols (HDLC, TMB, TMR)

Reaction to a channel specification containing TH = 1

Normal operation

Note: 1. IC = 7EH for HDLC and IFTF = 1
FFH for HDLC and IFTF = 0
00H for TMB or TMR

2. flag = 7EH for HDLC
00H for TMB or TMR

3. FNUM2 is ignored. The number of interframe time-fills sent between the first
frame and the second frame solely depends on the AR low pulse leading to the
action with the channel with TH = 0.

4. The times ∆t1 and ∆t2 are statistical but typically only a few clock cycles.

5. The TH bit (as all channel commands) is not synchronized with TB! (as
opposed to the H-bit in the descriptor) TH acts on the frame currently being
sent, not necessarily on the last frame currently stored in the TB. In the
example, TB may or may not have stored DATA 3 before the action request
with TH = 1 was issued. See Chapter 4.2.5 for a further discussion of this
issue.

6. If TH is handed over to CD outside of a frame, TH = 1 prevents the MUNICH32
from sending the next frame.

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 64

01.2000

 F
ig

u
re 34

ITD04450

FE=0
H = 0

Flag Data 3

. . . .

...

Data 1 Data 2

...

..., 1Data Flag, Ι C,()Frame Frame ()CΙ , Flag

∆ t 1 ∆ t 2

TH=1 TH=0in the Channel Specification
handed over from CM to CD handed over from CM to CD

in the Channel Specification

AR

....

. . . .

, Data 2

Data 3

FNUM2
0=H
1=FE

PEB 20320

Functional Description

User’s Manual 65 01.2000

Fixed Size Frame Oriented Protocol (V.110/X.30)

Reaction to a channel specification containing TH = 1

Normal operation

Note: 1. The times ∆t1 and ∆t2 are statistical but typically only a few clock cycles.

2. The current frame processed, when TH = 1 is handed over to CD is aborted,
only 10 – y, (y = 1, …, 10) octets of it are sent. The device then starts to send
20 + y 00H characters no matter how fast the TH bit is withdrawn. This ensures,
that the peer site is informed about the abort with a loss of synchronism

3. The data section DATA 1 is split in the example; DATA 1(1) is sent in the
aborted frame, all bits that were read into the MUNICH32 with the same access
are discarded (they would have been sent in the next frame(s) if TH = 1 was
not issued) and the device starts the next frame with the bits DATA 1(3) of the
access to DATA 1 that follows the one getting the bits of DATA 1(1).

4. The TH (as all channel commands) is not synchronized with TB. TH acts on
the frame currently sent, not necessarily on the last stored data.

5. If TH is handed over to CD before a frame has started after an abort or after
reset no frame will start.

PEB 20320

Functional Description

User’s Manual 66 01.2000

Figure 35

Time Slot Oriented Protocol (TMA)

Reaction to a channel specification containing TH = 1

Note: 1. TC is the programmed TFLAG for FA = 1
FFH for FA = 0

2. The times ∆t1 and ∆t2 are statistical but typically only a few clock cycles.

3. The TH bit (as all channel commands) is not synchronized with the TB! (as
opposed to the H-bit in the descriptor) TH acts to the data stream currently sent.

ITD04454

FE=0
H = 0

. . . .

...

Data 1

...

10-y Octets

1Data ...

∆ t1
TH=1 in the
Channel

AR

Frame ()(1) 00

Specificaton
handed over
from CM to CD

00 0000

Channel
in theTH=0

2t∆

10 Octets

1DataFrame ()(3)

20+y Octets

...

from CM to CD
handed over
Specificaton

E, S, X, E, S, X,

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 67

01.2000

 F
ig

u
re 36

ITD04452

FE=0
H = 0

Data 3

. . . .

...

Data 1 Data 2

...

FNUM0

1Data TC, ,TC TC,TC,

∆ t 1 ∆ t 2

TH=1 TH=0in the Channel Specification
handed over from CM to CD handed over from CM to CD

in the Channel Specification

AR

,Data 2 ,

Data 3

Time-Slot Boundaries

=
=FE

H 0
1

PEB 20320

Functional Description

User’s Manual 68 01.2000

Variable Size Frame Oriented Modes (HDLC, TMB, TMR)

Reaction to a channel specification containing TH = 1

Silencing of poll cycles for hold.

Note: An AR pulse for an action specification leading to TH = 1 should be issued after
(ITBS + 2) polls of the MUNICH32, where ITBS is the previously programmed
number of long words in the TB reserved for this channel.

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 69

01.2000

 F
ig

u
re 37

ITD04451

FE=1
H = 1

Flag Data 2

. . . .

...

Data 1 Data 2

...

FNUM0

Poll
H=1?

Poll
H=0

FNUM0

..., 1Data Flag,

. . .

Ι C, , CΙ...()Frame Frame ()CΙ , FlagΙ C, ,CΙ CΙ ...,,

Poll
H=1?

Ι ,C ...

No Poll

...

CΙ ,

∆ t 1 ∆ t 2

TH=1 TH=0in the Channel Specification
handed over from CM to CD handed over from CM to CD

in the Channel Specification

AR

....

. . . .

PEB 20320

Functional Description

User’s Manual 70 01.2000

Fixed Size Frame Oriented Protocol (V110/.30)

Silencing of poll cycles by TH = 1

Note: 1. The times ∆t1 and ∆t2 are statistical but typically only a few clock cycles.

2. The TH bit (as all channel commands) is not synchronized with TB! (as
opposed to the H-bit in the descriptor) TH acts to the data stream currently sent.

3. In the example the proper use to silence a channel polling the HOLD bit of the
transmit descriptor is illustrated. The AR pulse is issued after the polling has
started and the H-bit is not reset before polling has stopped by the TH bit.

4. An AR pulse for an action specification leading to TH = 1 should be issued after
(ITBS + 2) polls of the MUNICH32, where ITBS is previously programmed
number of long words in the TB reserved for this channel.

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 71

01.2000

 F
ig

u
re 38

ITD04455

FE=1
H = 1

. . . .

...

Data 1 Data 2

...

10 Octets

1Data ...

Poll
H=1

∆ t 1

TH=1
in the
Channel

AR

Frame ()(1) (2))(Frame Data 1

10-y Octets

00

Specif.
handed
over to CD

H=1
No Poll

H=1 H=0
Poll

00 0000

from CM to CD
handed over
Specif.
Channel
in the
TH=0

2t∆

10 Octets

2DataFrame ()(1)

20+y Octets

E, S, X, E, S, X, E, S, X,

PEB 20320

Functional Description

User’s Manual 72 01.2000

Time Slot Oriented Protocol (TMA)

Reaction to a channel specification containing TH = 1

Note: 1. TC = FFH for TMA and FA = 0
the programmed flag for TMA and FA = 1

2. FNUM2 is ignored. The number of interframe time-fills between the first frame
and the second frame solely depends on the AR low pulse leading to the action
with the channel with TH = 0.

3. The times ∆t1 and ∆t2 are statistical but typically only a few clock cycles.

4. The TH bit (as all channel commands) is not synchronized with TB (as
opposed to the H-bit in the descriptor) TH acts on the data stream currently sent
not necessarily on the last data stored in TB. In the example TB may or may
not have stored DATA 3 before action request with TH = 1 was issued.

5. The data stream is stopped and TC sent after the last byte of DATA 2 is sent.
The stopping is triggered by the FE = 1 bit in the descriptor.

6. If TH is bonded over to CD during interframe time-fill (TC) it prevents the
MUNICH32 from sending further data afterwards.

7. An AR pulse for an action specification leading to TH = 1 should be issued after
(ITBS + 2) polls of the MUNICH32, where ITBS is previously programmed
number of long words in the TB reserved for this channel.

P
E

B
 20320

F
u

n
ctio

n
al D

escrip
tio

n

U
ser’s M

anual
 73

01.2000

 F
ig

u
re 39

ITD04453

FE=1
H = 1

Data 2

. . . .

...

Data 1 Data 2

...

FNUM0

Poll
H=1?

Poll
H=0

FNUM0

... 1Data

. . .

TC, , TC... TC,TC, ,TC TC ...,,

Poll
H=1?

,TC ...

No Poll

...

TC,

∆ t1 ∆ t2

TH=1 TH=0in the Channel Specification
handed over from CM to CD handed over from CM to CD

in the Channel Specification

AR

, ,TC

. . . .

PEB 20320

Functional Description

User’s Manual 74 01.2000

In receive direction the MUNICH32 reads a receive descriptor, calculates the data
address, writes the current receive descriptor address into the CCS, and exchanges data
between the on-chip receive buffer and the external memory. After the data section has
been filled, the MUNICH32 writes the number of stored bytes (BNO) into the descriptor.
If a frame end has occurred the frame status is written into the descriptor and an interrupt
is generated. The frame status includes the CRC check results and transmission error
information like ‘non octet of bits’, ‘aborted frame’, ‘data overflow’, ‘maximum frame
length exceeded’ and ‘frames with less than or equal to two data bytes’. An activated
reception-hold in the descriptor prevents the MUNICH32 from processing the receive
data. The incoming frames are discarded until the hold is deactivated.

Because the MUNICH32 is divided into two non-synchronized parts by the on-chip
buffers, two different kinds of aborting a channel transmission are implemented.

– Normal abort:This abort of a receive or transmit channel is processed in the
formatters of the serial interface. The interframe time-fill code is sent after aborting the
current issued frame. No accesses to the on-chip buffers are carried out, until the
abort is withdrawn. The handling of the link lists and the processing of the buffers by
the DMA controller are not affected by normal abort.

– Fast abort: A fast abort is performed by the DMA controller and does not disturb the
transmission on the serial interface. If this abort is detected the current descriptor is
suspended with an abort status immediately followed by a branching to the new
descriptor defined in the channel specification of the CCS.

For initialization and control the host sets up a Control and Configuration Section (CCS),
including the action specification, interrupt queue specification, time slot assignment and
the channel specification. The host initiates an action, e.g. reconfiguration, change of the
channel mode, reset or switching of a test loop by updating the CCS and issuing an
action request pulse. When the action request pulse is detected by the MUNICH32 it
reads the control start address, then the action specification and, if necessary, additional
information from the CCS. After execution, the action request is acknowledged by an
interrupt.

MUNICH32 indicates an interrupt by activating the interrupt line and storing the interrupt
information including the corresponding channel number in the interrupt queue. The
interrupt queue is a circular buffer; MUNICH32 starts to write the interrupt queue
specification and fills it successively in a circular manner. The host has to allocate
sufficient buffer size and to empty the buffer fast enough in order to prevent overflow of
the queue.

PEB 20320

Functional Description

User’s Manual 75 01.2000

Monitoring functions are implemented in MUNICH32 to discover errors or condition
changes, i.e.

– Receive frame end
– Receive frame abort by overflow of the receive buffer or hold condition or recognized

ABORT flag
– Frame overflow, if a frame has to be discarded because of pending inaccessibility of

the chip memory
– Transmit frame end
– Transmit frame abort (data underrun) by underrun of the transmit buffer or hold

condition or bus cycle error
– Change of the interframe time-fill.
– Loss of synchronism or change of framing bits (V.110, X.30).
– Short frame with no data content detected.

An error or condition change is indicated by an interrupt. The host may react to the
interrupt by either aborting or tristating the specific channel or with a channel
reconfiguration. To prevent underrun of the transmit buffer sufficient buffer size has to
be allocated to the channel.

A more detailed discussion of the receive procedure with examples is provided under the
detailed protocol description in Chapter 2.4.

PEB 20320

Functional Description

User’s Manual 76 01.2000

2.4 Detailed Protocol Description

In the following sections the protocol support of the MUNICH32 is described in detail for
transmit and receive direction separately.

Each section starts with a discussion of the general features proceeds with protocol
variants and options from the channel specification and closes with a description of the
interrupts and special topics.

HDLC

Transmit Direction General Features

In transmit direction

– the starting and ending flag (7EH before and after a frame)
– the interframe time-fill between frames
– the zero insertions (a ‘0’-bit after 5 consecutive ‘1’s inserted within a frame)
– (optional) the Frame Check Sequence (FCS) at the end of a frame

is generated automatically.

Options

The different options for this mode are

– the kind of the interframe time-fill character in the channel specification
– 7EH for IFTF = 0
– FFH for IFTF = 1

– the number of interframe time-fill characters as FNUM in the transmit descriptor. For
the values FNUM = 0, 1, 2 we have
– FNUM = 0 frame 1, 7EH, frame 2 (start flag = end flag)
– FNUM = 1 frame 1, 7EH, 7EH, frame 2
– FNUM = 2 frame 1, 7EH, IC, 7EH, frame 2

– the correction of the number of interframe time-fill characters by 1/8 of the number of
zero insertions by programming FA in the channel specification.
– FA = 0: FNUM from the transmit descriptor is taken directly to determine

the number of interframe time-fill characters as shown in Figure 39.
– FA = 1: FNUM from the transmit descriptor is reduced by 1/8 of the

number of the zero insertions of the frame corresponding to the
transmit descriptor as shown in Figure 40. This allows for a more or

 less constant bit rate transmission for long HDLC frames.

PEB 20320

Functional Description

User’s Manual 77 01.2000

Figure 40

Note: 1. is the biggest integer smaller than .

1. For FNUM – < 0, y = 0

– the kind of Frame Check Sequence (FCS)
two kinds of frame check sequences are implemented by the CRC bit in the
channel specification
CRC = 0: the generator polynomial x16 + 12 + x5 + 1 is used

(2 byte FCS of CCITT Q.921)
CRC = 1: the generator polynomial x32 + x26 + x23 + x22 + x16 + x12 + x11 + …

… x10 + x8 + x7 + x5 + x4 + x2 + x + 1
(4 byte FCS) is used

– the suppression of the automatic generation of the FCS is programmable in
the channel specification:

– CS = 0: FCS generated automatically
CS = 1: FCS generation suppressed

and in the transmit descriptor
CSM = 0: FCS generated automatically if CS = 0 in the

channel specification
CSM = 1: FCS generation suppressed

ITD04579

FE=1 FNUM

Data
Contents

of
Frame 1 Frame 2

of
Contents

Data

7 EH Frame 1 Frame 2

x Zero
Insertions

HE7 7 EH

y+1

[],max (FNUM - 0)y= x
8

x
8

x
8

x
8

PEB 20320

Functional Description

User’s Manual 78 01.2000

Interrupts

The possible interrupts for the mode in transmit direction are:

HI: issued if the HI bit is detected in the transmit descriptor (not maskable)

FI: issued if the FE bit is detected in the transmit descriptor
(maskable by FIT in the channel specification)

ERR: one of the following transmit errors has occurred:
– the last descriptor had H = 1 and FE = 0
– the last descriptor had NO = 0 and FE = 0

(maskable by TE in the channel specification)

FO: one of the following transmit errors have occurred
– a BERR = ‘0’ was detected during a read access to a transmit data section for

this channel
– the MUNICH32 was unable to access the shared memory in time either for new

data to be sent or for a new transmit descriptor.
(maskable by TE in the channel specification)

typical data stream has the form

Example:

HDLC channel with
CS = 0) (FCS generated automatically)
INV = 0 (no inversion)
CRC = 0 (CRC16)
TRV = 00 (required as unused in HDLC mode)
FA = 1 (flag adjustment)
MODE = 11 (HDLC)
IFTF = 1 (interframe time-fill ‘1’s)
INTEL interface
Channel number 1A

… ITF FLAG DATA FCS FLAG ITF …

PEB 20320

Functional Description

User’s Manual 79 01.2000

Figure 41

Note: 1. Data is transmitted according to §2.8 of CCITT recommendation Q.921

2. Note: FCS in the data section is formatted as ordinary data!!!

3. FCS is generated here automatically as CS = 0 and CSM = 0 for the
1st descriptor.

4. There was 1 zero insertion in the 1st frame, so FNUM – = FNUM = 2.
Therefore between the first and the second frame we have
FLAG ITF FLAG and ITF = FFH because IFTF = 1.

ITD04578

A0010002

AA

031

FFFFFFFF

80060801 80030800

31 0

Generate FI, HI-Int.
2000081A

31 0

31 0

31 0

31 0

2000181A
Generate FI-Int.

1DATA

1 Descst nd2 Desc 3 Descrd

0

1

FF

0 0

Address
IncreasesFE=1

HOLD=0
HI=1

NO=1
CSM=0

FNUM=2 FNUM=1
CSM=1

NO=6
HI=0

HOLD=0
FE=1

01111110..... 01010101 00010100010111110 01111110 11111111

FLAG

Time Increases

FLAG 3ITF

Zero Insertion

FCS 2

5FLAGFLAG

0111111011111011111011111011111011111011111011111011111001111110

DATA 28 Zero Insertion 4

011111100101010100010100010111110

FLAG

Zero Insertion

DATA 3

Generate FI-Int.
2000081A

FE=1
HOLD=0

HI=0
NO=3

CSM=1
FNUM=0

00

AAFA 28

00000000

1
8

PEB 20320

Functional Description

User’s Manual 80 01.2000

5. No FCS is generated here as CSM is ‘1’ for the second and third transmit
descriptor. The FCS is supposed to be the last 2 bytes to be transmitted in this
case, their validity is not checked internally.

6. There was 8 zero insertions in the 2nd frame, so FNUM – = FNUM – 1 = 0.
Therefore between the second and the third frame we
have a shared FLAG.

For CS = 1 (CRC select) the transmitted data stream would differ at FCS, FCS would just
be omitted.

For INV = 1 (channel inversion) all bits of the data stream (including FLAG, DATA, FCS,
ITF) would be inverted.

For CRC = 1 (CRC 32) the transmitted data stream would only differ in the FCS, the FCS
would be 1101 0111 1010 0101 1000 0000 0010 0111.

For FA = 0 (no flag adjustment) the transmitted data stream would change only after
DATA 2. The value FNUM = 1 in the second descriptor would alone determine the
number of interframe time-fill characters, the scenario would look like

Figure 42

For IFTF = 0 (ITF flags) the transmitted data stream would only differ at ITF, the 8 ones
would be replaced by 0111 1110.

For Motorola interface the only difference is in the data section

For the first descriptor it ought to be

and for the second

and for the third

31 0

AA

31 0

FF FF FF FF

FF 00

31 0

AA 28 FA

8
8

DATA 2 FLAG FLAG DATA 3

0111 111 0111 111

PEB 20320

Functional Description

User’s Manual 81 01.2000

HDLC

Receive Direction
General Features

In receive direction:

1. The starting and ending flag (7EH before and after a frame) is recognized
and extracted.

2. A change of the interframe time-fill is recognized and reported by an interrupt.
3. The zero insertions (a ‘0’-bit after five ‘1’s within a frame) are extracted.
4. The FCS at the end of a frame is checked, it is (optionally) transferred to the shared

memory together with the data.
5. The number of the bits within a frame (without zero insertions) is checked to be

divisible by 8.
6. The number of bytes within a frame is checked to be smaller than MFL + 1 (after

extraction of ‘0’ insertions).
7. The number of bits within a frame after extraction of ‘0’ insertions is checked

to be greater than (case NSF = 0 only)

8. The occurrence of an abort flag (7FH) ending a frame is checked.

More detailed description of the individual features:

1. a. A frame is supposed to have started if after a sequence of 0111 1110 in the receive
data stream neither FCH nor FDH nor 7EH has occurred. The frame is supposed to
have started with the first bit after the closing ‘0’ of the sequence.

b. A frame is supposed to have stopped if a sequence of 0111 1110 or 0111 1111 is
found in the data stream after the frame has started. The last bit of the frame is
supposed to be the bit preceding the ‘0’ in the above sequences. The cases of
sequences 0111 1110 1111 111 and 0111 1110 0111 1111 are also supposed to
be frames of bit length – 1 and 0 respectively.
A frame is also supposed to have stopped if more than MFL bytes were received
since the start of the frame and it wasn’t stopped yet.

c. The ending flag of a frame may be the starting flag of the next frame (shared flags
supported).

(case NSF = 0 only) check a) 16 for CRC = 0

32 for CRC = 1

(only for CS = 0) check b) 32 for CRC = 0

48 for CRC = 1

(case NSF = 1 & CS = 1 only) check a’) 8 for CRC = x (ignored)

PEB 20320

Functional Description

User’s Manual 82 01.2000

2. The receiver is always in one of two possible interframe time-fill states:
to be called F and O.
The following diagram explains them.
A change from F to O and from O to F is reported by an IFC interrupt.

Figure 43

3. The ‘0’ extraction is also carried out for the last 6 bits before the stopping sequence.
4. The last 16 (CRC = 0) or 32 (CRC = 1) bits of a frame (after extraction of the zero

insertions are supposed to be the FCS of the remaining bits of the frame. (For the case
of a frame with less than or equal to 16 or 32 bits respectively see discussion of 7).
The FCS is always checked, the check is reported in the CRCO bit of the last receive
descriptor of the frame
CRCO = 1: FCS was incorrect
CRCO = 0: FCS was correct.

5. The check is reported in the NOB bit in the last receive descriptor of the frame
NOB = 1: The bit length of the frame was not divisible by 8.
NOB = 0: The bit length of the frame was divisible by 8.
If NOB = 1: The last access to a receive data section of the frame may contain
erroneous bits and shouldn’t be evaluated.

6. The check is reported in the LFD bit in the last receive descriptor of the frame.
LFD = 1: The number of bytes was greater than MFL.
LFD = 0: The number of bytes was smaller or equal to MFL.
Only the bytes up to the

MFL + 1st one for CS =1
MFL – 1st one for CS = 0, CRC = 0
MFL – 3rd one for CS = 0, CRC = 1

are transferred to be stored memory. The bytes of the last access may be erroneous
and shouldn’t be evaluated.

ITD04577

RESET or Receive OFF

O

F

Receive Initialize
Channel Command

111111111111111
in the Data Stream
(15 contiguous "1"s
received) or a
Receive Abort Channel
Command during 15
received Bitssupported)

shared Zeros
received, Flags with
(2 contiguous Flags
in the Data Stream
0111111001111110
011111101111110 or

PEB 20320

Functional Description

User’s Manual 83 01.2000

7. For frames not fulfilling check a) no data are transferred to the shared memory
irrespective of CS.
Only an interrupt with the bit FI, SF and (possibly) ERR is generated.
For frames fulfilling check a) but not check b) data is transferred to the shared memory
but the SF bit in the last receive descriptor is set.

8. The check is reported in the RA bit in the last receive descriptor of the frame
RA = 1: The frame was stopped by the sequence 7FH
RA = 0: The frame was not stopped by the sequence 7FH.
Note: A receive descriptor with RA = 1 may also result from a fast receive abort or a

receive abort channel command or from a receive descriptor with set HOLD bit.

Options

The different options for this mode are:

– The kind of Frame Check Sequence (FCS)
Two kinds of FCS are implemented and can be chosen by CRC bit.
CRC = 0: the generator polynomial x16 + x12 + x5 + 1 is used (2 byte FCS of
CCITT Q.921)
CRC = 1: the generator polynomial
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (4 byte FCS) is
used.

– the transfer of the FCS together with the received data is programmable by the CS bit.
CS = 0: FCS is not transferred to the data section
CS = 1: FCS is transferred to the data section.
Note: FCS is always checked irrespective of the CS bit.

Interrupts

The possible interrupts for the mode in receive direction are:

HI: issued if the HI bit is detected in the receive descriptor (not maskable)

FI: issued if a received frame has been finished as discussed in 1.b of the protocol
features (also for frames which do not lead to data transfer as discussed in 7. of the
protocol features)
(maskable by FIR in the channel spec.)

IFC: issued if a change of the interframe time-fill state as discussed in 2. has occurred.
(maskable by IFC in the channel spec.)

SF: a frame not fulfilling check a) has been detected (maskable by SFE in the
channel spec.)

PEB 20320

Functional Description

User’s Manual 84 01.2000

ERR: issued if one of the following error conditions has occurred:
– FCS was incorrect
– the bit length was greater than MFL
– the frame was stopped by 7FH
– the frame could only be partly stored because of internal buffer overflow of RB
– a fast receive abort channel command was issued
– a receive abort channel command was detected during reception of a frame
– a frame could only be partly transferred to the shared memory because of a

receive descriptor with HOLD bit set
(maskable by RE in the channel spec.)

FO: issued if due to inaccessibility of internal buffer RB
– one ore more complete frames have been lost
– one ore more changes of interframe time-fill state were lost

(maskable by RE in the channel spec.)

Example:

HDLC channel with
CS = 1 (FCS transferred to shared memory)
INV = 0 (no inversion)
CRC = 1 (CRC 32)
TRV = 00 (required as unused in HDLC mode)
FA = x (irrelevant)
MODE = 11 (HDLC)
IFTF = x (irrelevant)
Motorola interface
Channel No. 1D
MFL = 10

PEB 20320

Functional Description

User’s Manual 85 01.2000

Figure 44

ITD04576

031

20080000

031

nd2 Desc

40080000

8800203D

C0031C00

1 Descst

000C0000

31 0

Last Access of
a LFD Frame

Generate HI-Int.

031
CRCO,
NOB,

Generate FI, ERR-Int.
8800123D

should be Ignored

C2 A1 01 03

39 80 3D BC

DATA 2

LFD

4

..... 01111110 1000 0101 1000 0000 1100 0000 1001 1100 0000 00010100 0011

11010011 0100001010111101001101101000001111100001110111100

01111111

1FLAG DATA 1, FCS 1

2 DATA Ignored up to next Flag

Abort Sequence 3

5

PEB 20320

Functional Description

User’s Manual 86 01.2000

Figure 45

ITD04575

031

200C0000

031

rd3 Desc

C0080000

8800303D

C0081800

4 Descth

000C0000

31 0

Last Access of
a NOB Frame

Generate FI, HI-Int.

031

FB49AC00CRCO,
NOB

Generate FI, ERR-Int.
8800123D

should be Ignored

00 AC 49 FB

C0 A4 F2 FA

DATA 2

FCS 2

DATA 3

01111110 0011 0101 1001 0010 1101 1111 00000 0000

FLAG DATA 2

6

2FCS

00110000 0111101011111010001010010

0011 0101 1001 0010 1101 1111 00000 0000

DATA 3FLAG

01111110

0010 0101 0100 1111 0101 11110000 0011

FCS 3

01111110

FLAG

Zero Insertion

(shared)

Zero Insertion

Zero Insertion

Zero Insertion Missing

PEB 20320

Functional Description

User’s Manual 87 01.2000

Figure 46

Note: 1. After Receive Initialization is detected all data are ignored until a flag is
received. The receiver is in the interframe time-fill state ‘0’.

2. After MFL + 1 data bytes are received the further data are ignored (except for
a change of the interframe time-fill state) and are neither stored in the RB nor
reported to the shared memory. The receiver waits for the next flag.

3. Even the abort sequence at the end of the frame will not lead to the RA bit in
the descriptor to be set.

4. Data are formatted according to §2.8 of CCITT Q.921.

5. The FCS is formatted as ordinary data!!!

ITD04574

000C0000

AA 7B A5 01

031

01A57BAA

00140000

31 0

(15 1)
8800083D

31 0

31 0

8800143D

Generate short

FCS 4

5 Descth th6 Desc

C0050200C0050000

RA8

1 1111

DATA Ignored up to next Flag 7 15

E4 XX XX XXXXXXXXE4

10

DATA 4

Generate IFC-Int.

8800083D

Generate IFC-Int.
8800123D

8800103D
Generate FI-Int.

Generate FI, ERR-Int.
(2 Flags)

9

Frame
Interrupt for FCS 5 *

11

1111110101000110011100111010 0111 011101111 1111

x "1"

5

1010 0101 1000 0000 0010 01111101 1110

DATA 4

5FCS

00000000 000000000000000000000000

0101 0101

FCS 4

0111 1110 111 1110

2 Flags with shared 0 FLAG

01111110

01010101

6DATA

01111110

FLAG FCS 6

01111111

Abort Sequence

1101 1110 1010 0101 1000 0000 0010 0111

Generate Short Frame Interrupts
8800163D
8800163D

011111100011111101111111 12

PEB 20320

Functional Description

User’s Manual 88 01.2000

6. LFD is issued and always accompanied by NOB.
CRCO shouldn’t be interpreted for a LFD frame.

7. Here the ending flag of the second frame is the starting flag of the third frame.

8. After an abort sequence data is ignored until a flag is found (except for a
change of the interframe time-fill state). They are neither stored in the RB nor
reported to the shared memory.

9. The last 3 bytes in the last write access to the receive data section of the 5th
descriptor have to be ignored.

10.The 2 flags with a shared 0 in the middle change the original interframe time-
fill state ‘0’ of the receiver to ‘F’. The 2 flags following FCS 5 on the other hand
do not change the interframe time-fill state, as it already was ‘F’.

11.The frame consisting only of 32 times 0 between 2 flags does not pass
check a). It only leads to an interrupt.

12.The 15 × ‘1’ leads to a change of the interframe time-fill state from ‘F’ to ‘0’ even
through it is in a data ignored zone.

13.This frame of length – 1 leads to an interrupt.

For CS = 0 (CRC not select) the descriptor would have looked like

Figure 47

ITD04572

031

20080000

031

0301A1C2

st1 Desc

C0071C00

HI,
8800323D 8800303D

Generate HI,

C0040000

Desc3 rd

00 AC 49 FB

31 0

200C0000

31 0

Last Access of a LFD Frame
should be Ignored

2

FI-Int.
Generate

FI, ERR-Int.

1

PEB 20320

Functional Description

User’s Manual 89 01.2000

Figure 48

Note: 1. Only the 7 leading bytes are reported (the last 4 are supposed to be the FCS
even in this case).

2. It is assumed here for convenience that the first descriptor points to the third
and not to the second descriptor as in the original example.

For INV = 1 (channel inversion) all bits of the data stream (including DATA, FCS, flag,
abort sequence 15 × ‘1’) are interpreted inversely. e.g. ‘1000 0001’ would be interpreted
as flag 15 × ‘0’ would lead to a change from interframe time-fill state ‘F’ to ‘0’ etc.

ITD04573

031

000C0000

031

th4 Desc

C0041800

8800123D

C0014000

5 Descth

000C0000

31 0

C0014200

6 Descth

AA XX XX XX

31 0

00140000

31 0

SF

Last Access of a NOB Frame
should be Ignored

Generate FI, ERR-Int.

031

XXXXXXAACRCO, NOB SF, RA

Interrupts as in
the original Example

PEB 20320

Functional Description

User’s Manual 90 01.2000

For CRC = 0 (CRC 16) the correct FCS e.g. zeros for DATA 4 would be
00001 0100 0101 1110 the 5th descriptor would then be

Figure 49

For Intel interface the only difference is in the receive data sections. They would be

Figure 50

ITD04570

031

000C0000

031

XXFA28AA

th5 Desc

C0034000

ITD04571

03 01 A1 C2

031

FB 49 AC 00

31 0 031

AA7BA501

1st Desc 3 rd Desc th5 Descof of of

XX XX XX E4C0A4F2FA398030BC

PEB 20320

Functional Description

User’s Manual 91 01.2000

TMB

Transmit Direction
General Features

In transmit direction:

– The starting and ending flag (00H before and after a frame)
– The interframe time-fill between frames

is generated automatically.

Options

The different options for this mode are:

– The number of interframe time-fill characters as shown in Figure 26 by choosing
FNUM in the transmit descriptor. For the values FNUM = 0, 1, 2 we have

FNUM = 0 … frame 1, 00H, frame 2 … (start = end flag)
FNUM = 1 … frame 1, 00H, 00H, frame 2 …
FNUM = 2 … frame 1, 00H, 00H, 00H, frame 2 …

Interrupts

The possible interrupts for the mode in transmit direction are identical to those of HDLC.

A typical data stream has the form

ITF DATA ITF DATA

Example

TMB channel with
INV = 0 (no inversion)
CRC = 0 (required)
TRV = 00 (required)
FA = 0 (required)
MODE = 01 (TMB)
IFTF = 0 (required)
Intel interface
Channel number 5

PEB 20320

Functional Description

User’s Manual 92 01.2000

Figure 51

Note: 1. Data is transmitted according to Q.921 §2.8 and fully transparent.

2. A transmit descriptor with NO = 0 and FE = 1 is allowed, one with NO = 0 and
FE = 0 is forbidden.

3. FNUM = 1 leads to 2 FLAGS after DATA 2.

ITD04569

20020000

0

CE AB

031

80000000 80030001

45 23 01

31 0

Generate FI-Interrupt
88001005

31 0 31 0

31 0

88002005
Generate HI-Interrupt

0

0 024 A0 C80 07 35D00

DATA 21DATA
1

88001005
Generate FI-Interrupt

FLAG FLAG

0 0

2 FLAGS

2 3

PEB 20320

Functional Description

User’s Manual 93 01.2000

TMB

Receive Direction
General Features

1. The starting and ending flag (00H before and after a frame) as well as interframe time-
fill is recognized and extracted.

2. The number of bits within a frame is checked to be divisible by 8.
3. The number of bytes within a frame is checked to be smaller than MFL + 1.
4. A frame containing less than 8 bits may be ignored completely by the receiver.

More detailed description of the individual features:

1. a. A frame is supposed to have started if after a sequence ‘0000 0000’ a ‘1’-bit is
recognized. The frame is supposed to have this ‘1’-bit as first bit.

b. A frame is supposed to have stopped if
– either a sequence 0000 0000 1 is found in the data stream after the frame has

started
– or a sequence 0000 0000 is found octet synchronous (i.e. the first bit of the

sequence 00H is the 8 m + 1st bit since the starting ‘1’-bit of 1.a. for an integer m).

In both cases the last bit before the sequence 00H is supposed to be the last bit of the
frame.

2. The check is reported in the NOB bit in the last receive descriptor of the frame.
NOB = 1: The bit length of the frame was not divisible by 8.
NOB = 0: The bit length of the frame was divisible by 8.

3. The check is reported in the LFD bit in the last receive descriptor of the frame.
LFD = 1: The number of bytes was greater than MFL.
LFD = 0: The number of bytes was smaller or equal to MFL.
Only the bytes up to the MFl + 1st one are transferred to the shared memory. The bytes
of the last access to the receive data section of the frame may contain erroneous bits
and shouldn’t be evaluated. LFD is always accompanied by NOB.

Options

There are no options in receive direction for this mode.

PEB 20320

Functional Description

User’s Manual 94 01.2000

Interrupts

The possible interrupts for the mode in receive direction are:

HI: issued if HI bit is detected in the receive descriptor (not maskable).

FI: issued if a received frame has been finished as discussed in 1b) of the protocol
features or a receive abort channel command was detected during reception of a
frame.
(maskable by FIR in the channel spec.)

ERR: issued if one of the following error conditions has occurred
– the bit length of the frame was not divisible by 8
– the byte length was greater than MFL
– the frame could only be partly stored because of internal buffer overflow of RB
– a fast receive abort channel command was issued
– the frame could only be partly transferred due to a receive descriptor with set

HOLD bit.
(maskable by RE in the channel specification)

FO: issued if due to inaccessibility of the internal buffer RB one or more complete
frames have been lost. (maskable by RE in the channel spec.)

Example:

TMB channel with
INV = 0 (no inversion)
CRC = 0 (required)
TRV = 00 (required)
FA = 0 (required)
MODE = 01 (TMB)
IFTF = 0 (required)
MFL = 7
Motorola interface
Channel No. A

PEB 20320

Functional Description

User’s Manual 95 01.2000

Figure 52

ITD04568

00040000

9D 01 XX XX

031

XXXXXXD3

200C0000 20080000

31 0

Generate FI,
8800302A

31 0

31 0

31 0

31 0

8800102A
Generate FI-Int.

DATA 3

1DATA DATA 2

1stDesc Descnd2 3 rd Desc

8800322A

C0020800C0010000C0020000

NOB2

HI-Int. HI,Generate FI, ERR-Int.

Last Access of a NOB Frame
should be Ignored

11110111 01010101 0000 0000 0000 10101101 00101010 0000 0000

DATA Ignored
up to next Framestart

5

FLAG FLAGDATA 5

DATA 4

1000000010111100 0000000 11111110 01111111 11111011 11010101 01001100

10100000

FLAG
synchronous

non octet

4

00000000 10111001 10000000 00000000 00

3

11001011 00000000 10000000

DATA 1 DATA 2 DATA 3FLAG FLAG FLAG

octet
synchronous

octet
synchronous

1

(start) FLAG

PEB 20320

Functional Description

User’s Manual 96 01.2000

Figure 53

Note: 1. After Receive Initialization is detected all data are ignored until the starting
sequence 0000 0000 1 is detected.

2. Data are formatted according to §2.8 of CCITT Q.921.

3. The octet synchronous (end) flag of one frame can be part of the (start) flag of
the next frame. Between DATA 1 and DATA 3 they are identical (shared flags
supported).

4. Here the sequence 0000 0000 1 is detected non-octet synchronously.
Therefore the frame belonging to DATA 3 is supposed to have ended non-octet
synchronously (NOB set in the 3rd descriptor).

5. After MFL + 1 data bytes the further data are ignored and are neither stored in
the RB nor reported to the shared memory. The receiver waits for the next
sequence 0000 0000 1 to come.

6. If a receive descriptor is full (4th desc.) the MUNICH32 branches to the next
receive descriptor (5th desc.) even if no further data are to be given to the
shared memory.

ITD04567

031

20080000

031

DFFE7F01DATA 4

th4 Desc

40080000

Generate HI-Int.
8800202A 8800122A

C0000C00

Desc5 th

00040000

31 0

8800102A
Generate FI-Int.

C0020000

Desc6 th

B5 54 XX XX

31 0

00FC0000

31 0

LFD,

Last Access of a LFD Frame
should be Ignored

Generate FI,

6

NOB

ERR-Int.

DATA 5

PEB 20320

Functional Description

User’s Manual 97 01.2000

For INV = 1 (channel inversion) all bits of the data stream (including DATA, FLAG) are
interpreted inversely e.g. 1111 1111 0 would be interpreted as starting sequence then.

For Intel interface the only difference is in the receive data sections. They would be

Figure 54

ITD05034

XX XX XX D3

031

DF FE 7F 01

31 0 031

B554XXXX

of 2 Descnd of 4 Descth thof 6 Descstof 1 Desc
31 0

9D01XXXX

PEB 20320

Functional Description

User’s Manual 98 01.2000

TMR

Transmit Direction
General Features

In transmit direction

– the starting and ending flag (00 00H or 0 00H between frames) is generated
automatically.

Options

The different options for this mode are

– the number of interframe time-fill characters as shown in Figure 29 by choosing
FNUM in the transmit descriptor. For the values 0, 1, 2 we have

FNUM = 0 … frame 1, 000H, frame 2 …
FNUM = 1 … frame 1, 00H, 00H, frame 2 …
FNUM = 2 … frame 1, 00H, 00H, 00H, frame 2 …

By choosing FNUM = 0 and setting the last transmitted nibble in the transmit data section
to 0H frames of effective length n + 1/2 bytes can be sent as required by GSM 08.60.

Interrupts

The possible interrupts for the mode in the transmit direction are identical to those of
HDLC.

A typical data stream has the form

ITF DATA ITF DATA

Example:

TMR channel with
INV = 0 (no inversion)
CRC = 1 (required)
TRV = 00 (required)
FA = 0 (required)
MODE = 01 (TMR)
IFTF = 0 (required)
Intel interface
Channel No. 5

PEB 20320

Functional Description

User’s Manual 99 01.2000

Figure 55

Note: 1. Data is transmitted according to Q.921 §2.8 and fully transparent.

2. A transmit descriptor with NO = 0 and FE = 1 is allowed, one with NO = 0 and
FE = 0 is forbidden.

3. FNUM = 1 leads to 2 FLAGS after DATA 2.

ITD04566

20020000

0

0E AB

031

80000000 80030001

45 23 01

31 0

Generate FI-Interrupt
88001005

31 0 31 0

31 0

88002005
Generate HI-Interrupt

0

0 024 A0 C80 07 05D00

DATA 21DATA
1

88001005
Generate FI-Interrupt

FLAG FLAG

0 0

2 FLAGS

2 3

Frame of Effective
Length 1 Byte/21

PEB 20320

Functional Description

User’s Manual 100 01.2000

TMR

Receive Direction
General Features

1. The starting and the ending flag (00 00H) is recognized. Interframe time-fill, both
characters of the starting flag and the last character of the ending flag is extracted.

2. The number of bits within a frame is checked to be divisible by 8.
3. The number of bytes within a frame is checked to be smaller than MFL.

More detailed description of the individual features

1. a. A frame is supposed to have started after a sequence of 16 zeros a ‘1’-bit is
recognized. The frame is supposed to have this ‘1’-bit as first bit.

b. A frame is supposed to have stopped if
– either a sequence of 16 ‘zeros’ and a ‘one’ is found in the data stream after the

frame has started
– or a sequence of 16 zeros is found octet synchronous (i.e. the first bit of the

sequence 00 00H is the 8m + 1st bit since the starting ‘1’-bit of 1.a. for an
integer m).

In both cases the eighth bit of the sequence 00 00H is supposed to be the last bit of
the frame.

2. The check is reported in the NOB bit in the last receive descriptor of the frame.
NOB = 1 the bit length of the frame was not divisible by 8.
NOB = 0 the bit length of the frame was divisible by 8.
If NOB = 1 the last byte of the last access to a receive data section of the frame may
contain erroneous bits and shouldn’t be evaluated. This does not affect the reception
of frames with n + 1/2 octets

3. The check is reported in the LFD bit in the last receive descriptor of the frame.
LFD = 1 the number of bytes was greater than MFL.
LFD = 0 the number of bytes was smaller or equal to MFL.
MFL + 1st one are transferred to the shared memory. The bytes of the last access to
the receive data section of the frame may contain erroneous bits and shouldn’t be
evaluated.
LFD is always accompanied by NOB.

PEB 20320

Functional Description

User’s Manual 101 01.2000

Options

There are no options in receive direction for this mode.

Interrupts

The possible interrupts for the mode in receive direction are identical to those of TMB.

Example:

TMR channel with
INV = 0 (no inversion)
CRC = 1 (required)
TRV = 00
FA = 0
MODE = 01 (TMR)
IFTF = 0 (required)
MFL = 7
Motorola interface
Channel No. 15

PEB 20320

Functional Description

User’s Manual 102 01.2000

Figure 56

ITD04565

00040000

9D 01 00 XX

031

XXXX00D3

200C0000 00080000

01 00 3D AF

31 0

Generate FI, HI-Int.
88003035

31 0

31 0

31 0

31 0

88001035
Generate FI-Int.

031

20080000

031

569AFB8FDATA 4

DATA 3

1DATA DATA 2

1stDesc Descnd2 3 rd Desc

th4 Desc

88001235

C0060800C0020000C0030000

03 XX XX XX

NOB

Last Byte of
a NOB Frame
should be Ignored

40080000

Generate HI-Int.
88002035 88003235

FI,

C0000C00

Desc5 th

20040000

31 0

88001035
Generate FI-Int.

C0030000

Desc6 th

BB 5E 00 XX

31 0

00080000

31 0

LFD,

Last Access of a LFD Frame
should be Ignored

Generate

6

5

NOB

HI, ERR-Int.

Generate FI, ERR-Int.

DATA 5

(end) FLAG
synchronousoctet

5DATA

11011101 01111010 00000000 00000000

4DATA

00000000000000001111111111011011110111011111011111110011

0110101011110001 11011111 010110010000

synchronous FLAG
non octet

00000000

2DATA

000000001100101100000000

2(end) FLAG

00000000

(start) FLAG

.... 00000000 00000000

(start) FLAG

1

octet synchronous
FLAG1DATA

3

1000000010111001

000000001100000011110101101111000000000010000000

3DATA

4

up to next Framestart
DATA Ignored

0000

octet synchronous

PEB 20320

Functional Description

User’s Manual 103 01.2000

1. After receive initialization is detected all data are ignored until a starting sequence
(16 ‘zeros’, ‘one’) is detected.

2. The octet synchronous (end) flag of one frame can be part of the (start) flag of the next
frame.
Note, that the first 00H character of the end flag is stored in the receive data section
as ordinary data and is included in BNO.
Between DATA 2 and DATA 3 the start and end flag are identical (shared flags
supported).

3. Here the start sequence is detected non-octet synchronously within a frame.
Therefore the frame belonging to DATA 3 is supposed to have ended non-octet
synchronously (NOB set in the 3rd descriptor).

4. After MFL + 1 data bytes the further data are ignored and are neither stored in the RB
nor reported to the shared memory.

5. Data are formatted according to §2.8 of CCITT Q.921.
6. If a receive descriptor is full (4th descriptor) the MUNICH32 branches to the next

receive descriptor (5th descriptor) even if no further data are to be given to the shared
memory.

For INV = 1 (channel inversion) all bits of the data stream (including DATA, FLAG) are
interpreted inversely e.g. 16 ‘ones’, ‘zero’ is interpreted as starting sequence then.

For Intel interface the only difference is in the receive data sections. They would be

Figure 57

ITD05035

XX XX 00 D3

031

56 9A FB 8F

31 0 031

BB5E00XX

nd th thof 1 Descst

31 0

9D0100XX

rd

031

01003DAF
XX XX XX 03

of 2 Desc of 3 Desc of 4 Desc of 6 Desc

PEB 20320

Functional Description

User’s Manual 104 01.2000

TMA

Transmit Direction
General Features

In the transmit direction

– a slot-synchronous transparent data transmission
– a high impedance overwrite for the masked bits in the slot
– a programmable number of programmable fill characters between data

(also slot synchronous)

is generated automatically.

Options

The different options for this mode are

– The value of the fill-character can be programmed for FA = 1 in the channel
specification. The fill-character (TC) is then programmed in the TFLAG. For FA = 0 the
fill character is FFH and TFLAG has to be set to 00H. If subchanneling is chosen (not
all fill/mask bits of the channel are ‘1’) FA must be set to ‘0’.

– The number of inter-data time-fill characters as shown in Figure 33 by choosing
FNUM = 0, 1, 2 we have

FNUM = 0 … DATA 1, TC, DATA 2 …
FNUM = 1 … DATA 1, TC, TC, DATA 2 …
FNUM = 2 … DATA 1, TC, TC, TC, DATA 2 …

Interrupts

The possible interrupts for this mode in transmit direction are identical to those of HDLC.

PEB 20320

Functional Description

User’s Manual 105 01.2000

Example 1:

(no subchanneling by fill/mask bits)

TMA channel with
TFLAG = B2H
INV = 0 (no data inversion)
CRC = 0 (required)
TRV = 00 (required)
FA = 1 (flag filtering)
MODE = 00 (TMA)
IFTF = 0 (required)
All fill-mask bits are ‘1’ for this channel (no high impedance overwrite)
Intel interface
Channel no. D

Figure 58

Note: 1. Data are formatted according to §2.8 of Q.921. The TC is transmitted MSB
(bit 15) first though!!!

2. FNUM = 0 in the second descriptor leads to the insertion of the TC after
DATA 2, FNUM = 1 in the third descriptor to the insertion of 2 TCs.

ITD04564

20020000

0

XX XX D1 AB

031

361200XX

A0030000 80010001

XX XX XX F2

31 0

Generate HI-, FI-Interrupt
8800300D

31 0

31 0

31 0

31 0

8800200D
Generate HI-Interrupt

031

00030000

031

D12D32XX

0 0 0

DATA 4DATA 31DATA DATA 2

1st Desc Descnd2 3 rd Desc th4 Desc

4B

0707

4 C8 B

7 0

B 2

7 0

B 2

7 0

4 F

7 0

B 2

7 0

0 0

7 0

4 8

7 0

6 CB85D

7 00Boundaries
Time-Slot

Bit No
7 0 7 0

..........

DATA 21DATA 4DATADATA 31
2

TC 2 TCs

For INV=1 DATA and TC would be Inverted

PEB 20320

Functional Description

User’s Manual 106 01.2000

For INV = 1 the data stream would be inverted completely

Figure 59

For FA = 0 TFLAG has to be programmed to 00H and the data stream would be

Figure 60

For Motorola mode the data sections leading to the same data stream would have been

Figure 61

DATA 1 DATA 2 TC DATA 3 2 TCs DATA 4

… 2A 74 93 B7 FF 4D B0 4D 4D 74 4B B3 …

DATA 1 DATA 2 TC DATA 3 2 TCs DATA 4

D5 8B 6C 48 00 FF 4F FF FF 8B B4 4C

ITD05036

36 12 00 XX

031

D1 2D 32 XX

31 0

thof 1 Descst

31 0

XXXXD1AB

rd

031

XXXXXXF2

of 2 Descnd of 3 Desc of 4 Desc

PEB 20320

Functional Description

User’s Manual 107 01.2000

Example 2:

(subchanneling by fill/mask bits)

TMA channel with
TFLAG = 00H (required for this case)
INV = 0 (no data inversion)
CRC = 0 (required)
TRV = 00 (required)
FA = 0 (required for subchanneling)
MODE = 00 (TMA)
IFTF = 0 (required)
Intel interface
Channel no. D

Figure 62

ITD04563

20020000

0

XX XX D1 AB

031

361200XX

A0030000 80010001

XX XX XX F2

31 0

Generate HI-Interrupt
8800200D

31 0

31 0

31 0

31 0

8800200D
Generate HI-Interrupt

031

00030000

031

D12D32XX

0 0 0

DATA 4DATA 31DATA DATA 2

1st Desc Descnd2 3 rd Desc th4 Desc

PEB 20320

Functional Description

User’s Manual 108 01.2000

Figure 63

Note: Example 2 uses the same descriptors as example 1. Those bits in the data stream
that are at places where fill/mask is ‘zero’ are overwritten by ‘Z’ i.e. high
impedance. In all other protocols bits of the data stream are not overwritten by
fill/mask zero bits.
Instead the whole data stream is sent at fill/mask one bits for all other protocols.

IT
D0

45
62

0
1

2
3

4
5

6
7

Sl
ot

 B
ou

nd
ar

ie
s

Fi
ll/

M
as

k
H

ig
h

Im
p.

 O
ve

rw
rit

e

Ex
te

rn
al

 D
at

a

In
te

rn
al

 D
at

a

1
1

1
0

1
1

1

1
1

1
1

1
1

Z
1

1
1

0
1 1

0
1

0
0

1

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

Bi
t N

o

1
0

1
1

1
1

1

Z

1

0
0

0
0

Z
0

1

111

111
1

1
1

1
0

0
1

0
Z

D
AT

A
3

(4
F)

B4
(8

B
4

D
AT

A
TC

s
4C

)

1
1

1
0

0

0
0

Z
Z

1
1

1
1

1

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0 Z

1
0

1
0

0
1

1

Z
Z

Z
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

0
0

0
1

1
1

1
1

0

1
1

1
1

1
1

1

0
0 0

0
0

00
0

0

1

(F
F

FF
)

2

IT
D0

45
61

0
1

2
3

4
5

6
7

Sl
ot

 B
ou

nd
ar

ie
s

Fi
ll/M

as
k

Hi
gh

 Im
p.

 O
ve

rw
rit

e

Ex
te

rn
al

 D
at

a
(T

DA
TA

)

In
te

rn
al

 D
at

a

1
0

1
0

1
0

0
0

0
0

1
1

1
1

1
1

1
1

Z
1

1
0

1
Z

1
0

Z
Z

1
Z

0
1

1
0

0
1

0 1
1

0
1

0
1

0
1

1
0

1
1

1
0

1
0

1
0

0

0
1

1
1

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

Bi
t N

o

1
1

1
0

1
0

1

0

1
1

1
1

1

0
0

0

0
0

0
0

0

0
0

0

Z
Z

Z
Z

Z
Z

Z
01

1
1

0
0

0
0

0
0

0
0

0

Z
0

1
0

Z
Z

Z
0

0
0

0
0

0

1 1
111

111

111

111

111
1

1
0

0

0
1

1

0
Z

Z

DA
TA

1
(D

5
8B

)
48

(6
C

2
DA

TA
TC

(F
F)

00
)

PEB 20320

Functional Description

User’s Manual 109 01.2000

TMA

Receive Direction
General Features

In the receive direction

– a slot synchronous transparent data reception
– a ‘1’ overwrite for masked bits in the slot
– for FA = ‘1’ a slot synchronous programmable flag extraction

is performed automatically.

Options

The different options for this mode are:

– the programmable character TC to be extracted for FA = ‘1’ is TFLAG. For FA = ‘0’
nothing is extracted. If subchanneling is chosen (not all fill/mask bits of the channel
are ‘1’) FA must be set to ‘0’.

Interrupts

The possible interrupts for the mode in receive direction are:

HI: issued if the HI bit is detected in the receive descriptor (not maskable).

ERR: issued if a fast receive abort channel command was issued.
(maskable by RE in the channel spec.)

FO: issued if data could only partially stored due to internal buffer overflow of RB.
(maskable by RE in the channel spec.)

Example 1:

(no subchanneling)

TMA channel with
TFLAG = D7
INV = 0 (no channel inversion)
CRC = 0 (required)
TRV = 00 (required)
FA = 1
MODE = 00 (TMA)
IFTF = 0
Motorola interface
Channel No. E

PEB 20320

Functional Description

User’s Manual 110 01.2000

Figure 64

Note: The FE bit is never set in a receive descriptor.
The data are formatted according to §2.8 Q.921.

For FA = 0 (and therefore TFLAG = 00H)

The descriptor would be

Figure 65

ITD04560

00040000
40040000

6B F5 BD 00

031

1EBEC614

40040000
20040000

31 0

Generate HI-Interrupt
8800202E

31 0

31 0

Slot
Boundaries

0 07

D 6 D 7 FA

07

DB

07

00

07

7D

07

7D

07

82

07

36

07

7D 87

7 0 7 0

7 D

Octet
Synchr.

TC TCs
Synchr.
2 Octet

TC
Synchr.
Octet Not

Octet
Synchr.

TC not Filtered

ITD04559

00040000
40040000

6B EB F5 BD

031

14EBEB00

40040000
20040000 00040000

40040000

C6 EB BE 1E

31 0

Generate HI-Interrupt
8800202E

31 0

31 0

31 0

31 0

PEB 20320

Functional Description

User’s Manual 111 01.2000

For INV = 1 the receiver filters the inverse of the TFLAG as TC out of the data stream
and inverts the data (only the octet synchronous 28H would be filtered).

For Intel interface the data sections would be

for the first descriptor and

for the second.

Example 2:

(with subchanneling)

TMA channel with
TFLAG = 00H (required because of subchanneling)
INV = 0 (no channel inversion)
CRC = 0 (required)
TRV = 00 (required)
FA = 0 (required because of subchanneling)
MODE = 00 (TMA)
IFTF = 0
Motorola interface
Channel No. E

00 BD F5 6B

1E BE C6 14

PEB 20320

Functional Description

User’s Manual 112 01.2000

Figure 66

ITD04558

1 1

00040000
40040000

00 EF F7 D6

031

1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1

Slot Boundaries

Fill/Mask
"one" Overwrite

External Data
(RDATA)

Internal Data

For INV=1

100101001001011101100110

1111111

101111011011 011111111

00000000

0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 10 0

11 0 1 1 1 1 0 1 1 0

31 0

PEB 20320

Functional Description

User’s Manual 113 01.2000

V.110/X.30

Transmit Direction
General Features

In transmit direction

– the synchronization pattern for V.110/X.30 frame as shown in Table 1.
– the framing for the different data rates with programmable E-, S-, X-bits
– sending ‘0’ before all frames

is performed automatically.

Table 1
Synchronization Pattern for V.110/X.30-Frames

The E-, S-, X-bits are fed into the data stream by special transmit descriptor (as shown
in Figure 30), they can only change from one 10-octet frame to the next, not within a 10-
octet frame.

The data from the data sections are supposed to come in the form:

31 0

1 1 B6 B5 B4 B3 B2 B1 1 1 B12 B11 B10 B9 B8 B7 1 1 B18 B17 B16 B15 B14 B13 1 1 B24 B23 B22 B21 B20 B19

(for Motorola mode),
31 0
1 1 B24 B23 B22 B21 B20 B19 1 1 B18 B17 B16 B15 B14 B13 1 1 B12 B11 B10 B9 B8 B7 1 1 B6 B5 B4 B3 B2 B1

(for Intel mode).

where for 600 bit/s e.g. B1 to B6 belong to the first 10-octet frame, B7 to B12 belong to
the second 10-octet frame, etc.

Octet No. 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9
10

0 0 0 0 0 0 0 0
1
1
1
1
1
1
1
1
1

PEB 20320

Functional Description

User’s Manual 114 01.2000

Options

The different options for this mode are:

– the framing pattern, as shown in Table 2 to Table 5, is programmed by the bits TRV.

Interrupts

HI: issued if the HI bit is detected in the transmit descriptor (not maskable)

ERR: if one of the following transmit errors has occurred
– the last descriptor had FE = 1 (leads to an abort of the transmit data,

see Figure 31)
– the last descriptor had H = 1 (see Figure 29)
– the last descriptor had NO = 0

(maskable by TE in the channel spec.)

FO: one of the following transmit errors has occurred
– a BERR = ‘0’ was detected during a read access to a transmit data section for

this channel
– the MUNICH32 was unable to access the shared memory in time either for new

data to be sent or for a new descriptor.
(maskable by TE in the channel spec.)

PEB 20320

Functional Description

User’s Manual 115 01.2000

Example

X.30/V110 channel with
CS = 0 (required)
INV = 0
CRC = 0
TRV variable (all values shown in examples)
FA = 0 (required)
MODE = 10 (V.110/X.30)
Intel interface
Channel No. 1F

Figure 67

Note: The first transmit descriptor must have the V.110-bit set.

ITD05037

00028000

0

75 40 00 00

031

C3D6FAXX

20030000 20018000

8A 80 00 00

31 0

Generate HI-Interrupt
8800201F

31 0

31 0

31 0

31 0

031

00030000

031

C0E2D1XX

0 0 0

DATA 2E, S, X 21E, S, X DATA 1

880201F
Generate HI-Interrupt

PEB 20320

Functional Description

User’s Manual 116 01.2000

TRV = 00
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1
1 0 1 0 1 1 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 0
1 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1
1 0 1 0 1 1 1 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 1
1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1
1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1
1 0 0 0 0 0 0 1
1 0 0 1 1 1 1 0
1 1 1 1 1 0 0 1
1 0 0 0 0 0 0 0

D6 = 11 0 1 0 1 1 0
B6B5B4B3B2B1

FA = 11 1 1 1 0 1 0
B6B5B4B3B2B1

Change of E-, S-, X-bits

SA
X

SB
1 E1E2E3E4E5E6E7

PEB 20320

Functional Description

User’s Manual 117 01.2000

TRV = 01

TRV = 10

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 0
1 1 1 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 1 0 1 1 1 0
1 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 0
1 1 1 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0
1 1 1 0 0 0 0 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 0 1 0 1 1 1 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 1 1 1 1 0
1 1 0 1 0 0 0 1
1 1 1 1 1 0 0 1
1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0

E2 = 1 1 1 0 0 0 1 0
B6B5B4B3B2B1

D1 = 1 1 0 1 0 0 0 1
B6B5B4B3B2B1

Change of E-, S-, X-bits

FA (last byte of DATA 1)→ 1 1 1 1 1 0 1 0

B6B5B4B3B2B1

1 1 0 0 0 0 0 0
B6B5B4B3B2B1

C0 (first byte of DATA 2) →

SA
X

SB
1 E1E2E3E4E5E6E7

0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1
1 0 0 1 1 1 1 0
1 0 0 1 1 0 0 1
1 0 1 0 1 1 1 0
1 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1
1 0 0 0 0 1 1 0
1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 0
1 1 0 1 0 0 0 1
1 1
1 0
1 1
1 0

SA
X

SB
1 E1E2E3E4E5E6E7

E2 = 1 1 1 0 0 0 1 0
B6B5B4B3B2B1

D1 = 1 1 0 1 0 0 0 1
B6B5B4B3B2B1

Change of E-, S-, X-bits

PEB 20320

Functional Description

User’s Manual 118 01.2000

TRV = 11

For INV = 1 (channel inversion) all bits are inverted. For Motorola mode the data sections
would have to have the form to yield the same output data.

Figure 68

0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 0 1 1 0 1 0 1
1 0 1 0 1 1 1 0
1 0 0 0 0 0 0 1
1 0 1 0 1 1 1 0
1 0 1 0 0 0 1 0
1 1 0 0 0 1 0 1
1 0
1 1

Change of E-, S-, X-bits

ITD05038

C3 86 FA XX

031

C0 E2 D1 XX

31 0

DATA 1E, S, X 1

31 0

75400000 E, S, X 2

031

8A800000
XX XX 00 03

DATA 2

PEB 20320

Functional Description

User’s Manual 119 01.2000

V.110/X.30

Receive Direction
General Features

In receive direction

– the starting sequence (00H followed by a ‘1’-bit) after initialization of
loss of synchronism is detected.

– the synchronization pattern is monitored, after 3 consecutive
erroneous frames a loss of synchronism is detected.

– a change of E-, S-, X-bits is monitored and reported by an interrupt.
– the data bits are extracted and written into the data section.

More detailed description of the individual features:

1. and 2. the receiver can be in one of 2 states:

Figure 69

Data extraction and monitoring of a change of E-, S-, X-bits and synchronization pattern
is only performed in synchronized state.

In the asynchronous state the receiver waits for the synchronization patter. The ‘1’-bit is
then interpreted as bit 1 of octet 2.

3. During the synchronized state a change of E, S, X-bits from one frame to the next and
even within a frame (for SA, SB bits) is monitored. Only one interrupt per frame is
reported even if SA e.g. changes 3 times within the frame. The E-, S-, X-bits reported
in the interrupt are S9 for SB and S8 for SA and the second occurrence of X for X.

4. The bits written into the data section are marked by O in Table 2 to Table 4. As
shown, bits repeated in the serial data are only strobed than at their last instance.

ITD05039

RESET

Unsynchronous State

Synchronous State

3 Consecutive Erroneous Frames
(with a Frame Error)by a "1" bit

8 * "0" bit followed

PEB 20320

Functional Description

User’s Manual 120 01.2000

Table 2
Framing for Networks with 600-bit/s Data Rate
Intermediate Rate = 8 Kbit/s, i.e. Subchannelling with Only 1 Fill/Mask Bit Set

Octet No. 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9
10

0 0 0 0 0 0 0 0
1 B1 B1 B1 B1 B1 B1 S1
1 B1 B1 B2 B2 B2 B2 X
1 B2 B2 B2 B2 B3 B3 S3
1 B3 B3 B3 B3 B3 B3 S4
1 E1 E2 E3 E4 E5 E6 E7
1 B4 B4 B4 B4 B4 B4 S6
1 B4 B4 B5 B5 B5 B5 X
1 B5 B5 B5 B5 B6 B6 S8
1 B6 B6 B6 B6 B6 B6 S9

Table 3
Framing for Networks with 1200-bit/s Data Rate
Intermediate Rate = 8 Kbit/s, i.e. Subchannelling with Only 1 Fill/Mask Bit Set

Octet No. 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9
10

0 0 0 0 0 0 0 0
1 B1 B1 B1 B1 B2 B2 S1
1 B2 B2 B3 B3 B3 B3 X
1 B4 B4 B4 B4 B5 B5 S3
1 B5 B5 B6 B6 B6 B6 S4
1 E1 E2 E3 E4 E5 E6 E7
1 B7 B7 B7 B7 B8 B8 S6
1 B8 B8 B9 B9 B9 B9 X
1 B10 B10 B10 B10 B11 B11 S8
1 B11 B11 B12 B12 B12 B12 S9

PEB 20320

Functional Description

User’s Manual 121 01.2000

They are grouped together in the form:

31 0

1 1 B6 B5 B4 B3 B2 B1 1 1 B12 B11 B10 B9 B8 B7 1 1 B18 B17 B16 B15 B14 B13 1 1 B24 B23 B22 B21 B20 B19

(for Motorola mode)

31 0

1 1 B24 B23 B22 B21 B20 B19 1 1 B18 B17 B16 B15 B14 B13 1 1 B12 B11 B10 B9 B8 B7 1 1 B6 B5 B4 B3 B2 B1

(for Intel mode)

where for the 600 bit/s e.g. B1 to B6 belong to the first 10-octet frame, B7 to B12 belong
to the second 10-octet frame etc.

Table 4
Framing for Networks with 2400-bit/s Data Rate
Intermediate Rate = 8 Kbit/s, i.e. Subchannelling with Only 1 Fill/Mask Bit Set

Octet No. 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

10

0 0 0 0 0 0 0 0
1 B1 B1 B2 B2 B3 B3 S1
1 B4 B4 B5 B5 B6 B6 X
1 B7 B7 B8 B8 B9 B9 S3
1 B10 B10 B11 B11 B12 B12 S4
1 E1 E2 E3 E4 E5 E6 E7
1 B13 B13 B14 B14 B15 B15 S6
1 B16 B16 B17 B17 B18 B18 X
1 B19 B19 B20 B20 B21 B21 S8
1 B22 B22 B23 B23 B24 B24 S9

Table 5
Framing for Networks with 4800-, 9600-, 19200-, 38400-bit/s Data Rate
Intermediate Rate = 8, 16, 32, 64 Kbit/s, i.e. Subchannelling with 1, 2, 4, 8 Fill/Mask
Bit Set

Octet No. 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

10

0 0 0 0 0 0 0 0
1 B1 B2 B3 B4 B5 B6 S1
1 B7 B8 B9 B10 B11 B12 X
1 B13 B14 B15 B16 B17 B18 S3
1 B19 B20 B21 B22 B23 B24 S4
1 E1 E2 E3 E4 E5 E6 E7
1 B25 B25 B27 B29 B29 B30 S6
1 B31 B32 B33 B35 B35 B36 X
1 B37 B36 B39 B41 B41 B42 S8
1 B43 B44 B45 B47 B47 B48 S9

PEB 20320

Functional Description

User’s Manual 122 01.2000

Options

The different options for this mode are the framing pattern as shown in Table 2 to
Table 5 is programmed by the bits TRV.

Interrupts

The possible interrupts for this mode are

FRC: issued if the receiver has detected a change of S-, X-, E-bits; the value of the bits
E7, …, E1, S8 for SA and S9 for SB and the second occurrence of X within the 10-
octet frame is reported within the same interrupt.
(maskable by CH in the channel specification

HI: issued if the HI bit is detected in the transmit descriptor (not maskable).

ERR: issued if one of the following receive errors has occurred:
– a fast receive abort channel command was issued (this leads to a setting of the

RA bit in the status byte)
– data could only partly be stored due to internal buffer overflow of RB
– 3 consecutive frames had an error in the synchronization

pattern (loss of synchronism)
– the HOLD bit in the receive descriptor was detected (this leads to a setting of the

RA bit in status in the receive descriptor).
 (maskable by RE in the channel specification)

FO: issued if due to inaccessibility of the internal buffer (RB) one or more changes of
E-, S-, X-bits and/or loss of synchronism information have been lost.
(maskable by RE in the channel specification)

Example

V.110/X.30 channel with
CS = 0 (required)
INV = 0
CRC = 0
TRV = 00 (600 bit/s)
FA = 0
MODE = 10 (V.110/X.30)
Motorola interface
Channel No. D

PEB 20320

Functional Description

User’s Manual 123 01.2000

Figure 70a

ITS08219

0 0 0 0 0000

0 0 0 0. ..

0 0 0 00001
1 0 0 001 1 1

MUNICH32 waits for synchronization after reset

11 01 1 1 10 0 111 01 1 0 E9 H
B3B4B6 B2 B1B50 111 01 10

011 1
111 1

11 1 1

11 10
0 11 1

11 00
11 1 1

0 01 1
110 0

11 00

Reported as X
Reported as SA
Reported as SB

0 0
00 1

100
111 1

0 01 1

1 0
01

11 1
11 1 1

11 1 0
0 01 0

0 1111 01 1
111001

1 0 0 0 000
0 0 00000 1

Error in synchronization pattern

B5 B1B2B6 B4 B3
HCA010 01 1 10

No change of E, S, X Bits

1
1 1

0000

00
000

0 0 00

No change of E, S, X Bits

111 00 0 D2H
B3B4B6 B2 B1B5

Error in synchronization pattern

111 1

0 01 1

11 1 1

1 1 0
1

1
111

1 0 0 0 000
0 0 0 00000

11 1 1
11 1 1
11 1 1
11 1
111 1 1
11 1 1
11 1 1
11 1 1
11

1 11
10 0

000
1

0
11

1 1

11
11 1 11 1

1 0

Reported as SA

01
B5 B1B2B6 B4 B3

HFA01 1 11 1

Change of E, S, X Bits; but SA is still reported as ’1’0

1

11 1

11 1

0

Error in synchronization pattern

00

0 00
1

111

111
1

0 0 0 0 0000
0 000

000 0
0 000

000 0 0
000

00
0 0
0 0
0 00

0 0
0 0
0 0
0 0 0

PEB 20320

Functional Description

User’s Manual 124 01.2000

Figure 70b

ITS08220

Error in synchronization pattern

1 0 0 0
0 0 0 00000

1

0 011 111 1
1 0 0 0 000 1

10 0 00001

111 11 0
1 0 0 0 000 1

1 1 11
1

1111 1 11 1
1111 1 11 1
1111 1 11 1
1111 1 11 1
1111 1 11 1
1111 1 11 1
1111 1 11 1
1111 1 11 1
1111 1 11 1

0 0 0 0 0000
0 0 00001

1 1 1 1

EDH11 1
011 1

111 1

11 00

11 1 1

11 111 1 1 1

Error in synchronization pattern

No change of E, S, X Bits

Change of E, S, X Bits

HFF

1 11
1 11 10001
1 11 10001
1 11 10001
1 11 10001
1 11 10001
1 11 10001
1 11 10001
1 11 10001

0 0 0 0 0000
0 0 0 00000
0 0 0 00000
0 0 0 00000
0 0 0 00000
0 0 0 00000
0 0 0 00000
0 0 0 00000
0 0 0 00000
0 0 0 00000

FFH

HC0

No error in synchronization pattern

Change of E, S, X Bits

Change of E, S, X Bits

PEB 20320

Functional Description

User’s Manual 125 01.2000

Figure 71

For Intel mode the data sections have the form:

Figure 72

ITD05040

00080000

E9 CA FA D2

031

C0FFFFED

20040000

31 0

8800202D

31 0

31 0

8800022D

st1 Desc 2 Descnd

Loss of Synch.

8E5B002D
8E5B002D

8C00002D
8F57002D
8FFF002D

40042000 40040000

ITD05041

C0 FF FF ED

031

ndof 1 Descst

31 0

E9CAFAD2

of 2 Desc

PEB 20320

Functional Description

User’s Manual 126 01.2000

2.5 Boundary Scan Unit

In MUNICH32 a Test Access Port (TAP) controller is implemented. The essential part of
the TAP is a finite state machine (16 states) controlling the different operational modes
of the boundary scan. Both, TAP controller and boundary scan, meet the requirements
given by the JTAG standard: IEEE Std. 1149.1. Figure 73 gives an overview.

Figure 73
Block Diagram of Test Access Port and Boundary Scan

Test handling is performed via the pins JTEST0 (TCK), JTEST1 (TMS), JTEST2 (TDI)
and JTEST3 (TDO). Test data at JTEST2 (TDI) are loaded with a 4-MHz clock signal
connected to JTEST0 (TCK). ‘1’ or ‘0’ on JTEST1 (TMS) causes a transition from one
controller state to an other; constant ‘1’ on JTEST1 (TMS) leads to normal operation of
the chip.

If no boundary scan testing is planned JTEST1 (TMS) and JTEST2 (TDI) do not need to
be connected since pull-up transistors ensure high input levels in this case. Nevertheless
it would be a good practice to put the unused inputs to defined levels. In this case, if the
JTAG is not used:
JTEST1 = JTEST0 = ‘1’.

After switching on the device (VDD = 0 to 5 V) a power-on reset is generated which forces
the TAP controller into test logic reset state.

Clock
Generation

CLOCK

Reset
Power ON

Reset

TAP Controller

-Finite State Machine
-Instruction Register (3 bits)
-Test Signal Generator

JTEST0 (TCK)

JTEST1 (TMS)

JTEST2 (TDI)

JTEST3 (TDO)

CLOCK

Test
Control

Data IN

Control Bus

6

ID Data OUT

SS Data OUT

BS Data IN

Id
en

tif
ica

tio
n

Sc
an

 (3
2

Bi
ts

)

Bo
un

da
ry

 S
ca

n
(n

 B
its

)

1
2

n

Pins

ITB03509

Enable

Data OUT

Test Access Port

PEB 20320

Functional Description

User’s Manual 127 01.2000

Table 6
Boundary Scan Sequence in PEB 20320

JTEST2 (TDI) →

Pin
No.

Pin I/O Number of
Boundary Scan Cells

Constant Value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Reset
SCLK
TEST
AR
TDATA
TSP
TCLK
I/M
B16
Ready/DSACK
BERR
HLDA/BG
HLDAO/BGO
BGACK
HOLD/BR
ADS/AS
DS
WR/RW
BE3
BE2
D0
BE1
D1
BE0
D2
A2
D3
A3
D4
A4
D5
A5
D6
A6
D7

I
I
I
I
O
I
I
I
I
I
I
I
O
I/O
I/O
O
O
O
O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O

1
1
1
1
2
1
1
1
1
1
1
1
2
3
3
2
2
2
2
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3

0
1
1
0
00
0
0
0
0
0
0
0
00
001
010
00
01
00
00
01
100
00
000
00
000
00
000
00
000
00
000
00
000
00
000

PEB 20320

Functional Description

User’s Manual 128 01.2000

Table 6
Boundary Scan Sequence in PEB 20320 (cont’d)

JTEST2 (TDI) →

Pin I/O Number of
Boundary Scan Cells

Constant Value

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

A7
D8
A8
D9
A9
D10
A10
D11
A11
D12
A12
D13
A13
D14
A14
D15
A15
D16
A16
D17
A17
D18
A18
D19
A19
D20
A20
D21
A21
D22
A22
D23
A23
D24
A24

O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O
I/O
O

2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2

00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00
000
00

PEB 20320

Functional Description

User’s Manual 129 01.2000

→ JTEST3 (TDO)

An input pin (I) uses one boundary scan cell (data in), an output pin (O) uses two cells
(data out, enable) and an I/O-pin (IO) uses three cells (data in, data out, enable).
Therefore the boundary scan of the MUNICH32 contains a total of n = 205 scan cells.

The right column of Table 6 gives the initialization values of the cells.

The desired test mode is selected by serially loading a 3-bit instruction code into the
instruction register via JTEST2 (TDI) (LSB first); see Table 3.

Table 6
Boundary Scan Sequence in PEB 20320 (cont’d)

JTEST2 (TDI) →

Pin I/O Number of
Boundary Scan Cells

Constant Value

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

D25
A25
D26
A26
D27
A27
D28
A28/DP0
D29
A29/DP1
D30
A30/DP2
D31
A31/DP3
INT/INT
RCLK
RSP
RDATA
CI0
CI1
CI2
CI3
CI4

I/O
O
I/O
O
I/O
O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
O
I
I
I
I
I
I
I
I

3
2
3
2
3
2
3
3
3
3
3
3
3
3
2
1
1
1
1
1
1
1
1

000
00
000
00
000
00
000
000
000
000
000
000
000
000
00
0
0
0
0
0
0
0
0

PEB 20320

Functional Description

User’s Manual 130 01.2000

EXTEST is used to examine the interconnection of the devices on the board. In this test
mode at first all input pins capture the current level on the corresponding external
interconnection line, whereas all output pins are held at constant values (‘0’ or ‘1’,
according to Table 6). Then the content of the boundary scan is shifted to JTEST3
(TDO). At the same time the next scan vector is loaded from JTEST2 (TDI).
Subsequently all output pins are updated according to the new boundary scan contents
and all input pins again capture the current external level afterwards, and so on.

INTEST supports internal testing of the chip, i.e. the output pins capture the current level
on the corresponding internal line whereas all input pins are held on constant values (‘0’
or ‘1’, according to Table 6). The resulting boundary scan vector is shifted to JTEST3
(TDO). The next test vector is serially loaded via JTEST2 (TDI). Then all input pins are
updated for the following test cycle.

Note: In capture IR-state the code ‘001’ is automatically loaded into the instruction
register, i.e. if INTEST is wanted the shift IR-state does not need to be passed.

SAMPLE/PRELOAD is a test mode which provides a snap-shot of pin levels during
normal operation.

IDCODE: A 32-bit identification register is serially read out via JTEST3 (TDO). It contains
the version number (4 bits), the device code (16 bits) and the manufacturer code
(11 bits). The LSB is fixed to ‘1’.

IDCODE for old versions: 0001 for version 2.1
0010 for version 2.2
0100 for version 3.2

Note: As in test logic reset state the code ‘011’ is automatically loaded into the instruction
register the ID code can easily be read out in shift DR state which is reached by
JTEST1 (TMS) = 0, 1, 0, 0.

BYPASS: A bit entering JTEST2 (TDI) is shifted to JTEST3 (TDO) after one JTEST0
(TCK) clock cycle.

Table 7
Boundary Scan Test Modes

Instruction (Bit 2 … 0) Test Mode

000
001
010
011
111
others

EXTEST (external testing)
INTEST (internal testing)
SAMPLE/PRELOAD (snap-shot testing)
IDCODE (reading ID code)
BYPASS (bypass operation)
handled like BYPASS

JTEST2 (TDI) → 0110 0000 0000 0000 0101 0000 1000 001 1 → JTEST3 (TDO)

PEB 20320

Operational Description

User’s Manual 131 01.2000

3 Operational Description

3.1 Reset State

Upon reset MUNICH32 is set to its initial state. The active high system reset clears the
internal logic and causes MUNICH32 to tristate all output lines. Channel processing is
deactivated. After reset all buffers are empty and no buffer size of TB is allocated to the
channels. The DMA controller state is set to the hold condition for all link lists. The
descriptor and data pointers remain at a random value.

The bits RO and TO are set to ‘1’ and RA and TA are set to ‘0’ for all logical channels by
reset. All time slots are connected to the logical channel 0 and the following configuration
is set:

Action Specification

LOC = LOOP = LOOPI = 0

PCM = T1/DS1 × 24-channel 1.536 Mbit/s (000)

MFL = 0

Time Slot Assignment

fill/mask = 00H, i.e. all bits masked/set to ‘1’

RTI, TTI = 0

channel number = 00H

Channel Specification

MODE = 00, i.e. TMA

FA = 0

IFTF = 0

CRC = 0

INV = 0

TRV = 00,

RA = 0

TA = 0

TH = 0

RO = 1

TO = 1

PEB 20320

Operational Description

User’s Manual 132 01.2000

Transmit Descriptor

FNUM = 00H, i.e. shared flags in HDLC, only eight zero bits between sent frames for
TMB.

The E-, S-, X-bits are all set to zero internally by the reset. The receiver is set into the
ITF/IDLE state for all channels, i.e. it assumes that on the line there are ‘1’s as interframe
time-fill for HDLC.

3.2 Initialization Procedure

After reset MUNICH32 remains in the initial state until the microprocessor generates an
action request. In the action specification the initialization sequence is defined. The
sequence can be split up into individual procedures of each channel or in one single
procedure to initialize all channels at the same time. For all procedures the time slot
assignment and the selected channel specifications are loaded into the CSR-RAM. To
prevent malfunction the initialization of the link lists and the allocation of the buffer size
to the channels has to be specified before the transmission can be started. The interrupt
queue must be established as well. MUNICH32 assumes that time slot 0 starts on the
receive and transmit lines. They can be resynchronized by 2 rising edges of TSP and
RSP respectively. The first rising edge of TSP/RSP should not take place within the first
1000 SCLK clock cycles after deassertion of the reset pin.

Before this resynchronization the host should neither remove RO = 1, TO = 1 nor set
LOOP or LOOPI to ‘1’ for any logical channel. During this time any incoming data is
ignored, the transmit data line tristated.

For each action service the device first reads the control start address in the control and
configuration section which is located under a fixed address determined by the input
signals (CI(4:0)).

The values of CI(4:0) can be changed during operation. The values are used after the
next falling edge of AR.

CI4 is the polarity of A31 … A22

CI3 is the polarity of A21 … A16

CI2 is the polarity of A15 … A4

CI1 is the polarity of A3

CI0 is the polarity of A2

A0, A1 = 0

for example CI(4:0) = 10101

ADDRESS = 1111.1111.1100.0000.1111.1111.1111.0100

PEB 20320

Operational Description

User’s Manual 133 01.2000

Figure 74

Figure 75
CI-Pin Decoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CI4 CI3 CI2 CI1 CI0 0 0

CI4 CI3 CI2 CI1 CI0 Loc. of Ctrl.
Start Addr.

CI4 CI3 CI2 CI1 CI0 Loc. of Ctrl.
Start Addr.

0 0 0 0 0 0000 0000 1 0 0 0 0 FFC0 0000

0 0 0 0 1 0000 0004 1 0 0 0 1 FFC0 0004

0 0 0 1 0 0000 0008 1 0 0 1 0 FFC0 0008

0 0 0 1 1 0000 000C 1 0 0 1 1 FFC0 000C

0 0 1 0 0 0000 FFF0 1 0 1 0 0 FFC0 FFF0

0 0 1 0 1 0000 FFF4 1 0 1 0 1 FFC0 FFF4

0 0 1 1 0 0000 FFF8 1 0 1 1 0 FFC0 FFF8

0 0 1 1 1 0000 FFFC 1 0 1 1 1 FFC0 FFFC

0 1 0 0 0 003F 0000 1 1 0 0 0 FFFF 0000

0 1 0 0 1 003F 0004 1 1 0 0 1 FFFF 0004

0 1 0 1 0 003F 0008 1 1 0 1 0 FFFF 0008

0 1 0 1 1 003F 000C 1 1 0 1 1 FFFF 000C

0 1 1 0 0 003F FFF0 1 1 1 0 0 FFFF FFF0

0 1 1 0 1 003F FFF4 1 1 1 0 1 FFFF FFF4

0 1 1 1 0 003F FFF8 1 1 1 1 0 FFFF FFF8

0 1 1 1 1 003F FFFC 1 1 1 1 1 FFFF FFFC

PEB 20320

Detailed Register Description

User’s Manual 134 01.2000

4 Detailed Register Description

4.1 Organization of the Shared Memory

Because the MUNICH32 reads only long words, all addresses of the link lists, interrupt
queue and the CCS must be a multiple of four; i.e. the two least significant bits of the
address must be ‘00’. Figure 76 depicts the organization of the shared memory for one
MUNICH32.

PEB 20320

Detailed Register Description

User’s Manual 135 01.2000

Figure 76
Organization of the Shared Memory

Receive
DATA
Channel 0

Interrupt
Circular
Queue

Control Start Address

Action Specification

Interrupt Queue Specification

Time Slot 0 Assignment

Channel 0 Specification

Time Slot 31 Assignment

Channel 31 Specification

Control and Configuration Section

Current Transmit Descriptor
Address Channel 31

Address Channel 0
Current Transmit Descriptor

Current Receive Descriptor
Address Channel 31

Current Receive Descriptor
Address Channel 0

CCBA

Last 8 Blocks
not used in
T1/DS1 Mode

Channel 0
Descriptor
Receive

Channel 0
DATA
Transmit

Channel 0
Descriptor
Transmit Transmit

Descriptor
Channel 0

Receive
Descriptor
Channel 0

ITD03508

PEB 20320

Detailed Register Description

User’s Manual 136 01.2000

4.2 Control and Configuration Section

4.2.1 Action Specification (Read Once After Each Action Request Pulse)

All actions are selected by setting the corresponding bits to ‘1’.

PCM: These three bits determine the PCM highway format.

000: T1/DS1 24-channel 1.536 Mbit/s
100: T1/DS1 24-channel 1.544 Mbit/s
101: CEPT 32-channel
110: 4.096-Mbit/s PCM format and even numbered time slots
111: 4.096-Mbit/s PCM format and odd numbered time slots

MFL: Maximum Frame Length (up to 8191 bytes); MUNICH32 monitors the frame length
of the incoming HDLC, TMB or TMR frames. If the maximum frame length is
exceeded an interrupt is generated and the current frame aborted. The length
check is active in all modes except transparent mode A and V.110/X.30. Therefore
in all other modes one has to write a reasonable value to MFL after reset. MFL is
the same for all logical channels.

Table 8
Buffer Size of the Control and Configuration Section

Control and Configuration Section Number of Long Words

Action specification 1

Interrupt queue specification 2

Time slot assignment 32

Channel specification 128

Current descriptor address 64

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PCM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN IC0 0 Channel Number IM RES LOC LOOP LOOPI IA 0 0

MFL

PEB 20320

Detailed Register Description

User’s Manual 137 01.2000

IN: Initialization procedure; setting this bit to one causes MUNICH32 to fetch all the
time slot assignments and the channel specification of the selected channel
(channel number). To avoid collision all time slots being reinitialized should be in
a deactivated mode, i.e. the receive and transmit channels must be switched off.

ICO: Initialize Channel Only; only the channel specification of the selected channel
(channel number) is read and reconfigured.

IM: Interrupt Mask; MUNICH32 suppresses the interrupt normally generated in order
to acknowledge the action request.

RES: RESET; a single initialization procedure is performed. The time slot assignment
and all channel specifications are written into the CSR. All time slots are
reinitialized.

Note 1: The bits IN, ICO, RES are mutually exclusive within one action specification.
They establish different ways of initializing, configuring and reconfiguring the
channels and time slots of the MUNICH32.

For test purposes four different loops can be switched at the serial interface with aid of
LOC, LOOP, LOOPI according to the following table

LOC LOOP LOOPI Interpretation
0 0 0 no loop
1 0 0 not allowed
0 0 1 complete internal loop
1 0 1 channelwise internal loop
0 1 0 complete external loop
1 1 0 channelwise external loop
0 1 1 not allowed
1 1 1 not allowed

The loops have the following functions:

– Complete external loop
The serial data input is physically mirrored back to the serial data output. The time and
strobe signals for receive and transmit direction have to be identical.

– Complete internal loop
The serial data output is physically mirrored back to the serial data input. The data on
the external input line are ignored. The logical channels have to be programmed
identically. The time and strobe signals for receive and transmit direction have to be
identical.

PEB 20320

Detailed Register Description

User’s Manual 138 01.2000

– Channelwise external loop
One single logical channel is mirrored logically from serial data input to serial data
output. The other channels are not affected by this operation. The data rate for this
single logical channel has to be identical for receive and transmit direction.

– Channelwise internal loop
One single logical channel is mirrored logically from serial data output to serial data
input. The other channels are not affected by this operation. The data rate for this
single logical channel has to be the same for receive and transmit direction.

See Chapter 5.1 and Chapter 5.3.2 for a more detailed discussion of test loops.

All loops of the MUNICH32 V3.2 are under complete software control. Loops can be
closed and opened via software.

Handling of the MUNICH32 V3.2 loops:

Switch loops on:

RES = IN = ICO = ‘0’
LOC, LOOP, LOOPI for selected loop type
PCM, MFL, IM, IA don’t change the previous values
CHANNEL NUMBER in case of channelwise loops use the selected

channel number
in case of complete loops use channel number of an
active channel.

Switch loops off:

RES = IN = ICO = ‘0’
LOC = ‘0’, LOOP = LOOPI = ‘1’
PCM, MFL, IM, IA don’t change the previous values
CHANNEL NUMBER use channel number used with the ‘switch loop on’.

IA: Interrupt Attention; a new interrupt queue is defined by the host. MUNICH32 reads
the interrupt queue specification and writes the interrupt information into the new
interrupt queue.

PEB 20320

Detailed Register Description

User’s Manual 139 01.2000

Figure 77
Action Specification

ITS08221

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

PCM

IN IC
O

LO
CChannel

Number0

4 3 2 1 0

0 0

RE
S

IM LO
O

P
LO

O
PI

IA

MFL

Maximum Frame Length

Maximum size of a received frame
in HDLC, TMB and TMR mode (up to 8192 bytes).
A received frame is aborted and an interrupt
is generated if the size of a received frame
exceeds the MFL value.
MFL applies to all channels.

PCM Highway Format

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Not Allowed
T1/DS1 24 Time-Slots, 1.536 Mbit/s

Channel No.

Used in
conjunction
with IN

Initialize Channel Only

Only the channel spec.

(channel number) is
read and reconfigured.

Initialization Procedure

Read the complete time-slot
assignment and the channel

spec. of the specified channel
(channel number).

Interrupt Attention

A new interrupt queue
has been defined. Read
the interrupt queue
specification.

No Loop
Complete Internal Loop

Channelwise int. Loop
Channelwise ext. Loop

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Loops

Complete Internal Loop

Read the complete time-slot assignment
Read all channel specifications
Reinitialize all time-slots

Reset

Do not generate the ARACK & ARF interrupt

Interrupt Mask

and ICO

of the selected channel

Not Allowed
Not Allowed

CEPT 32 Time-Slots, 2.048 Mbit/s
4.096 Mbit/s PCM Format, even Time-Slots
4.096 Mbit/s PCM Format, odd Time-Slots

Not Allowed

Not Allowed
Not Allowed

T1/DS1 24 Time-Slots, 1.544 Mbit/s

PEB 20320

Detailed Register Description

User’s Manual 140 01.2000

4.2.2 Interrupt Queue Specification

The interrupt queue is specified as a kind of block (queue), starting on a start address
(programmable) with a defined length (programmable). Both, the start address and the
queue length are programmable in the Interrupt Queue Specification of the Control and
Configuration Section.

Figure 78

The minimum queue size is 16 long words; the maximum queue size is 4096 long words.

For each interrupt arising, the MUNICH32 writes the interrupt information into the
interrupt queue, will increment the pointer to the next address in this block automatically
and will generate an interrupt pulse at each interrupt occasion. It is up to the processor
to read the interrupt informations out of the interrupt queue. If the MUNICH32 arrives at
the end of the interrupt queue, it will jump to the start address of the interrupt block again
(cyclic queue) and completely overwrite the previous information.

Therefore the length of the interrupt queue should be calculated so, that the MUNICH32
will not overwrite information which was not yet read by the processor.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Interrupt Queue Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt Queue Address

0 0 0 0 0 0 0 0 n

START ADDRESS
(Interrupt Queue
Address)

length =
(n + 1) × 16 long words
where 0 ≤ n ≤ 255

overwrite

.

.

.

interrupt information long word 1

interrupt information long word 2

interrupt information long word 3

interrupt information long word (n+1)x16

PEB 20320

Detailed Register Description

User’s Manual 141 01.2000

4.2.3 Interrupt Information

The next table shows the bit assignments for the interrupt information long word.

When an interrupt occurs MUNICH32 sets the INT bit and writes the interrupt information
and the channel number into the interrupt circular buffer. At the same time it generates
an interrupt pulse. The classes of error (for example host initiated interrupt or CRC error)
of a channel in one direction are treated independently of each other. If several interrupt
events coincide they will be indicated to the host with one shared interrupt.

Bit assignment for interrupt queue

There are 3 classes of bits in the interrupt:

1. Bits present in each interrupt:
INT: this bit is always set to ‘1’
VN(3:1): these bits are ‘000’ for version 1.1

‘001’ for version 2.1
‘010’ for version 2.2
‘100’ for version 3.2
‘110’ for version 3.4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INT 0 Interrupt Information

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupt Information Channel Number/Direction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INT 0 VN3 VN2 VN1 FRC E7 E6 E5 E4 E3 E2 E1 SB SA X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARACK ARF HI FI IFC SF ERR FO 0 0 RT Channel Number

PEB 20320

Detailed Register Description

User’s Manual 142 01.2000

2. Action request interrupts
ARACK: Action Request Acknowledge; MUNICH32 sets the ARACK bit to indicate

that an action request has been serviced.
ARF: Action Request Fail; MUNICH32 aborts an ACTION REQUEST, if the

required configuration cannot be performed. An action request fail can occur
either when the TB buffer is initialized incorrectly or a bus cycle error
(BERR = 0) is detected during a configuration access.

If ARACK or ARF is set, all bits except INT and VN(3:1) are set to 0.

Note: An action request is forbidden during the time a preceding action has not been
finished by an ARACK or ARF interrupt or a pulse at the reset pin.

3. Channel specific interrupts
These interrupts indicate specific events in the channel indicated by
‘Channel Number’ and receive or transmit direction indicated by RT (RT = ‘1’: receive
direction; RT = ‘1’: transmit direction).
The interpretation of these interrupts depends on the specification of the channel in
which they occur.
The following table shows which interrupts can occur in which mode (unused bits are
always 0).

HDLC
1 0 F F F 0 0 0 0 0 0 0 0 0 0 0

V.110/X.30
1 0 F F F R R R R R R R R R R R

TMA
1 0 F F F 0 0 0 0 0 0 0 0 0 0 0

TMB/TMR
1 0 F F F 0 0 0 0 0 0 0 0 0 0 0

HDLC
G G TR TR R R TR TR 0 0 X X X X X X

V.110/X.30
G G TR 0 0 0 TR TR 0 0 X X X X X X

TMA
G G TR T 0 0 TR TR 0 0 X X X X X X

TMB/TMR
G G TR TR 0 0 TR TR 0 0 X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INT 0 VN3 VN2 VN1 FRC E7 E6 E5 E4 E3 E2 E1 SB SA X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARACK ARF HI FI IFC SF ERR FO 0 0 RT Channel Number

PEB 20320

Detailed Register Description

User’s Manual 143 01.2000

Where ‘1’ means that the bit is always ‘1’ for this mode
‘0’ means that the bit is always ‘0’ for this mode
‘F’ means the bit is fixed by the version number
‘R’ means a bit that can only be set in the receive direction, i.e. may only

be ‘1’ if RT is ‘1’
‘T’ means a bit that can only occur in transmit direction, i.e. may only

be ‘1’ if RT is ‘0’
‘TR’ means a bit that can occur in receive or transmit direction
‘G’ means a bit of an activation request interrupt which cannot be

‘G’ in a channel specific interrupt
‘X’ means a bit fixed by the channel and direction (receive, transmit)

of the event it belongs to.

The meaning of the interrupt bits depend on the mode. We therefore will discuss them
bit for bit and indicate the different meanings in the different modes.

FRC: (V.110/X.30 mode, receive direction only)
Change of the framing (E, S, X) bits of the V.110/X.30 frame detected.
This interrupt is generated whenever a change in the E-, S-, X-bits is
detected, but at most one time within one frame of 10 octets, even if there
is more than one change within the frame. After detecting a receive abort
channel command for one 10-octet frame FRC is also issued.

Ex, Sx, X: (V.110/X.30 mode, receive direction only, only in conjunction with FRC)
The value of the bits Ex, Sx, X in the received V.110/X.30 frame. If a
value changes, e.g. 2 times within the same frame only the final change
is reported.
If the change was caused by a receive abort channel command all bits
are 0.

HI: (all modes, all direction)
Host initiated Interrupt; this bit is set when the MUNICH32 detects the
HI bit in the receive or transmit descriptor and branches to the next
descriptor, or starts polling the hold bit if set.

FI: 1.1 HDLC, TMB, TMR Receive Direction:
FI = 1 indicates, that a frame has been received completely or was
stopped by a receive abort channel command or fast receive abort or a
HOLD in a receive descriptor. It is set when the MUNICH32 branches
from the last descriptor belonging to the frame to the first descriptor of a
new frame. It is also set when the descriptor in which the frame finished
contained a hold bit, the interrupt is then issued when the MUNICH32
starts polling the hold bit.

1.2 HDLC, TMB, TMR, TMA Transmit Direction:
issued if the FE bit is detected in the transmit descriptor. It is set when
the MUNICH32 branches to the next transmit descriptor, belonging to a

PEB 20320

Detailed Register Description

User’s Manual 144 01.2000

new frame, or when it starts polling the hold bit if set in conjunction with
the FE bit; ERR and FI are set if a transmit descriptor contains a
HOLD bit no FE bit

IFC: (HDLC mode, receive direction only)
Idle/Flag Change; an interrupt is generated in HDLC if the device
changes the interframe time-fill (ITF) state. After reset the device is in the
ITF idle state. It changes to the ITF flag state if it receives 2 consecutive
flags with or without shared zeroes. It changes back to the ITF idle state
upon reception of 15 contiguous ‘1’-bits or when a receive abort channel
command is active during 15 received bits.

SF: (HDLC mode, receive direction only, always in conjunction with FI)
Short frame detected
A frame with ≤ 16 bits between start flag and end flag or end abort flag

for CRC16
≤ 32 bits between start flag and end flag or end abort flag
 for CRC32

has been detected. The sequences 7E 7FH and 7E FEH and 7E FFH are
also short frames.
SF is always in conjunction with ERR except for the frames
7E00 007EH for CRC16
7E00 0000 007EH for CRC32

ERR: always in conjunction with FI = 1
1.1 HDLC mode Receive Direction

One of the following receive errors occurred
– FCS of the frame was incorrect
– the bit length of the frame was not divisible by 8
– the byte length exceeded MFL
– the frame was stopped by 7FH
– the frame could only be partly stored due to
 internal buffer overflow of RB
– the frame was ended by a receive abort channel command
– the frame could not be transferred to the shared memory completely

because of a hold bit set in a receive descriptor not providing enough
bytes for the frame.

– the frame was aborted by a fast receive abort channel command
A more detailed error analysis can be done by the status information in
the receive descriptor.

1.2 HDLC mode Transmit Direction
one of the following transmit errors occurred:
– the last descriptor had HOLD = 1 and FE = 0
– the last descriptor had NO = 0 and FE = 0

PEB 20320

Detailed Register Description

User’s Manual 145 01.2000

2.1 V.110/X.30 mode Receive Direction
one of the following receive errors occurred:
– data could only partly stored due to internal buffer overflow of RB
– 3 consecutive frames had an error in the synchronization pattern

(loss of synchronism)
– a fast receive abort channel command was issued
– the data could not be transferred to the shared memory completely

because of a hold bit set in a receive descriptor not providing enough
bytes for the data

– a receive abort channel command was active for at least
3 consecutive frames

A more detailed error analysis can be done by the status information in
the receive descriptor.

2.2 V.110/X.30 mode Transmit Direction
one of the following transmit errors occurred
– the last descriptor had a HOLD = 1 or FE = 1
– the last descriptor had FE = 0 and NO = 0

3.1 TMA mode Receive Direction
one of the following errors occurred
– the data could not be transferred to the shared memory completely

because of a hold bit set in a receive descriptor not providing enough
bytes for the data

– a fast receive abort channel command was issued

3.2 TMA mode Transmit Direction
see Chapter 1.2

4.1 TMB/TMR mode Receive Direction
always in conjunction with FI = 1
one of the following receive errors occurred
– the bit length of the frame was not divisible by 8
– the frame could only be partly stored due to

internal buffer overflow of RB
– the frame could not be transferred to the shared memory completely

because of a hold bit set in a receive descriptor not providing enough
bytes for the frame

– the frame was aborted by a fast receive abort channel command

A more detailed error analysis can be done by the status information in
the receive descriptor.

4.2 TMB/TMR mode Transmit Direction
see 1.2

FO: 1.1 HDLC, TMB, TMR Receive Direction
The MUNICH32 has discarded one or more whole frames or short

PEB 20320

Detailed Register Description

User’s Manual 146 01.2000

frames or change of interframe time-fill informations due to inaccessibility
of the internal buffer RB.

1.2 HDLC, TMB, TMR Transmit Direction
The MUNICH32 is unable to access the shared memory in time or has
detected a bus cycle error (BERR = 0) during a read access on the
transmit data section. The current erroneous frame is aborted with a ‘0’
and 14 ‘1’ for HDLC, with 00 for TMB and 0000 for TMR; afterwards
interframe time fill is sent until the MUNICH32 can access again the
shared memory. The MUNICH32 will read the transmit data from the
location which should be accessed before the Tx-FO or BERR happened
and transmit the rest of the erroneous frame.

2.1 V.110/X.30 Receive Direction
The MUNICH32 has discarded a loss of synchronism information or a
change of a E-, S-, X-bits information due to inaccessibility of the internal
buffer RB.

2.2 V.110/X.30 Transmit Direction
The MUNICH32 is unable to access the shared memory in time or has
detected a bus cycle error (BERR = 0) during a read access on the
transmit data section. It generates 3 10-octet frames with framing errors
and restarts with the next error-free transmit data.

3.1 TMA Receive Direction
The MUNICH32 has discarded data due to inaccessibility of the internal
buffer RB.

3.2 see Chapter 1.2

The following table shows which interrupt bits are masked by which bits in the channel
specification.

Receive
CH

Transmit –

Receive
FIR IFC SFE RE RE

Transmit
FIT – – TE TE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

INT ∅ VN3 VN2 VN1 FRC E7 E6 E5 E4 E3 E2 E1 SB SA X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARACK ARF HI FI IFC SF ERR FO 0 0 RT Channel Number

PEB 20320

Detailed Register Description

User’s Manual 147 01.2000

General
IM IM

Figure 79
Interrupt Information

ITS08222

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

IN
T 0 VN(3...1)

FR
C

E7 E6 E5 E4 E3 E2 E1 SB SA X AR
AC

K
AR

F
HI FI IF

C
SF ER

R
F0

0 0

RT

Channel
Number

Framing Bits Changed

V.110/X30 mode
received E, S, X Bits changed

Action Request Acknowledge

Action request has been
completed successfully.

Action Request Failed

Action request could not be

Host Initiated Interrupt

HI Bit in the Rcv./Xmt. descriptor was set

End of receive or transmit frame indication

Frame Indication Interframe Timefill Change

HDLC receiver detected change in ITF state

Short Frame

(empty HDLC frame or incorrect HDLC frame,
HDLC mode, in conjunction with FI

Protocol Error

e.g. CRC error, frame aborted,
loss of sync. MFL exceeded
Internal buffer overflow/underflow

Overflow/Underflow

Internal buffer not available

Direction

0 Transmit Interrupt
1 Receive Interrupt

Channel Number

Identifies the channel
where the interrupt

occured.

3 2 1 0

Silicon Version Number

0 0 0 V1.1
V2.10 0 1

0 1 0 V2.2

Valid Interrupt Entry

MUNICH32 sets this Bit with every entry
to the interrupt circular queue
Software should dear this Bit after reading

V3.21 0 0

completed successfully.

nothing stored in memory)

PEB 20320

Detailed Register Description

User’s Manual 148 01.2000

4.2.4 Time Slot Assignment

(Read only once after each action request pulse with an action specification with set IN
or RES bit)

The time slot assignment provides the cross reference between the 32 (24) time slots of
the PCM highway and the data channels (up to a maximum number of 32). The data
channels can be composed of different receive and transmit time slots, which have
individual bit rates. With the concept of subchanneling, MUNICH32 can realize flexible
transmission from 8 kbit/s up to 2.048 Mbit/s per channel.

Fill/Mask Code: For bit rate adaption the fill/mask code determines the number of bits
and the position of these bits within the time slot. For all modes
except TMA the bits selected by Fill/Mask = 1 in the slots of a channel
are concatenated, those with Fill/Mask = 0 are ignored/tristated in
receive/transmit direction. For TMA the bits with Fill/Mask = 0 are
received as ‘1’-bits, in transmit direction these bits are overwritten
with ‘Z’ (see Chapter 2.4 for more details).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 TTI Transmit Channel
Number

Transmit Fill Mask time slot 0

0 0 TTI Transmit Channel
Number

Transmit Fill Mask time slot 1

0 0 TTI Transmit Channel
Number

Transmit Fill Mask time slot 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 RTI Receive Channel
Number

Receive Fill Mask time slot 0

0 0 RTI Receive Channel
Number

Receive Fill Mask time slot 1

0 0 RTI Receive Channel
Number

Receive Fill Mask time slot 31

PEB 20320

Detailed Register Description

User’s Manual 149 01.2000

Channel Number: The channel number identifies the data channel. Its transmission
mode is described in the respective channel specification.

TTI: Transmit Time slot Inhibit; setting this bit to ‘1’ causes MUNICH32 to
tristate the transmit time slot. The data is not destroyed but sent in
the next not tristated time slot allocated to this channel.

RTI: Receive time Slot Inhibit; setting this bit to ‘1’ causes MUNICH32 to
ignore the received data in the time slot. The channel is not
processed in this time slot.

4.2.5 Channel Specification

(Read only once after each activation request pulse with an action specification with set
IN, RES or ICO bit; RES: the channel specifications of all channels; IN, IC0: the channel
specification of the channel indicated in the action specification)

Interrupt Mask:

These bits mask the bits in the interrupt information long word according to the table at
the end of Chapter 4.2.3 (interrupt information).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Interrupt Mask NITBS RI TI TO TA TH RO RA

FRDA

FTDA

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TFLAG
TFLAG
/NSF

TFLAG
/CS INV CR

C
TRV FA Mode IFT

F

FRDA

FTDA

0 0 0 0 0 0 0 0 0 0 ITBS

7 6 5 4 3 2 1 0

– SFE IFC CH TE RE FIR FIT

PEB 20320

Detailed Register Description

User’s Manual 150 01.2000

If an event leads to an interrupt with several bits set (e.g. FI and ERR) masking only a
proper subset of them (e.g. ERR) will lead to an interrupt with the nonmasked bits set
(e.g. FI). If all bits of an event are masked, the interrupt is suppressed. The interrupt
mask is therefore bit specific and not event specific.

NITBS: New ITBS value; if this bit is set the individual transmit buffer size ITBS is valid
and a new buffer field of TB is assigned to the channel. In this process first the
occupied buffer locations of the channel are released and then according to
ITBS a new buffer area is allocated. If there is not enough buffer size in TB
(occupied by other channels) the process will be aborted and an action request
failure interrupt is generated. After aborting no buffer size is allocated to the
channel. For preventing action request failure enough buffer locations must be
available. This can be done by reducing the buffer size of the other channels.
To avoid transmission errors all channels to be newly configured must be
deactivated before processing.

Note: ITBS has to be set to ‘0’ if NITBS = ‘0’.
NITBS should be set to ‘0’ in conjunction with a transmit abort channel command.

The bits RI, TI, TO, TA, TH, RO, RA are the so called channel command bits. They allow
the channel to be initialized, aborted or reconfigured at the serial side as well as at the
µP side.

These bits can be decomposed in 3 independent command groups:
RI, RO, RA form the receive command group
TO, TI, TA the first transmit command group

and TH is the second transmit command group.

We will discuss these bits according to the groups.

1. Receive command group (6 commands)

– receive clear
RI = 0, RO = 0, RA = 0 (clears a previous receive abort or receive off condition, affects
only the serial interface)
The effect of this command depends on the previous history of the channel
• if the channel was never initialized by a receive initialization command it has no

effect
• if it was initialized previously it clears a receive off or receive abort condition set by

a previous channel command
• if no receive off or receive abort condition is set it has no effect.

– fast receive abort
RI = 0, RO = 0, RA = 1 (clears a previous receive abort or receive off condition, affects
only the DMA interface)
This abort is performed in the DMA controller and does not interfere with the reception
on the serial interface and the transfer of the data into the receive buffer. If this abort
is detected the current receive descriptor is suspended with an abort status (RA bit set

PEB 20320

Detailed Register Description

User’s Manual 151 01.2000

to ‘1’) followed by a branching to the new descriptor (FRDA) defined in the channel
specification of the CCS.
For HDLC, TMB, TMR the rest of a frame which was only partially transferred before
suspension of the receive descriptor is aborted, the new descriptor is related to the
next frame. An interrupt with FI, ERR is issued. For V.110/X.30 and TMA data bits
might get lost. An interrupt with ERR is issued.

– receive off
RI = 0, RO = 1, RA = 0 (clears a previous receive abort condition, sets off condition,
affects only the serial interface)
This channel command sets the receiver into the receive off condition. The receive
channel is disabled completely at the serial interface, i.e. the receive deformatter RD
is reset and the receive buffer RB is not accessed for this channel. A currently
processed frame (HDLC, TMB, TMR mode) is not properly finished with any status
information. The data stored in the RB at that time is still transferred to the shared
memory.
After the receive off condition is cleared by another channel command:
• in HDLC, TMB, TMR (V.110/X.30, TMA) mode the device waits for a new frame (10-

octet frame, nothing) to begin and then starts filling RB again. If the receive off
command lead to an improper finishing of a frame (data, data), the new frame (data,
data) is concatenated with the finished one. To avoid this problem there are two
suggestions:
a) issue a receive abort channel command and wait for 32 (240, 8) bits for this

channel to be processed before issuing the receive off command.
b) wait in the receive off condition until the RB is emptied for this channel (i.e. for at

most 8 PCM frames if the MUNICH32 has sufficient access to the shared
memory) and leave the receive off condition by a receive initialization command.
The receive off channel command is ignored in case of any kind of loop.

– receive abort
RI = 0, RO = 1, RA = 1 (clears a previous receive off condition, sets a receive abort
condition, affects only the serial interface)
This receive channel command sets the receiver into the receive abort condition. In
this condition it receives (instead of the normally received bits)

logical ‘1’ bits for HDLC
logical ‘0’ bits for V.110/X.30, TMB, TMR
logical ‘0’ bits for unmasked bits in TMA mode
logical ‘1’ bits for masked bits in TMA mode

irrespective of the INV bit.

This leads to

• For HDLC: a currently processed frame is aborted after ≤ 7 received bits for this
channel, leading to a RA set in the status of the frame and an interrupt with set FI
and ERR bits only or to an interrupt with set SF, FI and ERR bits. If the receiver was

PEB 20320

Detailed Register Description

User’s Manual 152 01.2000

in the flag interframe time-fill state it will lead to an interrupt with set IFC bit after ≤ 15
received bits.

• For V.110/X.30: if the receiver was in the synchronized frame state it will go to the
unsynchronized state after ≤ 240 bits and issue a LOSS bit in the status of the
current receive descriptor. It will also issue an interrupt with set ERR bit and (unless
all E-, S-, X-bits were 0 previously) issue one or two interrupts with FRC set and
having all E-, S-, X-bits at 0 in the last one.

• For TMB: a currently processed frame is aborted after ≤ 15 received bits for this
channel, leading to an interrupt with FI set but ERR on 0, the status of this frame is
always 00H.

• For TMR: a currently processed frame is aborted after ≤ 31 received bits for this
channel, leading to an interrupt with FI set but ERR on 0, the status of this frame is
always 00H.

• For TMA: the device receives the inverse of the fill/mask bits programmed for this
channels.

Note 1: It is advisable to clear the receive abort condition via a receive off command for
V.110/X.30 mode, the TMB and the TMR mode.

2. After issuing a receive abort channel command it is advisable to stay in this
condition during at least 16, 240, 16, 32, 8 bits of the channel for HDLC, V.110/
X.30, TMB, TMR, TMA respectively.

– receive jump
RI = 1, RO = 0, RA = 0 (clears a previous receive abort or receive off condition, affects
only the DMA interface)
During normal operation branching to a new descriptor (FRDA) is possible without
interrupting the current descriptor and aborting the received frame (HDLC, TMB,
TMR) or received data (V.110/X.30, TMA).
The DMA controller will proceed finishing the current receive descriptor as usual either
with a frame end condition or with the corresponding data buffer completely filled and
afterwards branch to the new descriptor specified by FRDA. Thus a received frame
may be splitted on ‘old’ and ‘new’ descriptors.

– receive initialization
RI = 1, RO = 0, RA = 1 (clears a previous receive abort or receive off condition, affects
the DMA and serial interface)
Before the MUNICH32 has got a receive initialization command it will not receive
anything properly in a channel. This command should therefore be the first channel
command after a pulse at the reset pin for a channel to be used. FRDA is then the
address of the starting point of the receive descriptor chaining list.
If the command is issued during normal operation it only affects the DMA interface.
The current receive descriptor is suspended without writing the second long word with
the status, no interrupt is generated. For HDLC, TMB, TMR the rest of a frame which
was only partially transferred before the suspension of the receive descriptor is

PEB 20320

Detailed Register Description

User’s Manual 153 01.2000

aborted, the new descriptor (FRDA) is related to the next frame.
For V.110/X.30 and TMA data bits might get lost.

General Notes to Receive Commands:

1. After a pulse at the reset pin a channel having a time slot with RTI = 0 should be issued
receive off commands until it is supposed to be used.

2. When it is supposed to be used it should be issued a receive initialize command
before using any other receive channel command.

3. To shut down a channel in receive direction one should first set it into the receive abort
condition for the time specified there and then set it into the receive off condition.

4. Before changing the MODE, CRC, CS, TRV, INV, TFLAG bits of a channel or its RTI
or time slot assignment or its fill/mask bits it should have been shut down. The bits
should be changed while issuing the receive off command.

5. To revive a channel after it has been shut down one should use the receive
initialization command.

6. To switch to a new starting point of a receive descriptor chain one should preferably
use the receive jump command, only exceptionally the fast receive abort command
and never the receive initialize command.

7. To issue channel commands not affecting the receive side one should issue
– a receive clear command if neither a receive off nor a receive abort condition is set
– a receive off command if a receive off condition is set
– a receive abort command if a receive abort condition is set.

8. Combinations of the bits RI, RO, RA not in this description are reserved and are not
allowed to be used.

2. First Transmit Command Group

– transmit clear
TI = 0, TO = 0, TA = 0 (clears a previous transmit abort or transmit off condition, affects
only the serial interface)
• if the channel was never initialized by a transmit initialization command it has no

effect
• if it was initialized previously it clears a transmit off or transmit abort condition set by

a previous channel command
• if no transmit off or transmit abort condition is set it has no effect

– fast transmit abort
TI = 0, TO = 0, TA = 1 (clears a previous transmit abort or transmit off condition, affects
only the DMA interface)
This abort is performed in the DMA controller and does not interfere with the current
transmission on the serial interface and the transfer between the TF and TB. If this
abort is detected the current descriptor is suspended and the frame or data transferred
to the TB is aborted. The next frame beginning in the transmit descriptor (FTDA)
defined in the channel specification of the CCS will be started immediately.

PEB 20320

Detailed Register Description

User’s Manual 154 01.2000

For HDLC, TMB, TMR the first part of the frame of the suspended descriptor is sent
and append by 011 1111 1111 111 for HDLC

at least 00H for TMB
at least 00 00H for TMR

Afterwards the next frame is started.
For V.110/X.30 three 10-octet frames with errors in the synchronization pattern are
sent after the data of the suspended descriptor, afterward the next data are sent in
correct frames.
For TMA a TFLAG (FA = 1) or FFH (FA = 0) is sent in at least one time slot after the
data of the suspended descriptor, afterwards the next data are sent.

– transmit off
TI = 0, TO = 1, TA = 0 (clears a previous transmit abort condition, sets a transmit off
condition, effects only the serial interface)
The transmit channel is disabled immediately, i.e. the transmit formatter is reset and
the transmit buffer is not accessed for this channel. The output time slots are tristated.
Upon leaving the transmit off mode the transmit link list must be initialized by a
transmit reinitialize command. Otherwise the transmission will be started with the
remaining data still stored in TB and continue with the old link list. If a loop condition
is set the transmit off does not reset the transmit formatter, it only tristates the serial
output line.
After the transmit off condition is cleared by the transmit initialize command.
• In HDLC, TMB, TMR, V.110/X.30 the device starts with the interframe time-fill

7E for HDLC and IFTF = 0
FF for HDLC and IFTF = 1
00 for TMB, TMR, V.110/X.30

and then with the frame in the descriptor at FTDA. For V.110/X.30 this descriptor must
have the V.110-bit set and point to the E-, S-, X-bits, the data are then at the next
transmit descriptor.
• In TMA mode the device starts with the interframe time-fill

TFLAG for FA = 1
FFH for FA = 0

and then with the data in the descriptor at the FTDA.

PEB 20320

Detailed Register Description

User’s Manual 155 01.2000

– transmit abort
TI = 0, TO = 1, TA = 1 (clears receive off condition, sets transmit abort condition,
affects only the serial interface)
This abort is performed in the transmit formatter at the serial interface. The currently
transmitted frame is aborted
by 011 1111 1111 1111 for HDLC

00H for TMB
0000H for TMR
3 frames with erroneous synchronization pattern for V.110/X.30
TFLAG for TMA, FA = 1
FF for TMA, FA = 0.

Afterwards or – if no frame is currently sent directly inter frame time fill:
7E for HDLC and IFTF = 0
FF for HDLC and IFTF = 1
00 for TMB, TMR, V.110/X.30
TFLAG for TMA, FA = 1
FF for TMA, FA = 0

is sent.
During transmit abort the TF does not access the transmit buffer. The handling of the
link list is not affected by the transmit abort, i.e. the device keeps the TB full. When the
transmit abort is withdrawn the transmit formatter continues the transmission with the
data stored in TB. In the case of HDLC or TMB or TMR mode the remaining data of
the aborted HDLC or TMB frame is sent as a new independent frame. To avoid this
problem the link list must be reinitialized by a transmit initialization command together
with the revoking of the transmission abort.
Another proper use of the transmit abort command consists in setting the last
descriptor of the last frame to be transmitted with HOLD = 1 and waiting for the device
to poll the HOLD bit (ITBS + 2) times where ITBS is the number of long words
assigned to this channel currently. Afterwards TB is empty and the transmit abort then
issued does not abort a currently sent frame. The same procedure can also be used
for the transmit off command.

– transmit jump
TI = 1, TO = 0, TA = 0 (clears a transmit off and transmit abort condition, affects only
the DMA interface)
This bit is set only during normal operation. Then MUNICH32 branches to the transmit
descriptor (FTDA) specified in the CCS after finishing the current transmit descriptor
without interrupting or aborting the transmitted frame.
The DMA controller will proceed finishing the current transmit descriptor as usual and
afterwards branch to the new descriptor specified by FTDA. If the current descriptor
does not include a frame end (FE = 0) (HDLC, TMB, TMR) the DMA controller will link
the following data section(s) of the ‘new’ descriptor chain to the opened frame. This
may generate unexpected frames.

PEB 20320

Detailed Register Description

User’s Manual 156 01.2000

– transmit initialization
TI = 1, TO = 0, TA = 1 (clears a previous transmit abort condition, affects the DMA
interface and the serial interface)
Before the MUNICH32 has got a transmit initialization command it will not transmit
anything properly in the channel. This command should therefore be the first channel
command after a pulse at the reset pin for a channel to be used.
FTDA is then the address of the starting point of the transmit descriptor for chaining
list. In this case the transmit initialize command should be accompanied by the NITBS
bit set and a reasonable value for ITBS (0 < ITBS < 64).
If the command is issued during normal operation it only affects the DMA. The
MUNICH32 stops processing of the current link list and branches to the transmit
descriptor at the FTDA address. The data stored in the TB are discarded and the TB
is filled with the data of the new descriptor.

3. Second Transmit Command Group

– Transmit HOLD
TH; setting this bit causes the device to finish transmission of the current frame
(HDLC, TMB, TMR mode) the current data (TMA -mode) or leads to an abort with
3 frames with ‘0’-bits (V.110/X.30-mode). Afterwards
for HDLC mode and IFTF = 1 FFH fill characters

HDLC mode and IFTF = 0 7EH fill characters
V.110/X.30-mode 00H fill characters
TMA mode and FA = 1 TFLAG fill characters
TMA mode and FA = 0 FFH fill characters
TMB/TMR 00H fill characters

are sent until TH is withdrawn by a further action specification affecting the channel
specification of this channel.
Afterwards no further access to the TB from TF is done, therefore no further data are
fetched from the shared memory and the polling of a possible hold bit in the transmit
descriptor stops.
To send necessary frames/data before the transmit hold is active one should use the
proper procedure described under the transmit abort command.

General Notes to Transmit Commands:

1. After a pulse at the reset pin a channel having a time slot with TTI = 0 should be
issued transmit off commands and TH = 1 until it is supposed to be used.

2. When it is supposed to be used it should be issued a transmit initialization command
and TH = 0 before using any other transmit channel commands (together with
NITBS = 1, ITBS ≠ 0).

3. To shut down a channel in transmit direction one should first set it into the transmit
abort condition or use the TH bit with the proper procedure. One should leave it in

PEB 20320

Detailed Register Description

User’s Manual 157 01.2000

that condition for 32, 240, 32, 32, 8 bits for HDLC, V.110/X.30,TMB, TMR, TMA
respectively and then set it into the transmit off condition.

4. Before changing the MODE, CRC, CS, TRV, INV, TFLAG bits or TTI or time slot
assignment or the fill/mask bits or the ITBS the channel should be shut down. The
bits should be changed while issuing the transmit off command.

5. To revive a channel after it has been shut down one should use the transmit
initialization command.

6. For V.110/X.30-mode the first descriptor after reviving from shut down or initialization
after reset must have the V.110-bit set and contain the E-, S-, X-bits.

7. To switch to a new starting point of a transmit descriptor chain one should preferably
use the transmit jump command, only exceptionally the fast transmit abort command
and never the transmit initialize command.

8. To issue channel commands not affecting the transmit side one should issue
– TH with the last set value
– a transmit clear command if neither a transmit off nor a

transmit abort condition is set
– a transmit off if a transmit off condition is set
– a transmit abort if a transmit abort condition is set.

9. Bit combinations in the first transmit command group not described are reserved.
10. Set NITBS = 1 preferably in conjunction with a transmit initialize and transmit clear

command if TB is to be newly configured, otherwise set NITBS = 0.

TFLAG: Transparent mode Flag; these bits are only used in the transparent mode A
and constitute the fill code for flag stuffing and for flag filtering. These bits
must be set to ‘0’ if subchanneling is used in transparent mode A. Bit No. 15
is the first bit of the flag to be received/transmitted.

NSF: No Short Frame suppression; NSF = 1 is only allowed in combination with
HDLC mode and CS = 1.
In this mode the MUNICH32 transfers all data to the shared memory even if
only one byte (or more) per ‘frame’ is received. No short frame interrupt and
no short frame status bit will be generated in this case.

Note:CRC is still calculated and checked and e.g. a frame of 1 or 2 byte length
(in CRC16 mode) will always cause an FI + ERR interrupt.

PEB 20320

Detailed Register Description

User’s Manual 158 01.2000

Receive Frame Examples:
a) 0x7E, data byte, 0x7E
− data byte copied to shared memory + frame end
− status SF-bit set
− no SF indication interrupt generated
− FI indication interrupt generated
− ERR interrupt generated due to wrong CRC’
b) 0x7E, data byte = 0xFC (or 0xFD or 0x7F), 0x7E
− no data byte copied to shared memory
− SF and FI interrupt generated

CS: CRC Select; only used in HDLC mode. Setting this bit to ‘1’ causes the
MUNICH32 to transfer the CRC bits to the data section in the shared memory.
In receive direction the CRC check is carried out whereas in transmit direction
the CRC generation is suppressed, see Chapter 2.4 for more details.

INV: Inversion; If this bit is set, all data of the channel transmitted or received by
the MUNICH32 is inverted.

CRC: Cyclic Redundancy Check; in HDLC mode this bit determines the
CRC generator polynomial: When the CRC bit is set to ‘1’ the 32-bit CRC is
performed, otherwise the 16-bit CRC; for TMB/TMR mode this bit
distinguishes:

TMB: CRC = ‘0’
TMR: CRC = ‘1’

for all other modes this bit has to be set to ‘0’.

PEB 20320

Detailed Register Description

User’s Manual 159 01.2000

TRV: Transmission Rate of V.110/X.30. These signals determine the number of
repeated D-bits in a V.110/X.30 frame.

Note: In the other modes these bits must be set to ‘00’.

FA: Flag Adjustment selected (in HDLC mode) or flag filtering (selected in
transparent mode A only if all fill/mask bits of the corresponding slots are ‘1’).
In all other modes this bit must be set to ‘0’. If flag adjustment is selected in
HDLC mode the number of interframe time-fill characters is FNUM minus one
eighth of the number of zero insertions in the frame proceeding the interframe
time-fill and belonging to the same transmit descriptor as FNUM.
If flag filtering is selected and fills a physical time slot in transparent mode A
the flag specified in TFLAG is recognized and extracted from the data stream.
In transmit direction the flag TFLAG is sent in all exception conditions, i.e.
abort, idle state etc.; if flag filtering is not selected ‘1’-bits are sent in this case.
Flag filtering is only allowed if all fill/mask codes are set to ‘1’, i.e.
subchanneling is not allowed.
If flag filtering is not selected the bits in TFLAG have to be set to 0 for TMA.

MODE: Defines the transmission mode:
11: HDLC mode
10: V.110/X.30 mode
00: Transparent mode A
01: Transparent mode B or transparent mode R.

IFTF: Interframe Time-Fill: this bit determines the interframe time-fill for
HDLC mode:
IFTF = 0:AEH characters are sent as interframe time-fill
IFTF = 1:FFH characters are sent as interframe time-fill.

FRDA: First Receive Descriptor Address points to the beginning of the
receive data chaining list.
This descriptor is only interpreted with a fast receive abort or a receive jump
or a receive initialization command. It is read but ignored with any other
receive channel command.

Table 9
TRV No. of Repetitions Transmission Rate

00
01
10
11

7
3
1
0

600 bit/s
1200 bit/s
2400 bit/s
4.8, 9.6, 19.2, 38.4 kbit/s

PEB 20320

Detailed Register Description

User’s Manual 160 01.2000

FTDA: First Transmit Descriptor Address points to the beginning of the transmit data
chaining list.
This descriptor is only interpreted with a fast transmit abort or a transmit jump
or a transmit initialization command. It is read but ignored with any other
transmit channel command.

ITBS: Individual Transmit Buffer Size; for undisturbed transmission an on-chip
transmit buffer with a total size of 64 long words stores the data before
formatting and transmitting. The individual buffer size specifies the part of the
on chip transmit buffer allocated to the channel. This allows a variable data
buffer size if NITBS = 0, ITBS has to be set to 0 also; it is then read but
ignored. (see Chapter 2.3).

Figure 80
Channel Specification

ITS08223

0 0

FRDA (First Receive Descriptor Address)

FTDA (First Transmit Descriptor Address)

0 TFLAG TRV Mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SF
E

IF
C

CH TE RE FI
R

FI
T

NI
TB

S
RI TI TO TA TH RO RA IF

TF

FACR
C

IN
V

CS

Interrupt Mask

New ITBS Value

New Xmt. buffer size
(ITBS valid)

Rcv./Xmt.
Rcv. Commands

(RI, RO, RA):
000 Rcv. Clear

Rcv. OFF010
Rcv. Abort011
Rcv. Jump100
Rcv. Init.101
Not Allowed110
Not Allowed111

First Xmt. Commands

(TI, TO, TA):

IFC:
CH:
TE:
RE:
FIR:
FIT:
(R)
(T) Transmitter Interrupt

Receiver Interrupt

Idle/Flag Change (R)
V.110 Frg. Chg. (R)
ERR Interrupt (T)
ERR Interrupt (R)

FI Interrupt (T)

2

(TH = 1) Xmt. Hold

Transparent Mode Flags

Fill code for flags in
transp. mode A (TMA only)

CRC Select

0
1

CRC Generated/Stripped
CRC to/from Data Section

(HDLC mode only)

Inversion

All Rcv. and Xmt. data Bits
in this channel are inverted.

CRC Polynom

0
1

16 Bit CRC (HDLC mode)

TMB
TMR 1

0

Interframe
Timefill

0
1

7E
FF

Mode

0 0 TMA
0 1 TMB/TMR
1 0 V.110/X30
1 1 HDLC Mode

Flag Adjustment/Filtering

FNUM interframe timefill
characters in HDLC mode,
or TFLAG filtering in TMA

Transmission Rate of V.110/X30

0 0
0 1
1 0
1 1

600 bit/s, 7 Repetitions

4.8, 9.6, 19.2, 38.4 kbit/s,
no Repetition

ITBS (buffer size)

(ones)
(flags)

(HDLC mode)

Short Frame (R)SFR:

Commands

001 Fast Rcv. Abort

FI Interrupt (R)

Fast Xmt. Abort001

111 Not Allowed
110 Not Allowed
101
100
011
010 Xmt. OFF

Xmt. Clear000

Xmt. Abort
Xmt. Jump
Xmt. Init.

nd Xmt. Commands

:

32 Bit CRC (HDLC mode)

1200 bit/s, 3 Repetitions
2400 bit/s, 1 Repetitions

PEB 20320

Detailed Register Description

User’s Manual 161 01.2000

4.2.6 Current Receive and Transmit Descriptor Address

For easier monitoring of the link lists the addresses of the just processed descriptors are
written into the CCS. MUNICH32 changes the current descriptor address at the same
time when it branches to the next descriptor.

31 16 15 0

Current Receive Descriptor Address Channel 0

.

.

.

Current Receive Descriptor Address Channel 31

Current Transmit Descriptor Address Channel 0

.

.

.

Current Transmit Descriptor Address Channel 31

PEB 20320

Detailed Register Description

User’s Manual 162 01.2000

4.3 Transmit Descriptor

FE: Frame End; this bit is valid in all modes.
It indicates that after sending the data in the transmit data section
– the device generates an interrupt with FI bit set for HDLC, TMB, TMR, TMA

ERR bit set for V.110/X.30
– the device then sends

• (FNUM + 1) × 7EH for HDLC, IFTF = 0
• 7E, (FNUM – 1) × FFH, 7E for HDLC, IFTF = 1, FNUM ≥ 1
• 7E for HDLC, IFTF = 1, FNUM = 0
• (FNUM + 1) × 00H for TMB, TMR (FNUM ≥ 1)
• 000H for TMR, FNUM = 0
• (FNUM + 1) × TFLAG for TMA, FA = 1
• (FNUM +1) × FFH for TMA, FA = 0
• three frames with synchronization errors for V.110/X.30

before starting with the data of the next transmit descriptor. If the
data of the next transmit descriptor are not available in time (e.g.
because the descriptor has FE and HOLD set) the device sends
the interframe time-fill indefinitely.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FE HOLD HI NO

Transmit Data Pointer

Next Transmit Descriptor Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

V.110 0 0 0 CSM FNUM

Transmit Data Pointer

Next Transmit Descriptor Pointer

PEB 20320

Detailed Register Description

User’s Manual 163 01.2000

HOLD: If the MUNICH32 detects a hold bit it
– generates an interrupt with ERR bit set if FE = 0 or V.110/X.30 mode
– sends the data in the current transmit data section
– generates the FCS bits for HDLC and CS = 0 and CSM = 0
– the device then sends at least

• (FNUM + 1) × 7EH for HDLC, IFTF = 0
• 7E, FNUM × FFH for HDLC, IFTF = 1
• (FNUM + 1) × 00H for TMB, TMR (FNUM ≥ 1)
• 0000H for TMR, FNUM = 0
• (FNUM + 1) × TFLAG for TMA, FA = 1
• (FNUM + 1) × FFH for TMA, FA = 0
• three frames with synchronization errors for V.110/X.30.

– It polls the HOLD bit and the next transmit descriptor address, but does no
branch to a new descriptor until the HOLD bit is reset. The next transmit
descriptor address is read but not interpreted as long as HOLD = 1.
Therefore it can be changed together with setting HOLD = 0.
The polling occurs at most every 8 valid clock cycles of the channel and
corresponds with internal requests from TF to TB.

– The device sends interframe time-fill until HOLD = 0 is polled.
The HOLD condition is also discarded if a transmit jump, fast transmit abort
or transmit initialization command is detected during the polling. The
MUNICH32 then branches to the transmit descriptor determined by FTDA
even though the HOLD bit of the current transmit descriptor may still be ‘1’.

HI: Host initiated Interrupt; if the HI bit is set, MUNICH32 generates an interrupt
with set HI bit after transferring all data bytes.

NO: This byte number defines the number of bytes stored in the data section to be
transmitted. A transmit descriptor and the corresponding data section must
contain at least either one data byte or a frame end indication.
Otherwise an interrupt with set ERR bit is generated.

V.110: This bit indicates that in the corresponding data section the E-, S- and X-bits
of the following V.110/X.30 frame are stored. MUNICH32 reads these bits and
inserts them into the next possible V.110/X.30 frame. The data section may
contain only two bytes specified in the next figure.
The first transmit descriptor after a transmit initialization channel command
must have this bit set if it revives the channel from a transmit off condition or
after a pulse at the reset pin.

PEB 20320

Detailed Register Description

User’s Manual 164 01.2000

Intel Mode

Motorola Mode

CSM: CRC Select per Message: This bit is only valid in HDLC mode with CS = 0 and
only in conjunction with the FE bit set. If set, it means that no FCS is
generated automatically for the frame finished in this transmit descriptor.

FNUM: FNUM denotes the number of interframe time-fill characters between
2 HDLC or TMB frames. For X.30/V.110 these bits have to be set to ‘0’.

FNUM = 0 means that after the current frame only 1 character (7EH for HDLC
and 00H for TMB, 000H for TMR, TFLAG, TFLAG for TMA, FA = 1; FFH for
TMA, FA = 0) is sent before the following frame (shared flags).

FNUM = 1 means that after the current frame 2 characters (7EH 7EH for HDLC
and 00H 00H for TMB and TMR, TFLAG, TFLAG for TMA, FA = 1; FF FFH for
TMA, FA = 0) are sent before the following frame (non shared flags).

FNUM = 2 means that after the current frame 3 characters (7EH 7EH 7EH
(IFTF = 0) or 7EH FFH 7EH (IFTF = 1) for HDLC and 00H 00H 00H for TMB and
TMR, TFLAG, TFLAG, TFLAG for TMA, FA = 1; FF FF FFH for TMA, FA = 0)
are sent.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

E7 E6 E5 E4 E3 E2 E1 SB SA X 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SA X 0 0 0 0 0 0 E7 E6 E5 E4 E3 E2 E1 SB

PEB 20320

Detailed Register Description

User’s Manual 165 01.2000

FNUM = k means that after the current frame k + 1 characters are sent
(k + 1) times 7EH for ITFT = 0 and HDLC
7EH, (k – 1) times FFH, 7EH for ITFT = 1 and HDLC
(k + 1) times 00H for TMB, TMR
(k + 1) times TFLAG for TMA, FA = 1
(k + 1) times FFH for TMA, FA = 0.
For HDLC mode FNUM is reduced by one eight of the number of zero
insertions if FA is set. If the reduction would result in a negative number of
interframe time-fill characters it is set to 0.

Transmit Data Pointer: This 32-bit pointer contains the start address of the transmit data
section. Although MUNICH32 works only long word oriented, it
is possible to begin a transmit data section at an uneven
address. The two least significant bits (ADD) of the transmit data
pointer determine the beginning of the data section and the
number of data bytes in the first long word of the data section,
respectively.

ADD: 00 = 4 bytes
01 = 3 bytes
10 = 2 bytes
11 = 1 byte

MUNICH32 reads the first long word and discards the unused
least significant bytes. The NO establishes (determines) the end
of the data section, whereas the remainder of
I (NO ADD) ÷ 4 I defines the number of bytes in the last
long word of the data section.

MUNICH32 reads the last long word and discards the unused
most significant bytes of the last long word.

If the first access is the same as the last access, ADD specifies
the beginning of the data section and NO the number of data
bytes in the long word. All unused bytes are discarded.

PEB 20320

Detailed Register Description

User’s Manual 166 01.2000

For example (Intel mode):
1) ADD = 01, NO = 8

2) ADD = 00, NO = 8

3) ADD = 10, NO = 1

For example (Motorola-mode):
1) ADD = 01, NO = 8

2) ADD = 00, NO = 8

3) ADD = 10, NO = 1

11 10 01 00

byte 2 byte 1 byte 0 –

byte 6 byte 5 byte 4 byte 3 3 long words are read

– – – byte 7

11 10 01 00

byte 3 byte 2 byte 1 byte 0

byte 7 byte 6 byte 5 byte 4 2 long words are read

– – – –

11 10 01 00

– byte 0 – –

– – – – 1 long word is read!

– – – –

11 10 01 00

– byte 0 byte 1 byte 2

byte 3 byte 4 byte 5 byte 6 3 long words are read

byte 7 – – –

11 10 01 00

byte 0 byte 1 byte 2 byte 3

byte 4 byte 5 byte 6 byte 7 2 long words are read

11 10 01 00

– – byte 0 – 1 long word is read!

PEB 20320

Detailed Register Description

User’s Manual 167 01.2000

Next Transmit This 32-bit pointer contains the start address of the next transmit
Descriptor Pointer: descriptor. After sending the indicated number of data bytes,

MUNICH32 branches to the next transmit descriptor to continue
transmission. The transmit descriptor is read entirely at the
beginning of transmission and stored in an on-chip memory.
Therefore all information in the next descriptor must be valid
when MUNICH32 branches to this descriptor when HOLD = 0.
For HOLD = 1 the next transmit descriptor pointer is polled
together with HOLD; the next transmit descriptor must be valid,
when HOLD = 0 is polled.

This pointer is not used if a transmit jump, fast transmit abort or
transmit initialization channel command is detected while the
MUNICH32 still reads data from the current transmit descriptor
or polls the HOLD bit. In this case FTDA is used as a pointer for
the next transmit descriptor to be branched to.

PEB 20320

Detailed Register Description

User’s Manual 168 01.2000

4.4 Receive Descriptor

The receive descriptor contains 4 long words; the first, third and fourth have to be written
by the CPU, the second is written by the MUNICH32 when it branches to the next receive
descriptor or when it starts polling the HOLD bit.

Note: The MUNICH32 branches to a next descriptor without writing the second long
word if the receive initialization command is used during normal operation (see
Chapter 4.2.4)

HOLD: Setting the HOLD bit by the host prevents the device from branching to the
next descriptor. The current data section is still filled.

– Afterwards the second descriptor long word is written by the MUNICH32.
For HDLC, TMB, TMR the FE and C-bit is set. If the frame could not
completely be stored into the data section the RA bit is set in the status.
An interrupt with set FI bit is generated, and in case the frame was aborted,
the ERR bit is also set.
For TMA, V.110/X.30 the C-bit and the RA bit is set and an interrupt with
set ERR but with FI = 0 is generated.

– Afterwards the device starts polling the HOLD bit, received data, and
received events normally leading to interrupts (with RT = 1) are discarded
until HOLD = 0 is polled. Each 1 … 4 byte data word or interrupt event
normally leading to an access now results in a poll cycle.
Whenever HOLD = 1 is polled the next receive descriptor address is read
but ignored.

– When HOLD = 0 is polled
• for HDLC, TMB, TMR the device continues to discard data until the end

of a received frame or an event leading to an interrupt (with RT = 1) is

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 HOLD HI NO

FE C 0 BNO

Receive Data Pointer

Next Receive Descriptor Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Status 0 0 0 0 0 0 0 0

Receive Data Pointer

Next Receive Descriptor Pointer

PEB 20320

Detailed Register Description

User’s Manual 169 01.2000

detected. Afterwards the next received frame is transferred into the next
receive descriptor. Interrupts are also generated again.

• For V.110/X.30, TMA the device puts the next data into the next receive
descriptor. Interrupts are also generated again.

The HOLD condition is also discarded upon detection of a receive jump, fast
receive abort or receive initialization command. The MUNICH32 then
branches to the receive descriptor determined by FRDA even though the
HOLD bit in the current receive descriptor may still be ‘1’.

HI: Host initiated interrupt; if the HI bit is set, MUNICH32 generates an interrupt
with set HI bit after receiving all data bytes.

NO: This byte number defines the size of the receive data section allocated by the
host. Because MUNICH32 always writes long words the number of bytes
(data section size) must be a multiple of 4 and greater or equal to 4. The
maximum data section size is 8188 bytes.

After reception of an HDLC frame with a data byte number not divisible by 4
MUNICH32 first transfers the greatest entire ([number of data bytes/4]) in long
words. Then the remainder of the data bytes is transferred in another long
word, where the non-significant bytes are filled with random values. They
should not be interpreted.

For example a HDLC frame with one data byte is received:

The data bytes are stored into the receive data section according to the Little
Endian convention (Intel mode) or Big Endian convention (Motorola mode).

FE: Frame End: The frame end bit is ‘1’ only in HDLC, TMB, TMR mode and
indicates that a receive frame has ended in this receive descriptor. For TMA,
V.110/X.30 the bit is always ‘0’.

FE = 0 in HDLC, TME, TMR mode means that frame continues in the next
receive descriptor or that it filled the current receive data section exactly (BNO
= NO). In this case the next receive descriptor will have FE = 1, C = 1, BNO
= 0 and no data bytes are stored in the corresponding data section.

C: This bit is set by MUNICH32 if
• it completes filling the data section normally (BNO = NO) ⇒ FE = 0,

status = 00
• it was aborted by a fast receive abort channel command ⇒ status = 02

00000000.00001000.00000000.00000

11000000.00000001.Status.00000000

receive data pointer

next receive descriptor pointer

Receive Descriptor

XX.XX.XX.data

Receive Data Section

PEB 20320

Detailed Register Description

User’s Manual 170 01.2000

• for HDLC, TMB, TMR if the end of a frame was stored in the receive data
section ⇒ FE = 1, status gives the receive status determined by RD
(interrupt with set FI bit is generated)

• for V.110/X.30 mode if the 3 contiguous frames with errors in the
synchronization pattern are received ⇒ FE = 0, status = 20 or status = 21
interrupt with set ERR bit

• for V.110/X.30 mode if the data could not be transferred to the shared
memory due to RB buffer inaccessibility ⇒ FE = 0, status = 01 or
status = 21 interrupt with set ERR bit.
C indicates that the second long word of the receive descriptor was written
by the MUNICH32. Afterwards the MUNICH32 writes the next receive
descriptor address into CCS. Then it branches to this descriptor
immediately.

BNO: MUNICH32 writes the number of data bytes it has stored in the current data
section into BNO.

Status: The MUNICH32 writes the status information into the status byte whenever it
sets the C-bit. If the status information is not 00 or 40 an interrupt with ERR
bit set is generated. The status is then a means to locate or analyze the
receive error.
The following table gives a general overview over the different status bits in
relation to the channel modes.

HDLC CS = 0
0 NI 0 ILN IL I I I

HDLC CS = 1
0 0 0 ILN IL I I I

V.110/X.30
0 0 I 0 0 0 IF I

TMB
0 0 0 0 IL I IF I

TMR
0 0 0 0 IL I IF I

TMA
0 0 0 0 0 0 IF 0

Where ‘0’ means that in the corresponding mode the bit is always ‘0’. It should not be
interpreted though to be upward compatible to future versions.

7 6 5 4 3 2 1 0

0 SF LOSS CRCO NOB LFD RA ROF

PEB 20320

Detailed Register Description

User’s Manual 171 01.2000

NI means the bit may be ‘1’ or ‘0’ but does not cause an interrupt with
set ERR bit.

ILN means that it may be ‘1’ or ‘0’ but should not be evaluated if LFD or NOB
is also ‘1’.

IL means that it may be ‘1’ or ‘0’ but should not be evaluated if LFD = 1.

I means that it may ‘1’ or ‘0’.

IF means that it may be ‘1’ only after a fast receive abort channel command
or detection of a HOLD bit in the current receive descriptor.

I, IF, IL, ILN lead to an interrupt with ERR bit set.
Note: For HDLC, TMB, TMR the status word is only valid if the FE bit is set.

The meaning of the individual status bits is as follows:

SF = 1 (HDLC mode with CS = 0 only):
The device has received a frame with
≤ 32 bit between start flag and end flag or end abort flag for CRC16
≤ 48 bit between start flag and end flag or end abort flag for CRC32
i.e. BNO was 1 or 2.

LOSS = 1 Three contiguous frames with errors in the synchronization pattern were
detected.

CRCO = 1 A frame with a CRC error was detected CRCO = 0 means the frame had
no CRC error.

NOB = 1 A frame whose bit content was not divisible by 8 was detected.
NOB = 0 means that the frame content was divisible by 8.

LFD = 1 Long frame detected. If this bit is set a frame whose bit content
was > MFL was detected and aborted. The reception will be continued as
soon as a flag is recognized.

RA = 1 Receive Abort; this bit indicates that
for HDLC: the frame was ended by an abort flag (7FH) or by a receive
abort command or a fast receive channel command or by a HOLD bit in
the current receive descriptor.
for V.110/X.30, TMB, TMR, TMA that the frame or data were aborted by
a fast receive abort channel command or a HOLD bit set in the current
receive descriptor.

ROF = 1 An overflow of the internal buffer RB has occurred and lead to a
loss of data.

Note: If ROF without FO interrupt is generated for a channel
• for HDLC, TMB, TMR only the last part of one frame has been lost.
• For V.110/X.30 only data but no status information (change E-, S-, X-bits, Loss)

has been lost.

PEB 20320

Detailed Register Description

User’s Manual 172 01.2000

Note: In case of multiple errors all relevant bits are set.
In case of ROF = 1 only the error conditions of the frame within which the overflow
occurred are reported. Later frames that are aborted do not change the status.

Receive Data Pointer: This 32-bit pointer contains the start address of the
receive data section.

Receive Descriptor Pointer: This 32-bit pointer contains the start of the next receive
descriptor.
It is not used if a receive jump, fast receive abort or
receive initialize command is detected while the
MUNICH32 still writes data into the current receive
descriptor or polls the HOLD bit. In this case FRDA is
used as a pointer for the next receive descriptor to be
branched to.

PEB 20320

Application Notes

User’s Manual 173 01.2000

5 Application Notes

5.1 Test Loops

5.1.1 Test Loop Definitions for the MUNICH32

Two basic types of test loops are provided by the MUNICH32, internal and external.
Each of these types is further subdivided into channelwise and complete test loops thus
providing four possible test loops.

5.1.1.1 Internal Complete Test Loop

The serial data output is physically routed to the serial data input. The TX data appears
on the TDATA output pin and the RDATA input pin is ignored. TCLK and RCLK have to
be identical; TSP and RSP have to be identical. The logical Transmit and Receive
channels have to be programmed identically.

Figure 81

ITS08198

TDATA

1

&

CD

RDATA

µP Interface

Enable Int.
Complete Loop

&

RSP
RCLK

TCLK
TSP

PEB 20320

Application Notes

User’s Manual 174 01.2000

5.1.1.2 Internal Channelwise Test Loop

One (and only one) logical channel is mirrored from the serial data output to the serial
data input. The other logical channels are not affected by this operation. The transmit
and receive data rates for this single logical channel must be identical. Normal TCLK,
RCLK, TSP and RSP design rules apply. This test loop provides channelwise testing
capabilities during idle channel time slots, without interfering with normal data
transmission/reception.

Figure 82

5.1.1.3 External Complete Test Loop

The serial data input is physically routed to the serial data output. Data is received on the
RDATA pin and routed to the TDATA pin. The received data can be stored in shared
memory for additional diagnostic purposes. TCLK and RCLK have to be identical; TSP
and RSP have to be identical.

ITS08199

TDATA

1

&

CD

Channel X only

RDATA

µP Interface
Enable Int.
Channelwise Loop
for Channel X

PEB 20320

Application Notes

User’s Manual 175 01.2000

Figure 83

5.1.1.4 External Channelwise Test Loop

One (and only one) logical channel is mirrored from the serial data input to the serial
data output. The other logical channels are not affected by this operation. The receive
and transmit data rates for this single logical channel must be identical. Normal TCLK,
RCLK, TSP and RSP design rules apply. This test loop provides channelwise testing
capabilities during idle channel time slots, without interfering with normal data reception/
transmission.

Figure 84

ITS08200

TDATA
1

&

CD

RDATA

µP Interface

Enable Ext.
Complete Loop

&

RSP
RCLK

TCLK
TSP

ITS08201

TDATA
1

&

CD

Channel X only

RDATA

µP Interface
Enable Ext.
Channelwise Loop
for Channel X

PEB 20320

Application Notes

User’s Manual 176 01.2000

5.1.2 Test Loop Activation

All of the test loops are closed (activated) and opened (deactivated) by setting/resetting
the appropriate combination of bits in the Action Specification (Table 10). Any unlisted
combination of LOC, LOOP and LOOPI is an invalid operation. Although the data sheet
(Data Sheet 08.93) specifically states that loops must be left (opened) by issuing the
reset pin to ‘1’, there are exceptions to this rule. Generally, the test loops can be opened
by software. There are several cases that must be examined and these will be discussed
in the next section.

When closing (activating) a test loop, the IN, ICO, IM, RES, and IA bits should equal ‘0’
and PCM and MFL should be set to the appropriate values.

The following recommended procedure for activating a test loop assumes that the
MUNICH32 has been fully initialized and the user desires to activate a test loop on
channel x:

• Initialize Rc and Tx channel as appropriate for type of test loop.
• Close (activate) the test loop.
• Perform test functions (transmit/receive data, check for interrupts, errors, etc.)
• Open (deactivate) the test loop.
• Perform Rc and Tx off function.
Note: While the test loop is activated, do not execute the transmit off command. It will

not have the effect of resetting the transmit formatter.

5.1.3 Test Loop Deactivation and Switching

As mentioned previously, a test loop can be opened (deactivated) by software. To
deactivate a test loop a new ASP should be issued with LOC, LOOP, and LOOPI = 0 and
all other bits should be set to the previous values used during activation. Listed below
are the possible test loop operations that can be activated with software and those
requiring a hardware reset. Table 11 is provided as a graphical representation of this
information.

Table 10
Test Loop Activation

Test Loop LOC LOOP LOOPI ASP

Internal complete 0 0 1 xxxxxx08H

Internal channelwise 1 0 1 xxxxxx28H

External complete 0 1 0 xxxxxx10H

External channelwise 1 1 0 xxxxxx30H

No loop 0 0 0 xxxxxx00H

PEB 20320

Application Notes

User’s Manual 177 01.2000

5.1.3.1 Software Operations

Close and open internal complete loop.
Close and open internal channelwise loop.
Close and open external complete loop.
Close and open external channelwise loop.
Change from internal complete loop to internal channelwise loop.
Change from external complete loop to external channelwise loop.

5.1.3.2 Hardware Reset Operations

Change between the internal complete loop and external complete loop.
Change between the internal channelwise loop and external channelwise loop.
Change between the internal channelwise loop and internal complete loop.
Change between the external channelwise loop and external complete loop.
Change between internal channelwise loop and external complete loop.
Change between internal complete loop and external channelwise loop.
Change between external channelwise loop and internal complete loop.
Change between external complete loop and internal channelwise loop.

Table 11
Allowed Operations

Change to

Internal
Complete
Loop

Internal
Channelwise
Loop

External
Complete
Loop

External
Channelwise
Loop

Internal
Complete Loop

X SFW HDW Reset
required

HDW Reset
required

Internal
Channelwise
Loop

HDW Reset
required

X HDW Reset
required

HDW Reset
required

External
Complete Loop

HDW Reset
required

HDW Reset
required

X SFW

External
Channelwise
Loop

HDW Reset
required

HDW Reset
required

HDW Reset
required

X

PEB 20320

Application Notes

User’s Manual 178 01.2000

5.1.4 Test Loop Examples

5.1.4.1 Internal Channelwise Test Loop

Generate HW RESET, and hold off RSP/TSP for 1000 SCLK cycles.
ASP: A104-8004 ;CEPT, MFL=260, IN, IA=1
IQS: ICQ

0000-001F
TSA[0]: 00FF-00FF ;TS0 = CH0
TSA[1…31]: 0000-0000 (×31)
CSP[0]: 00E9-0006 ;Tx/Rc init, poll Tx Desc, HDLC

FRDA
FTDA
0000-0002 ;ITBS = 2 long words

CSP[1…31] 0000-0000 0000-0000 0000-0000 0000-0000 (x31)
CRA[0…31] 0000-0000 (×32)
CTA[0…31] 0000-0000 (×32)

ICQ: 0000-0000 (×512)

FRDA: 0020-0000
0000-0000
RcvDtaPtr → 32 byte

+ NxtRDPtr data block

+→ 0020-0000

0000-0000
RcvDtaPtr → 32 byte

+ NxtRDPtr data block

+→ 0020-0000

0000-0000
RcvDtaPtr → 32 byte

+ NxtRDPtr data block

+→ 4020-0000 ;HOLD = 1

0000-0000
RcvDtaPtr → 32 byte
0000-0000 data block

FTDA: C000-0000 ; HOLD, FE = 1 for dummy frame
XmtDtaPtr

+ NxtTDPtr

+→ 0020-0000

XmtDtaPtr → abcdefghijklmnop
+ NxtTDPtr qrstuvwxyz012345

+→ C020-0000 ;FE, HOLD = 1

XmtDtaPtr → ABCDEFGHIJKLMNOP
0000-0000 QRSTUVWXYZ987654

PEB 20320

Application Notes

User’s Manual 179 01.2000

Generate AR Pulse and wait for INT signal (set up TS0 and CH0).

Read interrupt queue:
ICQ: 9000-8000 ;Action Request Acknowledge

;V2.2 (V2.1 = 8800-8000)
9000-1000 ;Polls HOLD bit of 1st Tx Desc.

Set ASP for Internal Channelwise Loop test
ASP: A104-0028 ;CEPT, MFL=260, Int. Chnl loop

Generate AR Pulse and wait for INT signal.

Read interrupt queue:
ICQ: 9000-8000 ;Action Request Acknowledge

9000-1000 ;Polls HOLD bit of 1st Tx Desc.
9000-082020 ;Rc ITF state change

Clear HOLD bit in FTDA (allow frame to Tx over Internal Chnl. Loop).

Read interrupt queue:
ICQ: 9000-1000 ;End of Tx frame, polling HOLD

 bit of Tx desc.
9000-1020 ;Rc frame complete

Read receive descriptors:
FRDA: 0020-0000

4020-0000 ;C = 1, NO = BNO
RcvDtaPtr → abcdefghijklmnop

+ NxtRDPtr qrstuvwxyz012345

+→ 0020-0000

4020-0000 ;C = 1, NO=BNO
RcvDtaPtr → ABCDEFGHIJKLMNOP

+ NxtRDPtr QRSTUVWXYZ987654

+→ 0020-0000

C000-0000 ;FE, C = 1, BNO = 0
RcvDtaPtr → ;empty! (p. 139 User’s Manual -

FE description)
+ NxtRDPtr

+→ 4020-0000

0000-0000
RcvDtaPtr → 32 byte
0000-0000 data block

PEB 20320

Application Notes

User’s Manual 180 01.2000

5.1.4.2 External Channelwise Test Loop

Generate HW RESET, and hold off RSP/TSP for 1000 SCLK cycles.

ASP: A104-8004 ;CEPT, MFL=260, IN, IA=1

IQS: ICQ

0000-001F

TSA[0]: 00FF-00FF ;TS0 = CH0

TSA[1…31]: 0000-0000 (×31)
CSP[0]: 00E9-0006 ;Tx/Rc init, poll Tx desc., HDLC

FRDA

FTDA

0000-0002 ;ITBS = 2 long words

CSP[1…31] 0000-0000 0000-0000 0000-0000 0000-0000 (x31)

CRA[0…31] 0000-0000 (×32)
CTA[0…31] 0000-0000 (×32)

ICQ: 0000-0000 (×512)

FRDA: 0020-0000

0000-0000

RcvDtaPtr → 32 byte

+ NxtRDPtr data block

+→ 0020-0000

0000-0000

RcvDtaPtr → 32 byte

+ NxtRDPtr data block

+→ 0020-0000

0000-0000

RcvDtaPtr → 32 byte

+ NxtRDPtr data block

+→ 4020-0000 ;HOLD = 1

0000-0000

RcvDtaPtr → 32 byte

0000-0000 data block

FTDA: +→ C000-0000 ;HOLD, FE = 1 for dummy frame

 XmtDtaPtr

+ NxtTDPtr

PEB 20320

Application Notes

User’s Manual 181 01.2000

Generate AR Pulse and wait for INT signal (set up TS0 and CH0).

Read interrupt queue:

ICQ: 9000-8000 ;Action Request Acknowledge

;V2.2 (V2.1 = 8800-8000)

9000-1000 ;Polls HOLD bit of 1st Tx Desc.

9000-1000 ;FI Frame indication for the

 1st Tx Desc.

;Now M32 starts polling HOLD

 bit of 1st Desc.

Set ASP for External Channelwise test loop

ASP: A104-0030 ;CEPT, MFL=260, Ext. Chnl loop

Generate AR Pulse and wait for INT signal.

Read interrupt queue:

ICQ: 9000-8000 ;Action Request Acknowledge

9000-0820 ;Only if other station uses

 idle code 7E

9000-1020 ;Received frame complete

Read receive descriptors: ;assumes 64 byte frame externally looped

FRDA: 0020-0000 ;with proper HDLC framing

4020-0000 ;NO = BNO

RcvDtaPtr → abcdefghijklmnop

+ NxtRDPtr qrstuvwxyz012345

+→ 0020-0000

4020-0000 ;NO=BNO

RcvDtaPtr → ABCDEFGHIJKLMNOP

+ NxtRDPtr QRSTUVWXYZ987654

+→ 0020-0000

C000-0000 ;FE, C = 1, BNO = 0

RcvDtaPtr → ;empty!

+ NxtRDPtr

+→ 4020-0000

0000-0000

RcvDtaPtr → 32 byte

0000-0000 data block

PEB 20320

Application Notes

User’s Manual 182 01.2000

5.2 MUNICH32 in a LAN/WAN Router

5.2.1 Introduction

Subject of this application note is an ISDN/LAN Router, a communication system that
enables two LANs to communicate via the ISDN.

Figure 85
ISDN/LAN Router

The structure of the whole system is shown in Figure 85. The router itself is realized as
a stand alone solution. It is connected to a standard PC for software download and
maintenance control only. After the download the system works fully independent of the
host PC.

The hardware of the ISDN/LAN router consists of an application specific part and a
processor system. The application specific hardware is mainly based on the SIEMENS
Component MUNICH32 (Multi Channel Network Interface Controller for HDLC) and a
standard LAN controller. Both devices are integrated in the same processor system.

The software of the ISDN/LAN router is formed by integrating the MUNICH32 Device
Driver Module (DDM) and the corresponding LAN controller Device Driver Module in a
Device Driver System (DDS). The device driver modules build a platform to implement
the routing strategy in a separate application module.

The application specific hardware, the MUNICH32 Device Driver Module and the
application module are the main aspects described in the following chapters. The
structure of the processor system is briefly illustrated. The DDS service routines are
explained as far as necessary to understand this special application. It is suggested that
the reader has some knowledge about the MUNICH32 before reading this application
note. Detailed information about the MUNICH32, its features and memory structures are
given in the MUNICH32 PEB20320 Data Sheet.

ITS08283

Router Router
ISDN

LAN LAN

PEB 20320

Application Notes

User’s Manual 183 01.2000

5.2.2 Hardware

The processor system is based on a Motorola 68040 processor. It contains 512 KByte
SRAM, a bus controller and peripherals like timer, EPROM and interrupt controller. The
application specific hardware is integrated by using a Peripheral Connector and an
Alternate Busmaster Connector. The Peripheral Connector allows the integration of
external peripherals. The Alternate Busmaster Connector is used to connect external
bus masters to the local bus. The system is provided with a RS232 serial interface to
download executable software on the board.

Figure 86
Hardware Block Diagram

ITB08284

Timer

EPROM

Interrupt
Controller

SRAM

Alternate
Busmaster
Connector

Peripheral
Connector

Bus
Controller

MC68040

i82596 MUNICH32

i82C501

EM 2

Connector Connector

ACFA

PRACT

RS232

ISDN
Interface Interface

LAN

Glue Logic

LAN ISDN

PEB 20320

Application Notes

User’s Manual 184 01.2000

Application Specific Hardware

The application specific hardware consists of an ISDN primary rate interface and an
Ethernet interface. The MUNICH32 PEB 20320 in conjunction with the layer 1 SIEMENS
components ACFA (Advanced CMOS Frame Aligner) PEB 2035 and PRACT (Primary
Rate Access Clock Generator and Transceiver) PEB 22320 are used to build the primary
rate interface. Incoming data from the ISDN is first processed from the PRACT. It
translates the HDB3 coded line signals in dual rail signals. The PRACT also supplies
ACFA and MUNICH32 with clock signals. Main task of the ACFA is the frame alignment.
Besides, the ACFA translates the dual rail data in a single rail, unipolar bit stream which
can be processed by the MUNICH32.

The MUNICH32 handles up to 32 channels of a full duplex PCM highway. All time-slots
may have data rates between 8 Kbit/s and 64 Kbit/s. The MUNICH32 supports besides
other protocols the HDLC formatting/deformatting. If programmed for HDLC mode, the
MUNICH32 performs HDLC specific functions like framing, CRC check/generation,
flag stuffing and zero bit insertion/deletion autonomously. An on-chip 64-channel
DMA controller allows the device to store/read data into/from the SRAM. The DMA
controller manages long word or word transfers via a 32-bit processor interface. The
µP interface can be configured to be Motorola 68020 or intel 80386 compatible.

Figure 87
ISDN Interface

The Ethemet interface is built with a LAN controller, a Manchester encoder/decoder and
a transceiver. The LAN controller supports all IEEE 802.3 standards. The Ethernet
framing: preamble generation, source address generation, destination address
checking, short-frame detection, automatic length field handling is performed. After
LAN controller processing the transmit data is Manchester encoded and forwarded to the
transmission line, while receive data is Manchester decoded before being processed by
the LAN controller.

ITS08285

MUNICH32 ACFA PRACT
Line IN

Line OUT

Overvoltage
µP Interface

PCM
Highway

Dual Rail
Unipolar
Signals

PEB 20320

Application Notes

User’s Manual 185 01.2000

System Architecture

The system architecture is shown in Figure 88. The MUNICH32, the CPU and the
LAN controller store data in the shared memory. The communication between CPU and
alternate bus master is done via the shared memory. The CPU informs the alternate bus
masters with help of control signals about changes in the shared memory and vice versa.
The MUNICH32 input control signal is the Action Request pulse (ACTION REQUEST).
It is generated by one CPU write cycle to a defined address and decoding the address
lines. The MUNICH32 then responds by generating an interrupt pulse and writing the
respective interrupt information in the SRAM.

Figure 88
System Architecture

ITS08286

MUNICH32 CPU i82596

Signals
Control Control

Signals

Local Bus

Shared
Memory

PEB 20320

Application Notes

User’s Manual 186 01.2000

Bus Arbitration

Since three devices are using the bus it is necessary to implement a bus arbitration.
Each bus master requests bus mastership and awaits bus control given to it by the
arbiter. The bus arbitration protocol is also Motorola specific. The intel specific signals of
the LAN controller (i82596) are translated into Motorola specific signals. The bus
arbitration is realized in two devices GAL16V8 (15 ns), both containing a Finite State
Machine. Arbiter 1 gives bus mastership to the CPU whenever no other bus master
requests bus mastership. If either the MUNICH32 or the LAN controller requests bus
mastership the arbiter 2 gives a bus request to the arbiter 1. Arbiter 1 forces the CPU to
release the bus and gives bus mastership to arbiter 2. Arbiter 2 then responds to
MUNICH32 or LAN controller. In this solution the priority of the MUNICH32 is higher than
that of the LAN controller. Consequently if both alternate bus masters request bus
mastership at the same time, bus mastership will be given to the MUNICH32. The LAN
controller has to wait until MUNICH32 has finished his accesses and arbiter 1 returns the
bus to the CPU. It might happen, that some Ethernet frames get lost, because the
LAN controller can not get access to the bus in time, but the loss of incoming data from
the ISDN (where fees have to be paid) is minimized.

Figure 89
Bus Arbitration

ITS08287

MUNICH32 CPU i82596

Arbiter 1

Arbiter 2

PEB 20320

Application Notes

User’s Manual 187 01.2000

Bus Timing Adaptation1)

The bus controller manages memory accesses of all bus masters (CPU, MUNICH32 or
LAN controller). The bus controller timing is Motorola 68040 specific. The MUNICH32
bus interface is either Intel specific or Motorola 68020/030 specific. Therefore the
MUNICH32 bus timing needs to be adapted by using simple glue logic. One Gate Array
Logic (Gal16V8, 15 ns) contains all necessary logic.

The MUNICH32 Address Strobe (AS) signal determines valid addresses on the bus. The
equivalent Motorola 68040 control signal is the Transfer Start (TS). During MUNICH32
write cycles valid data on the bus is indicated with the Data Strobe (DS) signal.
MUNICH32 write and read bus cycles are terminated with the Data Transfer
Acknowledge (DSACK) signal. For the Motorola 68040 the end of a bus cycle is
indicated by the Transfer Acknowledge (TA) signal.

During MUNICH32 bus cycles the MUNICH32 output signal AS is used to generate the
bus controller input signal TS. The TS is deasserted with the MUNICH32 input DSACK
rising edge. Since all bus cycles have the same length the DSACK signal is generated
two bus clock cycles after AS is detected low. TS is tristated, if the MUNICH32 is not
busmaster. This signal is driven by another bus master during that time.

Figure 90
MUNICH32 Timing Adaption

1) See also Chapter 5.2.6.

ITD08288

BCLK

SCLK

TS

TA

Addr

Data

AS

DSACK

PEB 20320

Application Notes

User’s Manual 188 01.2000

The LAN controller’s (i82596) bus timing also needs to be adapted. The address lines
A1, AO, Size 0 and Size 1 need to be generated, because the LAN controller performs
8 bit and 16 bit cycles as well as 32 bit cycles. There are also some non standard bus
signals for the LAN controller, that have to be generated. Furthermore the System Clock
and the Bus Clock have to be synchronized. All necessary glue logic for the
LAN controller is realized in four devices Gal 16V8.

5.2.3 Software

The software is based on a message oriented device driver system. The device driver
modules and application modules have a structure that allows to access them via
defined entry points.

Module Entry Points

Two Entry points offer access to the DDMs. Messages can be sent to the DDM via the
Message Entry Point. A hardware interrupt causes the program to branch to the Interrupt
Entry Point. The APM also offers access via a Message Entry Point, but since the APM
does not control any hardware, there does not exist any Interrupt Entry Point.

Figure 91
Module Entry Points

ITS08289

Device Driver System

Device Driver Module Application Module

Message Message

Hardware

Interrupt

PEB 20320

Application Notes

User’s Manual 189 01.2000

DDS Tasks

The message transfer between the modules is the main task of the DDS, realized by
some service routines. DDMs and APMs are integrated in the DDS by executing a
Module Init Routine. The Module Init Routine is called by the DDS. Additionally the DDS
offers service routines for memory management. All service routines can be used by all
modules. Some memory management functions will be presented in more detail. For
detailed information about the other DDS service routines please refer to the SIPB 7520
Primary Rate User Board or EASY532 Datacom Userboard Documentation.

Memory Management

With the memory management functions the allocation of message descriptors,
MUNICH32 receive/transmit descriptors1) or LAN controller receive/transmit descriptors
is simplified. During initialization of the memory management module DDSM a pool of
descriptors is prepared in a linked list. The memory management functions allow to
allocate descriptors and to free descriptors. During initialization of the memory
management module DDSM a pool of descriptors is prepared in a linked list. The
memory management functions allow to allocate descriptors and to free descriptors.
During allocation a descriptor is taken from the prepared list. After utilization the
descriptor is given back to the descriptor pool. There is one pool for message descriptors
and one pool for MUNICH32 receive/transmit and LAN controller receive/transmit
descriptors. Because MUNICH32 transmit and receive descriptors differ and they both
differ from the LAN controller transmit and receive descriptors, there are service
functions available to convert the descriptor type.

1) Refer to MUNICH32 Data Sheet.

PEB 20320

Application Notes

User’s Manual 190 01.2000

Figure 92
Memory Management

ITS08290

Message Descriptor Pool
Allocate

Free

Free

Allocate

Co
nv

er
t

MUNICH32/LAN Controller
Descriptor Pool

PEB 20320

Application Notes

User’s Manual 191 01.2000

5.2.3.1 Device Driver Module MUNICH32

Tasks

The MUNICH32 Device Driver Module has to prepare all memory structures for the
MUNICH32. The ACTION REQUEST Pulse has to be generated. The device driver
module also has to treat the MUNICH32 interrupts.

Message Entry Point

Every incoming message results in executing a function.

Function Action

ResetMunich32 Action Specification Reset bit is set, All channels are
initialized, all time-slots are initialized, ACTION
REQUEST Pulse is generated.

ConfigMunich32 Sets PCM mode and maximum frame length, ACTION
REQUEST Pulse is generated.

InitlnterruptQueue Interrupt Attention bit is set, A new interrupt queue is
defined, ACTION REQUEST Pulse is generated.

InitChannel Action Specification in-bit is set, Initializes receiver and
transmitter of selected channel, ACTION REQUEST
Pulse is generated.

InitTxChannel Initializes transmitter of selected channel, ACTION
REQUEST Pulse is generated.

InitRcChannel Initializes receiver of selected channel, ACTION
REQUEST Pulse is generated.

SendFrame Adds tx descriptors to the transmit descriptor queue and
clears hoId bit of poll descriptor if the channel is active.

TxJump If no poll descriptor is detected Initialize Channel Only bit
is set, ‘transmit jump’ command is given, if the previous
command was not ‘receive abort’ or ‘off the receive clear’
command is given, ACTION REQUEST Pulse is
generated.

TxHold Initialize Channel Only bit is set, turns channel on or off,
turn channel on: if last command was ‘transmit off’ or
‘transmit abort’ ‘transmit clear’ is given and ‘transmit hold’
bit is cleared, turn channel off: if channel is active and
‘transmit hold’ bit is set, ACTION REQUEST Pulse is
generated.

PEB 20320

Application Notes

User’s Manual 192 01.2000

Interrupt Entry Point

The information in the interrupt queue is read and a message containing that information
is sent to the user.

In case of a received frame the written receive descriptors are linked to a message and
sent to the user. The next available descriptor in the list is linked to the memory
structures. An equivalent number of new receive descriptors is allocated and linked to
the end of the receive descriptor queue.

In case of a transmit acknowledge interrupt the used transmit descriptors are released
to the descriptor pool.

TxShutDown Initialize Channel Only bit is set, gives ‘transmit off’
command or ‘transmit abort’ command, ACTION
REQUEST Pulse is generated.

RcJump Initialize Channel Only bit is set, If last command was
‘transmit off’ or ‘transmit abort’ ‘transmit clear’ is given,
‘receive jump’ command is given, ACTION REQUEST
Pulse is generated.

RcShutDown ‘Initialize Channel Only’ bit is set, Gives receive off
command if receiver was aborted otherwise gives
receive abort command, ACTION REQUEST Pulse is
generated.

SwitchlnternalChanLoop Sets/clears Internal Channelwise Loop, ACTION
REQUEST Pulse is generated.

SwitchlnternalCompLoop Sets/clears Complete Loop, ACTION REQUEST Pulse is
generated.

ShowMunich32VersionNr ACTION REQUEST Pulse is generated.

CheckActionRequestQueue Looks for messages to be processed and branches to
the Message Entry Point.

Function Action

PEB 20320

Application Notes

User’s Manual 193 01.2000

Programming the MUNICH32 for this Application

The basic programming of the MUNICH32 for this application is realized in the Module
Initialization Routine. Further programming is done by calling the function ‘Init Channel’
for each channel once. Transmit data is then added to the memory structures by passing
a message with linked transmit descriptor(s) to the function ‘Send Frame’.

Module Initialization Routine

Here the IM-bit is cleared because the MUNICH32 DDM expects the action request
acknowledge interrupt. The values for PCM and MFL are set. The PCM format is a 32-
channel format according to CEPT. The maximum frame length is set to its maximum.
Finally the address and length of a new interrupt queue are defined. Those values will
not be changed anymore.

Init Channel Routine

The function ‘Init Channel’ initializes the time-slot assignment and the channel
specification for one channel. The channel number is set to the value of the variable
‘channel’. The MUNICH32 is alerted to access all time-slot assignments and the channel
specification by setting the in-bit.

The fillmask (transmit and receive) for the selected channel is written in the appropriate
word of the time-slot assignment. All other channels and their fillmasks are not affected.

For this application all interrupts are enabled. Initialization of the selected channel
comprises the definition of a new ITBS value and initialization of the receiver and the
transmitter. The transmit hold bit is cleared. After initialization the MUNICH32 starts
polling the hold bit of the current transmit descriptor. Therefore a transmit descriptor is
allocated and connected to the memory structures. Its hold bit and fe-bit are set to one,
its no-bits are set to zero. For that reason the MUNICH32 does not transmit anything but
polls this descriptor. Since after the receiver’s initialization the MUNICH32 is ready to
receive data, a queue of receive descriptors is allocated and linked to the memory
structures. The hold bit of the last descriptor in the list is set to indicate the end of the list.
In all other descriptors the hold bit is cleared.

PEB 20320

Application Notes

User’s Manual 194 01.2000

Send Frame Routine

Calling ‘SendFrame’ after initialization of a channel results in executing ‘AddHdlcFrame’.
In that routine the transmit descriptors are disconnected from the message and linked to
the memory structures. If the message source is the ‘MROUTE Application Module’ the
hold bit and fe-bit indicating the end of a frame and the end of the list have already been
set/cleared in the MROUTE module, they are not modified anymore. If the message
source is any other module the fe-bit and hold bit are cleared in all descriptors except for
the last one. There the hold bit has to be set, to prevent the MUNICH32 from branching
to the next descriptor. Setting the fe-bit in the last descriptor only forces the MUNICH32
to send the data in one HDLC frame. The bits HI, V110 and CSM are cleared in both
cases.

Transmit/Receive Interrupt

A transmit acknowledge interrupt is treated by returning the transmit descriptor(s) to the
descriptor pool.

After a receive interrupt (FI bit set) the receive descriptors with c-bit set, are
disconnected from the list of receive descriptors, linked to a message and sent to the
MROUTE module. The next free receive descriptor in the list is linked to the memory
structures. An equivalent number of new descriptors is allocated and linked to the end of
the receive descriptor list.

5.2.3.2 Application Module MROUTE

The application module MROUTE implements the routing strategy.

Routing Strategy

Both devices the MUNICH32 and the LAN controller organize receive and transmit data
in a linked list of receive descriptors and a linked list of transmit descriptors. The data is
stored in data buffers of variable size. The receive/transmit descriptors contain the
address of the data buffer. The basic idea behind the routing strategy is, to take the
MUNlCH32’s receive descriptor and link it to the LAN controller’s transmit descriptor
queue. On the other hand to take the LAN controller’s receive descriptor and link it to the
MUNlCH32’s transmit descriptor queue.

PEB 20320

Application Notes

User’s Manual 195 01.2000

Figure 93
Insertion of additional Information

To make efficient use of the available bandwidth, the parallel use of several B-channels
is one of the routing strategy’s goals. Every Ethernet frame is divided into several parts
because the LAN controller stores the received data in several receive descriptors, if
necessary. The frame is then sent via the ISDN by using a separate B-channel for every
LAN receive descriptor. To ensure that the parts of the Ethernet frame will be
reassembled in correct order, every part of the Ethernet frame is supplied with additional
information. That additional information has to be extracted before reassembling the
frame. In Figure 93 an example of one Ethernet frame consisting of three descriptors,
spread over two B-channels, is shown. The additional information contains the frame
number, the descriptor number and the information, whether the frame is completed. To
simplify the extraction of the additional information every frame part and its additional
information are sent in one HDLC frame.

ITS08291

0
Frame
Count

Descr
Count

EOF = 0 1=EOF
Count
Descr

Count
Frame

2

fe = SET SET=fe

Ch1

2Ch

SET=fe

1=EOF
Count
Descr

Count
Frame

1

0 1 2

EOF = SET

ISDN
64 kbit/s
each Channel max 10 Mbit/s

LAN

PEB 20320

Application Notes

User’s Manual 196 01.2000

The fe-bit marks the end of one HDLC frame, the EOF bit marks the end of the Ethernet
frame. The additional information comprises the 8-bit word descriptor count, 16-bit word
frame count and EOF a 8-bit variable which indicates the last descriptor of the frame.

Message Entry Point

The message entry point calls two functions: IsdnRouteFrame and LanRouteFrame. An
Ethernet frame is processed by IsdnRouteFrame, an ISDN frame by LanRouteFrame.
The MUNICH32 receive descriptors are converted to LAN controller transmit descriptors
and those of the LAN controller are converted to MUNICH32 transmit descriptors.

Figure 94
Message Flow between DDMs and MROUTE Module

Besides the IsdnRouteFrame realizes the insertion of additional information and splits
an Ethernet frame on several B-channels. The additional information is stored in an extra
allocated transmit descriptor which is placed before the descriptor containing the data.
Every descriptor and the respective extra descriptor are connected to one message
descriptor. This message with set hold bit and set fe-bit in the descriptor containing the
data is further processed from the MUNICH32 DDM routine ‘Send Frame’.

LanRouteFrame reassembles the Ethernet frames. It takes into account, that the parts
might arrive with different delays. Every complete frame is connected to a message
descriptor and than processed from the LAN controller DDM.

MUNICH32
DDM DDM

LAN Controller

ISDN Route Frame

LAN Route Frame

MROUTE Module

MUNICH32
TX Descr

RC Descr
MUNICH32

Message Descr

TX Descr
LAN Controller

RC Descr
LAN Controller

Message Descr

ITS08292

PEB 20320

Application Notes

User’s Manual 197 01.2000

5.2.4 Performance Considerations

Some considerations about the performance are made by investigating the maximum
data rate. Further investigations are made about the bus occupancy by all busmasters
and the MUNICH32 poll access’ influence on the data rate. Finally the processing of one
frame is illustrated.

Data Rates

The data rate during transmission from the ISDN into the Ethernet was tested.

Figure 95
Data Rate

The size of one data buffer is 128 Byte. If the number of channels exceeds 24 the data
rate depends on the MUNICH32 transmitter. If the transmitter is initialized the data rate
decreases. This shows the influence of the MUNICH32 polling the Hold bit.

ITD08293

0 3 6 9 12 15 18 21 24 27 30
Channels0

200

400

600

800

1000

1200

1400

1600

1800

2000
kbit/s

Data Rate available
Data Rate without
MUNICH32 polling
Data Rate with MUNICH32
polling

PEB 20320

Application Notes

User’s Manual 198 01.2000

Bus Occupancy

The bus occupancy during normal operation is shown in Figure 96. In this case the data
buffer size was 32 Byte. The CPU has busmastership during 90% of the time. The
MUNICH32 as well as the LAN controller, each have busmastership 5% of the time.

The bus occupancy of the MUNICH32 is calculated to 2.5%1). In this system it is higher
because of inserted wait states in every bus cycle. Another reason is the bus controller’s
clock which is switched from 33 MHz to 40 MHz. This and the existence of two alternate
bus masters results in a more time consuming arbitration protocol than that needed for
a simpler architecture.

Figure 96
Bus Occupancy

1) Compare Data Sheet.

ITD08294

i82596
5 %M32

5 %

CPU
90 %

PEB 20320

Application Notes

User’s Manual 199 01.2000

MUNICH32 Polling

The influence of the polling can be illustrated by showing the bus occupancy of
MUNICH32 poll accesses only.

Figure 97
Bus Occupancy During Polling

Here the MUNICH32 is polling 31 channels (= 31 × 2 read accesses during 125 µs).
Every access is 5 clock cycles long, instead of the minimum length of 4 clock cycles. The
time for the arbitration protocol needed during every access results in bus idle time.

ITD08295

Idle
%10M32

17 %

CPU
73 %

PEB 20320

Application Notes

User’s Manual 200 01.2000

Frame Processing

During normal operation the processing of a frame comprises three consecutive parts.
During transmission from ISDN to LAN the frame is first processed from the MUNICH32,
then from the CPU and finally from the LAN controller.

Figure 98
Frame Processing

Though the CPU is never idle, its part on frame processing is that between the
MUNICH32 and the LAN controller are active. The time to process one frame is the
minimum delay required between frames during continuous transmission.

ITD08296

MUNICH32

CPU

i82596

t

Frame 1 Frame 2

PEB 20320

Application Notes

User’s Manual 201 01.2000

5.2.5 Final Remarks

This application note shows a design example for the MUNICH32 (PEB 20320). Though
the design example is of reduced complexity it gives an idea of how to use the
MUNICH32 in a system. The MUNICH32 is integrated in a 68040 processor system in
conjunction with one more alternate bus master.

To achieve higher data rates the time to process the frames should be minimized. This
includes minimization of bus idle time. The bus arbitration still has big improvement
potential because of its modular structure. Additionally the existence of the alternate bus
masters results in clocking the bus controller with two different frequencies. This also
results in increased idle time for the bus should therefore be modified. Furthermore
frame processing could be shortened by eliminating the wait states in every bus cycle.

The influence of MUNICH32 poll accesses is extremely high in this example, because of
the bus arbitration architecture and the system architecture with one bus controller for all
bus masters. But anyway it should always kept in mind, that the bus occupancy during
polling is higher than during transmission. During transmission it decreases rapidly.

No upper layer software is realized in this example so far. For ‘real life’ routing layer 2
and 3 software module(s) have to be integrated.

PEB 20320

Application Notes

User’s Manual 202 01.2000

Figure 99
Integration of Upper Layer Software

ITS08297

Message Descr

MUNICH32
RC Descr

TX Descr
MUNICH32 MUNICH32

DDM DDM
LAN Controller

Message Descr

LAN Controller
TX Descr

LAN Controller
RC Descr

ISDN Route Frame

LAN Route Frame

MROUTE Module

Upper Layer
SoftwareSoftware

Upper Layer

PEB 20320

Application Notes

User’s Manual 203 01.2000

5.2.6 Adaption of the 68040 µP Signals

begin header

This GAL is used to adapt the 68040 µ-processor signals to the MUNICH32. It is used
in a system with a frequency relationship of 1/2 PCLK/SCLK.

end header

begin definition

device gal1 6v8; {Select the device to be Gal16V8}

input bclk = 1,
M32ASQ = 2,
reset = 3,
M32BGACKQ = 4,
int = 5,
ACREQM68 = 6,
RWQ = 7,
clk = 8, {= musclk}
rclk = 9;

feedback (com) DSACKQ = 19;

output (com) TSQ = 18,
RESETQ = 17,
INTQ = 16,
ACREQM32 = 15,
sclk = 14;

 statebits sb2 = 13,
sb1 = 12;

state_names idle = 2,
one = 1,
two = 0;

end definition

PEB 20320

Application Notes

User’s Manual 204 01.2000

begin equations
TSQ.OE = /M32BGACKQ;
TSQ = /(/M32ASQ × DSACKQ);
RESETQ = /reset;
INTQ = int;
ACREQM32 = /(/ACREQM68 × reset × /RWQ);
sclk = (/reset × rclk) + (reset × /clk);

end equations

begin state_diagram tktadaptor (sb2, sb1)

state all:
if (/reset + M32ASQ) then idle
with DSACKQ = 1;
endwith;

state idle:
DSACKQ = 1;
if (/M32ASQ × reset) then one else idle;

state one:
DSACKQ = 1;
go to two;

state two:
DSACKQ = 0;
if M32ASQ then idle else two;

end state_diagram

PEB 20320

Application Notes

User’s Manual 205 01.2000

5.2.7 Schematics

Figure 100

ITS08298

LAN Interface

SERINT.SCH LAN_CONT.SCH

MUBGQ
MUBGOQ
MUBGACKQ
MUBRQ

BGQ
BGACKQ
BRQ

ISDN

EASY320.SCH

SER_INT

MUBGQ
MUBGOQ
MUBGACKQ
MUBRQ

BGQ
BGACKQ
BRQ

Ctrl

A

D

Ctrl

A

D

PEB 20320

Application Notes

User’s Manual 206 01.2000

Figure 101

ITS08299

1P

5
17
4

16
3

15
2

14
1

18
6

19
7

20
8

21
9

13
25
12
24
11
23
10
22

GND 13

2

JP1

GND CCV

LIN1
FSQ
LIN2

LOUT1

LOUT2

SYNC

CLK4M

CLK2M

XCLK

ACFA_PRACT

ACFAPRAC.SCH

MUNICH32

MUNICH32.SCH

PCLK3
RTCLK

TRSP

PCLK3
CLK2M
FSCQ

XDI
RDO

TDATA
RDATA

CONNECTOR DB25
Female

PEB 20320

Application Notes

User’s Manual 207 01.2000

Figure 102

ITS08300

J1A
32 A32

31 31

30 30

29 29

28 28

27 27

26 26

25 25

24 24

23 23

22 22

21 21

20 20

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

10 10

9 9
8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

VG96

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A2

3
4
5
6
7
8
9

11

19

21

29

31

10

12
13
14
15
16
17
18

20

22
23
24
25
26
27
28

30 30

28
27
26
25
24
23
22

20

18
17
16
15
14
13
12

10

31

29

21

19

11

9
8
7
6
5
4
3
2

VG96

651

662

673

684

695

706

717

728

739

7410

7511

7612

7713

7814

7915

8016

8117

8218

8319

8420

8521

8622

8723

8824

8925

9026

9127

9228

9329

9430

9531
32 D96

J1C

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D0

1

U1

MUNICH32

100 BE0
1BE96

2BE94

3BE91
102 AA2

3A A107
4A A109
5A A114
6A A116
7A A120
8A A122
9A A126
10A A128
11A A133
12A A135
13A A139
14A A143
15A A147
16A A149
17A A154
18A A156
19A A160
20A A2
21A A6
22A A8
23A A13
24A A15
25A A19
26A A21
27A A26
28A A28
29A A33
30A A35
31A A39

32 2929
27 2828
25 2727
20 2626
18 2525
14 2424
12 2323
7 2222
5 2121
1 2020

159 1919
155 1818
153 1717
148 1616
146 1515
142 1414
138 1313
134 1212
132 1111
127 1010
125 99
121 88
119 77
115 66
113 55
108 44
106 33
101 22
99 11

0D 0D95
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

30
31 38

34

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D31

30

90 W,R/R,W
85 ADS/AS
86 DS
75 READY/DSACK
76 BERR
74 B
82 HOLD/BR
79 HLDA/BG
81 PM
80 HLDAO/BGO
66 AR
40 INT/INT

16

MUINTQ
CRSTQ

ADDWSQ

PCSQ5
WRQ
BGACKQ
M32BGQ
LOCKQ
BGQ
TSQ
BCLK
BBQ

VG96

331

342

353

364

375

386

397

408

419

4210

4311

4412

4513

4614

4715

4816

4917

5018

5119

5220

5321

5422

5523

5624

5725

5826

5927

6028

6129

6230

6331
32 MUSCLK64

J1B

2JP
1 2

GND

CCV

MUBGOQ
MUBGQ

RCLK 44
45RSP

RDATA 46
69TCLK

TSP 68

TSP 67

Ωk4.7

1RP

8 9

7 10

6 11

5 12

4 13

3 14

2 15

161
CCV

MUBGACKQ

U7

OE 11
MUSCLKCLK

8 9Ι
7Ι 8

7Ι 6
5Ι 6

4Ι 5

3Ι 4
3Ι 2

1Ι 2

GAL16V8

12 O8
7O13

14 O6

SCLK 61

15 O5
16 O4
17 O360RESET
18 O2

O119DSACKQ

563JTEST
JTEST 2 55
JTEST 1 54
JTEST 0 53

19 1O
2O18
3O17
4O16
5O15
6O14

13 O7
8O12

GAL16V8

2Ι 1
2Ι 3

4Ι 3

5Ι 4

6Ι 5
6Ι 7

8Ι 7
Ι 98

CLK

11OE

U8 GND

BCLK

M32BGQ

MUBRQCCV
1R

3.3 kΩ

BRQ
BGACKQ

M32BGQ

PCLK3
TDATA
RDATA
TRSP
RTCLK

GND

CCV
1C

100 nF nF100
C2

nF100
C3

nF100
C4

nF100
C5

nF100
C6

nF100
C7

nF100
C8

nF100
C9

nF100
C10

nF100
C11

nF100
C12

nF100
C13

nF100
C14

ASQ
CRSTQ
MUBGACKQ
INT
PCSQ5
RWQ

TSQ
MUINTQ

GND

CRSTQ
BBQ
LOCKQ
BRQ
BGACKQ

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2

PCLK3

BGQ

0CI
1
2
3

47
48
49
50

4 51

CI
CI
CI
CI

65TEST

73I/M

GND

PEB 20320

Application Notes

User’s Manual 208 01.2000

Figure 103

ITS08301

VG96
J2A

1
1 2

2

3
3

4
4

5
5

6
6

7
7

8
8

9
9

10
10

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

20
20

21
21

22
22

23
23

24
24

25
25

26
26

27
27

28
28

29
29

30
30

31
31

32
32

U3

CE46PCSQ2
22 RDFRDQ
25FRDQ WR

5INTQ2 AINT
36 ACKNL

2

U2A
74HC04

R2
1 kΩ

CCV

D1
LED Red

1

3JP

22
3311

Ωk4.7
3R

CCV

18 AADR0
1ADR A19
2ADR A20
3ADR A21

0
1
2
3

27
4

34

33
8

RDO
COS
RDO
XDI

ROID
XOID
RSIGM39

XSIGM40

RCHPY6

VCC

R4
10 kΩ

37 XCHPY
AD0 9 D0

1D101

2D112

3D123

4D134

5D145

6D156

7D167

ACFA

CLK1

GND

1Ι2

2Ι3

3Ι4

4Ι5

5Ι6

6Ι7

7Ι8

8Ι9

OE11

U10

GAL16V8

1O 19
18O 2
17O3
16O4
15O 5
14O6
13O7
12O 8

LOOP
RSTQ
RDO
AD0
AD1
AD2
AD4
AD5

PCSQ2
G0
G1
G2
G4
G5
GXDI
G6

AD
R

0
AD

R
1

AD
R

2
AD

R
3

30
31

36
37

38
39
40
4

32
28
29

1 3
2

JP4

FSC
CLK2M
CLK4MQ
XCLK
CLK2MQ

XTOM 3

XTOP 44

XDOM 43

XDOP 42

RDIM 31

RDIP 30

XRCLK 41

RRCLK 29

SCLK 28

7
32

35

RFSP
SYP

RES

D2
1N4148

U2B

Green
LED
D3

3 4

C15
47 nF

GND

6R
kΩ1

74HC04
1 ΩM

R5

CCV GND

GXDI
COS

7

AD
AD
AD
AD
AD
AD
AD

XDI

PEB 20320

Application Notes

User’s Manual 209 01.2000

Figure 104

ITS08302

PCSQ2
G0
G1
G2
G4
G5
GXDI
G6

4
AD

3
AD

1
AD

0
AD

9695949392919089888786858483828180797877767574737271706968676665

J2C
VG96

AD
5

AD
6

AD
7

6 FSC
7 FSC

XDIN30
31 XDIP

RDOP36
37 RDON

RCLK38
39 CLK2M
40 CLK2M
4 CLK4M
5 CLK4M

16 CLK12M
15 CLK16M
32 XCLK
28 XTIN
29 XTIP

U4

FSCQ
FSC
CLK2M
CLK4MQ
XCLK
CLK2MQ

PRACT

pF12
17C C18

12 pF

X2

16C C19

23CC20
pF10

22CC21
10 pF

33 9 10 12 13 43 11142632717

CS XT
AL

XT
AL

XT
AL

XT
AL

4 3 2 1

LSLSLRLLM
O

DE

JA
TT

SY
NC

LS
8

02 1

2.2 Ωk
R

VCC

LP
COS
JATT
MODE

4AD

2AD
1AD
0AD

WRQ
PCSQ3
RSTQ

8O 12
7O 13
6O 14
5O 15
4O 16
3O 17
2O 18

19O1

GAL16V8

U9

11 OE

9 Ι 8

8 Ι 7

7 Ι 6

6 Ι 5

5 Ι 4

4 Ι 3

3 Ι 2

2 Ι 1

GND

1 CLK

3AD

PCLK3

LOOP

2.2 kΩ

R15

CCV

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

GND CCV

VG96
J2B

RS
TQ

IN
TQ

2

PC
SQ

4
PC

SQ
3

PC
SQ

2

W
RQ

FR
DQ

XDI
RDO
SYNC
CLK2M
CLK2MQ
CLK4MQ
FSC
FSCQ
XCLK
CLK33_CON

GND

35 41 23 22

SS
D

V V SS
R

SS
X

VV SS
X

47 nF
C24

DD
X

V V DD
X

DD
R

VV DD
D

18194234

DD
2

V
1

25C
µ47

CCV

R
kΩ60

11

11
60 Ωk
R

nF10026C
CCV

GND

GND
CCV

D10 D11

VCCGND

8

15 Ωk

R

R

kΩ15

7

D8 D9

D5D4

GND CCV

D6

VCC
GND

D7

1
2XL

XL

RL
RL 2

1

20
24
44
2

3

8

6

5

5

6

8

3 U6

U5 9

1 Ωk

R

R

kΩ1

14

F6
SO5K130

GND

1

2

1

2

LOUT1

LIN1

2

1

2

1

GND

SO5K130
F5

13

1 Ωk

R

R

kΩ1

12

LOUT2

LIN2

F1
A81_C90X

F3
A81_C90X

A81_C90X
F2

A81_C90X
F4

ZKB_402/512

ZKB_402/512

nF100
31CC30

100 nFnF100
29C

nF100
28C

GND

CCV

G
01

G
2

G

6
G G G

54

JA
TT

SY
NC

M
O

DE

3231302928272625242322212019181716151413121110987654321 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

PCLK3

AD
2

F

16 MHz

MHz12
X1

GND

1

10

10

1

PEB 20320

Application Notes

User’s Manual 210 01.2000

Figure 105

ITS08303

14 D0
1D15

2D16

3D17

4D18

5D19

6D20

7D21

8D25

9D26

10D27

11D28

12D29

13D30

14D31

15D32

16D35

17D36

18D37

19D38

20D39

21D40

22D41

23D42

24D43

25D46

26D47

27D48

28D50

29D51

30D52

31D53

1140BE
BE 1 113

BE 2 112

BE 3 109

A 1082
3A 107

4A 106

5A 105

6A 104

7A 103

8A 102

9A 101

10A 97

11A 96

12A 95

13A 94

14A 93

15A 92

16A 91

17A 90

18A 87

19A 85

20A 84

21A 83

22A 82

23A 81

24A 80

25A 79

26A 76

27A 74

28A 73

29A 72

30A 71

31A 70

U

18 1
116

114

112

29

27

25

23 Y
Y
Y
Y
Y
Y
Y
Y1

2
3
4
1
2
3
4

1A1
1A 2
1A 3
1A 4
2 A 1
2 A 2
2 A 3
2 A 4

U

CLK33
TSP_OUT
PCLK3
TCLK_OUT
CLK33_CON

74HCT244

1G
2G 19

1

17
15
13

PHI8

33 MHz

GND

TCLK_IN

TSP_IN

OSZI
11
8
6
4
2

Data

CCV

124

65
129
130

9
123
118

69

ADS

LE/BE
BS
RDY

HOLD
HLDA
RESET

CLK2

16

3 PORT

125 INT/INT

119 CA

3.3 kΩ
GNDVCC

2.7 kΩ

82596DX

RDTQ

ADSQ

HOLD
RLDA
L_RESET

PORTQ
CA

MUINTQ

GND

57RTS
CTS

TXC 64
TXD 54
RXC 59
RXD 60
CRS 63
CDT 61

62

VCC

115BREQ GND

Resistor

R

126
120

58

LOCK
W/R

LPBK

16 1
215
314
413
512
611
710
89

RP1

4.7 kΩ

RDTQ

MU_BGOQ
L_LOCKQ
CPURSTQ
LAN_W_RQ
ADSQ HOLD

Ωk2.7

2RP

9 8
10 7
11 6
12 5
13 4
14 3
15 2

116

GND GND

1 2
3
4
5
6
7
8
9

4.7 Ωk

SER_INT

L_LOCKQ
LAN_W_RQ

ADDR

BE

RAPACK

VCC

CCV

PEB 20320

Application Notes

User’s Manual 211 01.2000

Figure 106

ITS08310

8O 12
7O 13
6O 14
5O 15
4O 16
3O 17
2O 18

19O1

GAL16V8A

RESET

11 OE

9 Ι 8

8 Ι 7

7 Ι 6

6 Ι 5

5 Ι 4

4 Ι 3

3 Ι 2

2 Ι 1

GND

1 CLK

MUCLK

CPURSTQ

L_RESET

PORTQ

CPURSTQ

MUCLK

CLK1

GND

1Ι2

2Ι3

3Ι4

4Ι5

5Ι6

6Ι7

7Ι8

8Ι9

OE11

Port

GAL16V8A

1O 19
18O 2
17O3
16O4
15O 5
14O6
13O7
12O 8

CA

M32_ARQ

DTOEQ
LAN_CSQ
R_WQ
M32_ARQ

CLK33

GND

CLK33

HLDAIN

TSQ
R_WQ

8O 12
7O 13
6O 14
5O 15
4O 16
3O 17
2O 18

19O1

GAL16V8A

Signal

11 OE

9 Ι 8

8 Ι 7

7 Ι 6

6 Ι 5

5 Ι 4

4 Ι 3

3 Ι 2

2 Ι 1

GND

1 CLK

TAQ
RDYQ

ADSQ
LAN_W_RQ

HOLD
MU_BRQ

BRQ
ML_BGQ

CLK1

GND

1Ι2

2Ι3

3Ι4

4Ι5

5Ι6

6Ι7

7Ι8

8Ι9

OE11

Arbiter

GAL16V8A

1O 19
18O 2
17O3
16O4
15O 5
14O6
13O7
12O 8

BGACKQ
HLDAIN

MUCLK

CLK33

2

MU_BGACKQ

CPURSTQ

MU_BGQ

M32_CSQ

A4

ML_BGQ
MU_BGACKQ

LAN_CSQ
SIZ1

8O 12
7O 13
6O 14
5O 15
4O 16
3O 17
2O 18

19O1

GAL16V8A

Address

11 OE

9 Ι 8

8 Ι 7

7 Ι 6

6 Ι 5

5 Ι 4

4 Ι 3

3 Ι 2

2 Ι 1

GND

1 CLK

A0
PCSQ5 A1

SIZ0

BE
BEQ0
BEQ1
BEQ2
BEQ3

PEB 20320

Application Notes

User’s Manual 212 01.2000

Figure 107

ITS08311

J1C

65 D01
2 D66

3 D67

4 D68

5 D69

6 D70

7 D71

8 D72

9 D73

10 D74

11 D75

12 D76

13 D77

14 D78

15 D79

16 D80

17 D81

18 D82

19 D83

20 D84

21 D85

22 D86

23 D87

24 D88

25 D89

26 D90

27 D91

28 D92

29 D93

30 D94

31 D95

32 D96 31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Data

VG96 VG96

Address

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
3132

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1 0A

J1A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

1

VG96

6432

6331

6230

6129

6028

5927

5826

5725

5624

5523

5422

5321

5220

5119

5018

4917

4816

4715

4614

4513

4412

4311

4210

419

408

397

386

375

364

353

342
1 33

J1B

PCLK3
DTOEQ
TAQ

MUINTQ0
CPURSTQ

MUINTQ

GND

CCV

PCSQ5
W_RQ
BGACKQ
ML_BGQ
LOCKQ
BGQ_68
TSQ
BCLK
BBQ

MUCLK

PEB 20320

Application Notes

User’s Manual 213 01.2000

Figure 108

ITS08312

17 TXDTXD
TXCQ TXC16
RTSQ TEN15

6 CRSCRSQ
8 RXCRXCQ

RXD RXD9

CDTQ CDT7

ENETV11

2 NOOR

CAPC

LPBKQ 3 LPBK/WDTD

SERINT
CLSN 12

11CLSN
RCV 4

RCV 5

18TRMT

19TRMT

1
2
3

CD+
CD-
RX+

TX-
TX+
RX-

6
5
4

UU

82C50TAD EM2

GND GND

13
14

Y

C
30 pF pF30

C
20 MHz

CDS 20
18RXI
17TXO

JP

1 3
2

GND

16

11

CCV

JUMPER3X1

HBE

DM

C
0.01 µF1 MΩ

R

EEV

GND1 2

O4

R

150 Ω

D

LED Yellow

U

T21

5 B

4 A2
A13

9 RIN

11 REXT/CEXT
R

40 kΩ

10 CEXT

Ck105

CCV

X1
X2

Q 6
1Q

LED Green

D

D

LED RedQ

6
1

Q

k105C

CEXT10

R
REXT/CEXT11

RIN9

3 A1
A24

B5

T21

U

R

150 Ω

R

150 Ω

UA

CCV

40 kΩ

VCC

GND

12

GND

GND

J
BNC

R
Ω78 78 Ω

R
240 Ω

R
240 Ω
R

PEB 20320

Application Notes

User’s Manual 214 01.2000

5.3 Memory Bus Occupancy for a Single MUNICH32

The MUNICH32 may be used in different system architectures depending mainly on how
the data buffers are shared between the interacting bus masters. In the following the
memory bus occupancy is calculated for a system, where the MUNICH32 is directly
coupled with a 32-bit CPU (compatible to either Motorola 68020 or Intel 386) sharing one
common local CPU bus and translated via an appropriate system bus controller sharing
the system memory as well. This example system looks very similar to the one depicted
in the Figure 7 and Figure 9 of Chapter 1. In this case it is easier to estimate the
behavior of the complete system.

In addition to that, the following assumptions are made about the communication
parameters:

– HDLC operating mode
– the MUNICH is clocked with SCLK = 16 MHz
– the bus arbitration time is estimated to be about 4 extra clock cycles (SCLK) for every

10 MUNICH32 memory accesses (typical is 10 to 16)
– the data buffer size allocated in the data buffer pool is 32 bytes for transmit and

receive descriptors
– a full duplex connection with up to 32 × 64 Kbit/s channels and heavy traffic load

(shared flags)
– the data size per HDLC frame is defined to be without the shared flag and the two CRC

bytes
– when the data size exceeds 32 bytes, more than one descriptor is needed for a single

frame
– an interrupt information is generated for every descriptor.

The MUNICH32 needs the following 32-bit memory accesses (read or write):

Receive: read descriptor → 3
write current descriptor address → 1
write status → 1
write interrupt → 1
write data (size) → accesses size

1 1
1 2
1 3
1 4
2 5
: :

PEB 20320

Application Notes

User’s Manual 215 01.2000

Transmit: read descriptor → 3
write current descriptor address → 1
write interrupt → 1
read data (size) → accesses size

1 1
1 2
1 3
1 4
2 5
: :

The accumulated access time for a single MUNICH32 channel, depending on the actual
frame size, is then related to the serial transfer time on a PCM system:
(3 + size) × 125 µs.

The following two diagrams illustrate the overall results for two different ranges and their
corresponding resolution. As you can see, for frame size greater than 32 bytes the time
needed for MUNICH32 memory accesses drops below 5%. That means in a simple
communication subsystem (e.g. Primary Access Board) the CPU performance is also
reduced by 5% only and it is therefore not necessary to use a complex multiport memory
approach to reach a significant overall performance gain.

Figure 109
Frame Size 1 to 512

ITD04696

0

1

5

10

15

20

25

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

%

Number of Data Bytes

Ch=32
Ch=30
Ch= 1

Memory Bus Occuppancy

PEB 20320

Application Notes

User’s Manual 216 01.2000

Figure 110
Frame Size 1 to 32

0

1

5

10

15

20

25

%

29 30 31 3227 282 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Memory Bus Occuppancy

Number of Data Bytes

ITD04697

Ch= 1
Ch=30
Ch=32

PEB 20320

Application Notes

User’s Manual 217 01.2000

5.3.1 Bus Occupancy Calculations

As described in the previous section, the MUNICH32 in a steady state condition
consumes approximately 5% of the system bus bandwidth. Based on the conditions
previously described, a set of equations can be used to describe the MUNICH32 system
bus behavior. Other MUNICH32 systems can be evaluated using these equations. The
Bus occupancy is defined as the ratio of the time required for memory accesses for that
data to the time used to send the data. The two equations are defines as follows:

Time used for memory accesses:

= Number of received bits plus transmitted bits multiplied by the time required to
transfer this

information to/from memory.
= {([6 + (1 + m)] × rc) + (5 + (1 + m)] × tc)} × (1 + 1/ba) × NC × sclk

6 for receive descriptor access
5 for transmit descriptor access
(1 + m) for data access where m is the largest integer smaller (n – 1)/4
(n is the number of transmitted data bytes).
rc is the number of receive channels.
tc is the number of transmit channels.
(1 + 1/ba) is the bus arbitration time
sclk is the system clock (61 ns for 16.384 MHz)
NC is the number of memory clocks per bus operation (0ws = 4, 1WS = 5, etc.).

Time used to send the data is the number of transmitted bits per time slot multiplied by
the frame time:

= ((4 + n) × 8/abtc) × 125 µs
4 because shared flags are not used + 2 byte CRC
n is the number of octets to transmit
abtc = assigned bits to channel
e.g. a channel with one time slot of 1 bit would require 8/1 = 8 time slots to
transmit a single octet.

From the previous example, the variables are assigned the following values:

Variable n m rc tc (1 + 1/ba) sclk NC abtc

Value 32 bytes 7 32 32 1.1 61 ns 4 8

PEB 20320

Application Notes

User’s Manual 218 01.2000

Applying these values to the equations yields the following:

Time used to access memory
= {([6 + (1 + 7)] × 32) + ([5 + (1 + 7)] × 32)} × (1.1) × 4 × 61 ns
= {(14 × 32) + (13 × 32)} × 1.1 × 244 ns
= {864} × 268.4 ns
= 231.9 µs.

Time used to send data
= ((4 + 32) × 8/8) × 125 µs.
= 36 × 125 µs.
= 4500 µs.

Bus occupancy = 231.9 µs/4500 µs = 5.1%

When the packet size is much larger (256 bytes or larger), the bus occupancy decreases
to less than 4%. Conversely, sending very small frames (4 bytes), causes bus
occupancy to increase to over 11%. This is primarily due to the increased descriptor
processing per packet.

5.3.2 Bus Occupancy for Idle Tx Channels

The previous discussion shows bus occupancy to be very low, even when a MUNICH32
is processing 32 channels of receive and transmit data. There is another system
consideration of bus occupancy that must be examined. When a MUNICH32 channel
has no data required for transmit, the channel must be temporarily (or permanently)
stopped. There are several methods that may be used to stop the transmission.

1. The first method involves executing a channel command with TH = 1 (reactivation of
the channel requires a new channel command with TH = 0). This method places the
transmit channel on hold and prevents any further accesses of the memory for this
channel.

2. A second method is based on statistical knowledge of the frequency of transmitted
frames. If frames are transmitted without shared flags and if the average number of
interframe time fill characters can be determined, the MUNICH32 can be programmed
to suppress poll sequences. By setting FNUM in the Tx descriptor to a value (n)
greater than 0, the MUNICH32 will transmit n + 1 idle characters after the end of the
current frame. During this period of interframe time fill, the MUNICH32 will not poll the
Tx descriptor. As an example, if it is determined that 5 idle characters typically occur
between frames, FNUM can be set to 4. At the end of the current frame, 5 idle
characters will be transmitted (625 µs. on a DS0 channel) before the next frame is
transmitted and no polls of the Tx descriptor will occur during that time.

PEB 20320

Application Notes

User’s Manual 219 01.2000

3. The final method is to set the HOLD bit in the Tx descriptor. When the HOLD bit in the
Tx descriptor is set, the MUNICH32 checks the status of the this bit for each time slot
assigned to this channel. In this way, if the bit has been cleared, the MUNICH32 will
immediately resume transmission. Although this method is simpler (in concept) for the
software design, it causes the MUNICH32 to consume higher than normal bus
bandwidth. For this reason, this is the least desirable of the three methods. In the
previous example discussed, if all 32 channels were holding on the Tx descriptors,
bus occupancy might rise as high as 17%. The reason bus occupancy rises this
dramatically is due to the bus access once per time slot rather than once every four
time slots (typical).

PEB 20320

Application Hints

User’s Manual 220 01.2000

6 Application Hints

6.1 Frequency Adaption in an Intel 368 Common Bus System

If you use the i386 as host processor with the MUNICH32 in a common bus system you
have to adapt the different frequencies of the devices. The MUNICH32 works e.g. with
a fixed frequency of 16.384 MHz in CEPT 32 channel PCM highway format. The i386
works with frequencies from 16 up to more than 50 MHz. If you compare the timing
diagrams you will see that a few glue logic is necessary to adapt the MUNICH32 to the
i386 timing.

A possible adaption of the different frequencies is described below. For an example we
use an i386 with a frequency of 16.384 MHz. The MUNICH32 is configured in the CEPT
32 channel PCM highway format with a SCLK of 16.384 MHz. The SCLK signal is build
by dividing the 32.768 MHz CLK2 signal of the i386. That means that both clocks are
synchronous. This is not necessary in general but selected in our example. The bus
controller generates e.g. one wait state for the memory access. The falling edge of the
ADS signal marks the beginning of a bus cycle which is completed with the sampled
READY signal. A general bus controller should not see a difference between the two bus
masters, so we have to delay the falling edge of the MUNICH32 ADS signal to that
moment as the i386 would generate its ADS to get the READY signal at the same time.
In the picture below you can see the relationship and the adaption of both timings as
specified in our example. A second picture shows the adaption in an i386 24.576 MHz
system. Again the clocks are synchronous.

PEB 20320

Application Hints

User’s Manual 221 01.2000

Figure 111

ITD04556

SCLK

ADS

READY

CLK

CLK2

ADS

READY

S1 S2

MUNICH32
SCLK=16.384 MHz

T1

Delay

i386, 16.384
=>CLK2=2xSCLK

MHz

T1 T2T2 T1

PEB 20320

Application Hints

User’s Manual 222 01.2000

Figure 112

ITD04557

SCLK

ADS

READY

CLK

CLK2

ADS

READY

S1 S2

MUNICH32
SCLK=16.384 MHz

T1

Delay

i386, 24.576
=>CLK2=3xSCLK

MHz

T1 T1 T1 T2 T2 T1

PEB 20320

Application Hints

User’s Manual 223 01.2000

6.2 MUNICH32 Memory Space Requirement

Implementation independent:

– Start Address 4 byte
– Control & Configuration Section 908 byte
– Tx Descriptor Size 12 byte
– Rc Descriptor Size 16 byte

Implementation dependent:

– Interrupt Queue Size 64 byte < Interrupt Queue Size < 16384 byte
– Data Buffer Size Data Buffer Size
– Allocation of Tx and Rc descriptors per channel

 In general the memory space requirement may be calculated the following way:

Start Address
+ Size of Control & Configuration Section
+ Interrupt Queue Size
+ number of channels × [number of Tx Descriptors × (Tx Descriptor Size + Data Buffer Size)] +
number of channels × [number of Rc Descriptors × (Rc Descriptor Size + Data Buffer Size)]
–––
= Total MUNICH32 Memory Space Requirement

Example:

The MUNICH32 is used in a 31 channel ISDN Primary Access application, that means
that 31 full duplex channels are active. The LAPD protocol is implemented. In this case
a window size of 7 is specified, that means that 7 Rc Descriptors and in transmit direction
7 Tx Descriptors must be available for each channel. The Data Buffer Size is set to 260
byte according to the LAPD specification.

Summary:

– 31 channels;
– Interrupt Queue Size = 1024 byte;
– 7 Tx and 7 Rc Descriptors;
– Data Buffer Size = 260 byte;

In our example a memory space of 120 kbytes is required.

PEB 20320

Application Hints

User’s Manual 224 01.2000

6.3 Serial Interface to different PCM Systems

The serial interface of the MUNICH32 is very general and comprises standard clock,
PCM frame synchronization and data signals, which are independent for both directions.
The following description explains typical applications integrating the MUNICH32 into
2.048 Mbps PCM systems, like SIEMENS System Interface for Primary Access and the
MITEL ST BUS. In these systems the receive and transmit clocks are identical. The
general timing is shown in Figure 113 (see also Chapter 2.1).

Figure 113

The RSP pulse is shifted by one clock period against the TSP pulse. The main task using
this timing for different PCM systems is to adapt the TSP and RSP pulses appropriately,
as described below.

6.3.1 MUNICH32 for SIEMENS Primary Access Interface

The SIEMENS devices for the Primary Access Interface is the Frame and Line Interface
Component (FALC54). This device can directly be connected to the MUNICH32 without
any additional glue logic. In combination with the MUNICH32 this application is the most
effective way to build a powerful and flexible Primary Access Interface, especially
supporting different combined B channel paths over long distances (LAN-WAN
Internetworking). The following block diagram illustrates how easy it is to integrate the
MUNICH32 into a Primary Access application based on SIEMENS devices.

ITD04694

Time-Slot 0

Time-Slot 0

RCLK=TCLK

TSP

RSP

TDATA

RDATA

PEB 20320

Application Hints

User’s Manual 225 01.2000

Figure 114

The adaption of the TSP and RSP pulses is solved by means of shifting the receive data
and transmit data in the FALC54 device appropriately. In this case the TSP and RSP
synchronization pulses are also identical. The FALC54 device contains special registers
to control the bit shift of the serial bit streams at the system interface (see FALC54 Data
Sheet). With the following register programming the bit shift selected is T = 509 for the
MUNICH32 transmit data and T = – 1 for the receive data respectively. The
programming is as follows:

XDI: XC1.XTO = 3DH => X = 494 => T = 509
XC0.XCO = 06H

RDO: RC1.RTO = 00H => X = 5 => T = – 1
RC0.RCO = 05H

ITS07370

TCLK
TSP

TDATA

RDATA
RSP

RCLK

XDI

RDO

CLK8MCLKX

MUNICH32
PEB 20320 2254PEB

FALC54
SCLKX

SYPXQ

SCLKR

SYPRQ

FSCFSCQ

PEB 20320

Application Hints

User’s Manual 226 01.2000

The timing in principle is depicted in the following diagram. Without all details of a typical
electrical timing it illustrates how the different signals from MUNICH32, and FALC54 are
mapped in such a Primary Access system.

Figure 115

ITD08282

FSC=TSP=RSP

CLKX=RCLK=TCLK

TDATA

=XDI

RDATA

=RDO

(T=509)

(T=-1)

= : Invalid area

Channel 0, Bit 0 (Least Significant Bit):=

PEB 20320

Application Hints

User’s Manual 227 01.2000

6.3.2 MUNICH32 in Systems with MITEL ST BUS

A few more effort is necessary to integrate the MUNICH32 into a ST BUS system from
MITEL. The basic assumption made here is that the clock master is the ST BUS system.
That means all signals derived from the ST BUS need to be adapted to match the
MUNICH32 timing requirements. First of all the clock signal C2 must be inverted before
it can be used as the MUNICH32 clocks (TCLK = RCLK = C2). The next step is the
generation of the TSP and RSP pulses out of the F0 signal, which is the ST BUS frame
synchronization signal. The RSP pulse can be derived from the F0 signal by means of a
simple D-Flip-Flop clocked with C2, as depicted in the following Figure 116. Due to the
necessary phase relationship between the serial data streams and their corresponding
TSP, RSP and F0 pulses, the effort to generate the TSP pulse is much higher than for
RSP.

Figure 116

ITS04692

TCLK
TSP

TDATA

RDATA
RSP

RCLK

ST-BUS

STi

STo

MUNICH32
PEB 20320

C2 F0

&
Q

Q D

RES

8-Bit
Counter

DQ

Q

System Clock Adaption

Decode
’254’

PEB 20320

Application Hints

User’s Manual 228 01.2000

The TSP pulse must be derived from the F0 signal with a phase shift by 255 clock cycles
to be at the right position. The corresponding timing is illustrated in the following diagram.

Figure 117

ITD04693

C2

F0

TSP

RCLK=TCLK=C2

TDATA

=STi

RDATA

=STo

= : Invalid area

Channel 0, Bit 0 (Least Significant Bit):=

Derived from F0 and synchronized by means of C2*)

RSP

*)

*)

PEB 20320

Electrical Characteristics

User’s Manual 229 01.2000

7 Electrical Characteristics

Note: All specifications are for V3.4 unless otherwise specified. Version numbers are
identified in the Interrupt Information bits VN(3:1):
these bits are ‘0000’ for version 1.1

‘0001’ for version 2.1
‘0010’ for version 2.2
‘0100’ for version 3.2
‘0110’ for version 3.4

7.1 Absolute Maximum Ratings

Note: Stresses above those listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.

Table 12

Parameter Symbol Limit Values Unit

min. max.

Ambient temperature under bias: PEB
PEF

TA

TA

0
– 40

70
85

°C

Storage temperature Tstg – 65 125 °C
Voltage at any pin with respect to ground VS – 0.4 VDD + 0.4 V

PEB 20320

Electrical Characteristics

User’s Manual 230 01.2000

7.2 DC Characteristics

Note: The listed characteristics are ensured over the operating range of the integrated
circuit. Typical characteristics specify mean values expected over the production
spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and
the given supply voltage.

Table 13
TA = 0 to + 70 °C; VDD = 5 V ± 5%, VSS = 0 V

Parameter Symbol Limit Values Unit Test Condition

min. max.

L-input voltage VIL – 0.4 0.8 V –

H-input voltage VIH 2.0 VDD + 0.4 V –

L-output voltage VQL – 0.45 V IQL = 7 mA
(pin TDATA)
IQL = 2 mA
(all others)

H-output voltage

H-output voltage

VQH

VQH

VDD – 0.5

2.4

– V

V

IQH = – 2 mA
(pin HOLD/BR)
IQH = – 100 µA
(all others)
IQH = – 400 µA

Power
supply
current

operational ICC – < 100 mA VDD = 5 V
inputs at 0 V/VDD,
no outputs loads

power down
(no clocks)

ICC – < 2 mA

Input leakage current
Output leakage current

ILI

ILQ

– 10 µA 0 V < VIN < VDD to 0 V
0 V < VOUT < VDD to 0 V

PEB 20320

Electrical Characteristics

User’s Manual 231 01.2000

7.3 Capacitances

7.4 AC Characteristics

TA = 0 to + 70 °C; VDD = 5 V ± 5%

Inputs are driven to 2.4 V for a logical ‘1’ and to 0.4 V for a logical ‘0’. Timing
measurements are made at 2.0 V for a logical ‘1’ and at 0.8 V for a logical ‘0’.

The AC testing input/output waveforms are shown below.

Figure 118
Input/Output Waveform for AC Tests

Table 14
TA = 25 °C; VDD = 5 V ± 5%, VSS = 0 V

Parameter Symbol Limit Values Unit Test Condition

min. max.

Input capacitance CIN 5 10 pF –

Output capacitance COUT 8 15 pF –

I/O-capacitance CIO 10 20 pF –

ITS00621

= 150LoadC
Test
Under
Device

0.45

2.4
2.0

0.80.8

2.0

Test Points

pF

PEB 20320

Electrical Characteristics

User’s Manual 232 01.2000

7.5 Microprocessor Interface Intel Bus Mode

Figure 119
Timing Diagram Intel Bus Mode

ITD03510

1

SCLK

A31-A2

BE(3:0),

ADS

READY

2

D31-D0

3 3 4

5

8

 (read cycle)

 (write cycle)

D31-D0

BERR

S1 S2 S1

10
9

7
6

PCHK

[DP(3:0)]

[DP(3:0)]

11 11

PEB 20320

Electrical Characteristics

User’s Manual 233 01.2000

Figure 120
Bus Arbitration Timing Diagram Intel Bus Mode

Intel Bus Timing

Table 15

No. Parameter Limit Values Unit

min. max.

1 Address, valid delay – 20 ns

2 BE, INT, W/R valid delay – 20 ns

3 ADS valid delay – 20 ns

4 READY setup time 10 – ns

5 READY hold time 5 – ns

6 BERR setup time 10 – ns

7 BERR hold time 5 – ns

8 Data valid delay (write) – 35 ns

9 Data setup time (read) 5 – ns

10 Data hold time (read) 8 – ns

ITD03511

12 12

13 13

14 15

16 17
High Z High Z

SCLK

HOLD

HLDAO

HLDA

Microprocessor
Interface

11

PCHK

PEB 20320

Electrical Characteristics

User’s Manual 234 01.2000

11 Parity check valid delay – 50 ns

12 HOLD valid delay – 20 ns

13 HLDAO valid delay – 20 ns

14 HLDA setup time 10 – ns

15 HLDA hold time 10 – ns

16 Microprocessor Interface (MI) driven
after HLDA set

2 SCLK cycles – –

17 MI tristated after bus accesses – 40 ns

Table 15

No. Parameter Limit Values Unit

min. max.

PEB 20320

Electrical Characteristics

User’s Manual 235 01.2000

7.6 Microprocessor Interface Motorola Bus Mode

Figure 121
Timing Diagram Motorola Bus Mode

ITD03513

18

20

SCLK

A31-A2

INT, BE (3:0), R/W

AS

DSACK

D31-D0

19
21 21

2322

24 25

 (read cycle)

 (write cycle)
D31-D0

BERR

DS

T1 T2 T3 T4 T1

28

29

19

26

27

PEB 20320

Electrical Characteristics

User’s Manual 236 01.2000

Figure 122
Bus Arbitration Timing Motorola Bus Mode

Motorola Bus Timing

Table 16

No. Parameter Limit Values Unit

min. max.

18 Address, BE, INT, R/W valid delay – 20 ns

19 AS, DS asserted after clock low – 20 ns

20 AS, DS negated after clock low – 20 ns

21 DSACK, BERR setup time to clock low 5 – ns

22 Data read setup time to clock low 5 – ns

23 Data read hold time to clock low 8 – ns

ITD03514

30

33

32

33

SCLK

BR

BG

BGACK

Microprocessor
Interface

30

31

35

36

34

BGO

SCLK

BR

BG

BGO

36 36

PEB 20320

Electrical Characteristics

User’s Manual 237 01.2000

24 Data write valid delay – 35 ns

25 Data write hold from clock high – 35 ns

26 Address valid to AS high 10 – ns

27 Data valid to DS low 10 – ns

28 DS high to data invalid 5 – ns

29 AS high to address invalid 10 – ns

30 BR valid delay – 25 ns

31 BG setup time to clock high 5 – ns

32 BG hold time after BGACK 10 – ns

33 BGACK valid delay – 25 ns

34 Microprocessor Interface driven after BGACK
asserted

1 SCLK
cycle

– –

35 Clock high to Microprocessor Interface tristated – 40 ns

36 BGO valid delay from clock high – 40 ns
1) Newly specified for V2.1 and V2.2. Not specified in Data Sheet 08.93.

Table 16

No. Parameter Limit Values Unit

min. max.

PEB 20320

Electrical Characteristics

User’s Manual 238 01.2000

Serial Interface Timing

Figure 123

Table 17

No. Parameter Limit Values Unit

min. max.

37 Receive strobe guard time 10 – ns

38 Receive strobe setup 5 – ns

39 Receive strobe hold 5 – ns

40 Receive data setup 5 – ns

41 Receive data hold 5 – ns

RSP

RDATA

3937

42

38

43

40
41

RCLK

TCLK

4847

50

45

49

44 46

TDATA

TSP

ITD03515

PEB 20320

Electrical Characteristics

User’s Manual 239 01.2000

Note: 1. The frequency on the serial line must be smaller or equal to
1/8

th of the frequency on the µP bus for 1.536 MHz, 1.544 MHz, 2.048 MHz
1/4

th of the frequency on the µP bus for 4.096 MHz.

2. For complete internal or complete external loop t42 and t49 must be greater or
equal to 3 times t51.

Clock Input Timing

Figure 124
Clock Timing

42 Receive clock high width 60 – ns

43 Receive clock low width 60 – ns

44 Transmit strobe guard time 20 – ns

45 Transmit strobe setup 5 – ns

46 Transmit strobe hold 5 – ns

47 Transmit data delay – 40 ns

48 Transmit clock to high impedance – 50 ns

49 Transmit clock high width 60 – ns

50 Transmit clock low width 60 – ns

Table 17 (cont’d)

No. Parameter Limit Values Unit

min. max.

5352

SCLK

ITD03516

51

PEB 20320

Electrical Characteristics

User’s Manual 240 01.2000

Note: If fT is the frequency of the clock TCLK, fR the frequency of the clock RCLK and fS

the frequency of the clock SCLK the equations
7.996 × max (fT, fR) ≤ fS ≤ 16.667 MHZ for CEPT, T1, E1 PCM mode

and
3.998 × max (fT, fR) ≤ fS ≤ 16.667 MHZ for 4.096 MHz PCM mode

describe the allowed range of frequencies for fS.

System Interface Timing

Figure 125

After power up a logical ‘1’ at the reset pin of the MUNICH V3.4 sets the device into a
reset state where the complete microprocessor bus interface is tristated and the internal
reset sequence is started.

Table 18

No. Parameter Limit Values Unit

min. max

51 Cycle period 50 – ns

52 Clock low time 25 – ns

53 Clock high time 25 – ns

Table 19

No. Parameter Limit Values Unit

min. max.

55 Reset to first action request delay 12 SCLK cycles – –

56 AR# pulse width 2 SCLK cycles 5 SCLK cycles –

57 Reset pulse width 2 SCLK cycles – –

57

RESET

AR

56

ITT10668

55

after reset
request AR
first action

PEB 20320

Electrical Characteristics

User’s Manual 241 01.2000

The trailing edge of the reset starts the last part of the internal reset sequence and takes
about 12 SCLK cycles. It is not allowed to give an action request (AR) during these first
12 SCLK cycles after the trailing edge of signal RESET.

JTAG-Boundary Scan Timing

Figure 126
JTAG-Boundary Scan Timing

Table 20
Intel Bus Timing

No. Parameter Limit Values Unit

min. max.

58 JTEST0 (TCK) period 166 inf –

59 JTEST0 (TCK) high time 80 – –

60 JTEST0 (TCK) low time 80 – –

61 JTEST1 (TMS) setup time 15 – –

62 JTEST1 (TMS) hold time 10 – –

63 JTEST2 (TDI) setup time 15 – –

64 JTEST2 (TDI) hold time 15 – –

65 JTEST3 (TDO) valid delay 30 – –

ITD03512

JTEST0 (TCK)

JTEST1 (TMS)

JTEST2 (TDI)

JTEST3 (TDO)

65

62
61

59 60

63
64

58

PEB 20320

Package Outlines

User’s Manual 242 01.2000

8 Package Outlines

G
P

M
05

24
7

P-MQFP-160-1
(Plastic Metric Quad Flat Package)

Sorts of Packing
Package outlines for tubes, trays etc. are contained in our
Data Book “Package Information”.

Dimensions in mmSMD = Surface Mounted Device

PEB 20320

Appendix

User’s Manual 243 01.2000

9 Appendix

9.1 Source Code Extract MUNICH32

The MUNICH32 code extract is taken from the low level device driver for the MUNICH32,
which is written in ‘C’. This extract gives you a brief impression how a MUNICH32 device
driver could be programmed.

The munich control configuration (munichCtrlCfg) is a structure which consists of the
following substructures:

Action Specification actionSpec
Interrupt Queue Specification intQueueSpec
Time-Slot Assignment timeSlot[]
Channel Specification channelSpec[]
Munich Receive Descriptor Pointer currRcDescrAddr[]
Munich Transmit Descriptor Pointer currTxDescrAddr[]

These substructures mainly consist of bit fields. The use of bit fields does not produce a
speed optimized but a highly readable code, in our case to demonstrate the
programming of the MUNICH32 very clearly.

The structures are directly memory mapped to the MUNICH32 structures and listed
below.

In this short example we select the CEPT-32 PCM highway format and the HDLC mode.
All time-slots are assigned to channel number 0. HDLC frames are send via channel0.

There are two functions: InitChannel0AndSendFirstFrame()
TxHdlcFrame().

The function InitChannel0AndSendFirstFrame() comprises the following initialization
tasks:

– the MUNICH32 is configured for the CEPT32 channel format
– the interrupt queue is initialized and assigned
– each time-slot consists of 8 bit and all time-slots are assigned to channel 0
– the transmit outputs and the receive inputs are active
– here nine transmit buffers are assigned to channel0
– idle code flags.

PEB 20320

Appendix

User’s Manual 244 01.2000

The second part of the function prepares the device to send the first HDLC frame:

– the linked list of frames to be send is registered
– in receive direction a linked list of 10 receive descriptors with 32 bytes data each is

prepared and installed.
– the macro MUNICH32_ACTION_REQUEST() ‘generates’ an activation request pulse

to the MUNICH32
– the device reads the initialization data and transmits the first transmit frame

The MUNICH32 then polls the hold bit of last transmit descriptor until this bit is cleared.
If the hold bit is cleared the device sends the next data until it finds the next hold bit.

The function TxHdlcFrame connects the transmit descriptor of the next frame with the
last transmit descriptor of the last send frame and clears the hold bit; the next frame is
send.

PEB 20320

Appendix

User’s Manual 245 01.2000

9.2 Source Code

…
/*--
 - MUNICH32 Transmit Descriptor Structure -
 --
*/

typedef struct munichTxDescr
{
 unsigned fnum : 11;
 unsigned csm : 1;
 unsigned : 3;
 unsigned v110 : 1;
 unsigned no : 13;
 unsigned hi : 1;
 unsigned hold : 1;
 unsigned fe : 1;
 WORD8 _ptr data;
 struct munichTxDescr _ptr next;
}
MUNICH_TRANSMIT_DESCRIPTOR;

typedef MUNICH_TRANSMIT_DESCRIPTOR _ptr MUNICH_TX_DESCR_PTR

/*--
 - MUNICH32 Receive Descriptor Structure -
 --
*/

typedef struct munichRcDescr
{
 unsigned : 16;
 unsigned no : 13;
 unsigned hi : 1;
 unsigned hold : 1;
 unsigned : 1;
 unsigned : 8;
 unsigned status : 8;
 unsigned bno : 13;
 unsigned : 1;
 unsigned c : 1;
 unsigned fe : 1;
 WORD8 _ptr data;
 struct munichRcDescr _ptr next;
}
MUNICH_RECEIVE_DESCRIPTOR;

PEB 20320

Appendix

User’s Manual 246 01.2000

typedef MUNICH_RECEIVE_DESCRIPTOR _ptr MUNICH_RC_DESCR_PTR;
/*--
 - MUNICH32 Structures -
 --
*/

typedef struct
{
 unsigned channelNumber : 5;
 unsigned rt : 1;
 unsigned : 2;
 unsigned fo : 1;
 unsigned err : 1;
 unsigned sf : 1;
 unsigned ifc : 1;
 unsigned fi : 1;
 unsigned hi : 1;
 unsigned arf : 1;
 unsigned arack : 1;
 unsigned x : 1;
 unsigned sa : 1;
 unsigned sb : 1;
 unsigned e1 : 1;
 unsigned e2 : 1;
 unsigned e3 : 1;
 unsigned e4 : 1;
 unsigned e5 : 1;
 unsigned e6 : 1;
 unsigned e7 : 1;
 unsigned frc : 1;
 unsigned : 4;
 unsigned intFlag : 1;
}
MUNICH32_INTERRUPT_QUEUE;

typedef struct
{
 MUNICH32_INTERRUPT_QUEUE _ptr addr;
 unsigned n : 8;
 unsigned : 24;
}
INTERRUPT_QUEUE_SPECIFICATION;

typedef struct
{
 unsigned rcFillMask : 8;
 unsigned rcChannelNumber : 5;

PEB 20320

Appendix

User’s Manual 247 01.2000

 unsigned rti : 1;
 unsigned : 2;
 unsigned txFillMask : 8;
 unsigned txChannelNumber : 5;
 unsigned tti : 1;
 unsigned : 2;
}
TIME_SLOT_ASSIGNMENT;

typedef struct
{
 unsigned iftf : 1;
 unsigned mode : 2;
 unsigned fa : 1;
 unsigned trv : 2;
 unsigned crc : 1;
 unsigned inv : 1;
 unsigned tflagCs : 1;
 unsigned tflag : 7;
 unsigned ra : 1;
 unsigned ro : 1;
 unsigned th : 1;
 unsigned ta : 1;
 unsigned to : 1;
 unsigned ti : 1;
 unsigned ri : 1;
 unsigned nitbs : 1;
 unsigned intMask : 8;
 MUNICH_RC_DESCR_PTR frda;
 MUNICH_TX_DESCR_PTR ftda;
 unsigned itbs : 6;
 unsigned : 26;
}
CHANNEL_SPECIFICATION;

typedef struct
{
 WORD32 *currentReceiveDescriptorAddrCh;
}
CURRENT_RC_DESCR_ADDR;

typedef struct
{
 WORD32 *currentTransmitDescriptorAddrCh;
}
CURRENT_TX_DESCR_ADDR;

PEB 20320

Appendix

User’s Manual 248 01.2000

typedef struct
{
 unsigned : 2;
 unsigned ia : 1;
 unsigned loopi : 1;
 unsigned loop : 1;
 unsigned loc : 1;
 unsigned res : 1;
 unsigned im : 1;
 unsigned channelNumber : 5;
 unsigned : 1;
 unsigned ico : 1;
 unsigned in : 1;
 unsigned mfl : 13;
 unsigned pcm : 3;
}
ACTION_SPECIFICATION;

/*--
 - MUNICH32 Control Block -
 --
*/

typedef struct
{
 ACTION_SPECIFICATION actionSpec;
 INTERRUPT_QUEUE_SPECIFICATION intQueueSpec;
 TIME_SLOT_ASSIGNMENT timeSlot 32;
 CHANNEL_SPECIFICATION channelSpec 32;
 MUNICH_RC_DESCR_PTR currRcDescrAddr 32;
 MUNICH_TX_DESCR_PTR currTxDescrAddr 32;
}
MUNICH32_CTRL_CFG_SECTION;
..
..

PEB 20320

Appendix

User’s Manual 249 01.2000

/*--
 - Function : InitChannel0AndSendFirstFrame -
 --
 - Description : Initialization of channel 0. -
 - - PCM Highway format CEPT 32-channel -
 - - HDLC Mode -
 - - All timeslots are assigned to channel 0. -
 - - Send the first HDLC frame -
 ---*/

static void InitChannel0AndSendFirstFrame (MUNICH_TX_DESCR_PTR m32TxDescr)
{
 ..
 .. /*

*/

 txDescr = m32TxDescr /* store transmit descriptor pointer */

 /*=== Action Specification ==*/

 munichCtrlCfg.actionSpec.in = 1; /* initialization procedure */
 munichCtrlCfg.actionSpec.ico = 0; /* initialize channel only */
 munichCtrlCfg.actionSpec.channelNumber = 0; /* - */
 munichCtrlCfg.actionSpec.im = 0; /* interrupt mask */
 munichCtrlCfg.actionSpec.res = 0; /* reset */
 munichCtrlCfg.actionSpec.loopi = 0; /* loops for test purposes */
 munichCtrlCfg.actionSpec.loop = 0; /* loops for test purposes */
 munichCtrlCfg.actionSpec.loc = 0; /* loops for test purposes */
 munichCtrlCfg.actionSpec.ia = 1; /* interrupt attention */
 munichCtrlCfg.actionSpec.pcm = 5; /* PCM, CEPT 32 channel */
 munichCtrlCfg.actionSpec.mfl = 256;/* maximum frame length */

 /*=== Interrupt Queue Specification =====================================*/

 /* interrupt queue address */
 munichCtrlCfg.intQueueSpec.addr = &munichIntQueue [0];
 /* interrupt queue size */
 munichCtrlCfg.intQueueSpec.n = (INT_QUEUE_SIZE_MAX / 16 -1);

 for (i = 0; i < INT_QUEUE_SIZE_MAX; i++) /* Reset interrupt queue */
 {
 munichIntQueue[i].intFlag = CLEAR;
 }

PEB 20320

Appendix

User’s Manual 250 01.2000

 /*=== Timeslot Assignment ===*/

 for (i = 0; i < 32; i++)
 { /* For all timeslots */
 munichCtrlCfg.timeSlot[i].rcChannelNumber = 0; /* assigned to */
 munichCtrlCfg.timeSlot[i].txChannelNumber = 0; /* channel 0 */
 munichCtrlCfg.timeSlot[i].rcFillMask = 0xFF;/* all bits assigned */
 munichCtrlCfg.timeSlot[i].txFillMask = 0xFF;/* per channel */
 munichCtrlCfg.timeSlot[i].tti = 0; /* Tx output active */
 munichCtrlCfg.timeSlot[i].rti = 0; /* Rc input active */
 }

 /*=== Channel Specification ===*/

 munichCtrlCfg.channelSpec[channel0].intMask = 0; /* interrupts enabled */
 munichCtrlCfg.channelSpec[channel0].nitbs = 1; /* new ITBS value */
 munichCtrlCfg.channelSpec[channel0].to = 0; /* transmit */
 munichCtrlCfg.channelSpec[channel0].ta = 1; /* initialization */
 munichCtrlCfg.channelSpec[channel0].ti = 1; /* */
 munichCtrlCfg.channelSpec[channel0].ro = 0; /* receive */
 munichCtrlCfg.channelSpec[channel0].ra = 1; /* initialization */
 munichCtrlCfg.channelSpec[channel0].ri = 1; /* */

 munichCtrlCfg.channelSpec[channel0].th = 0; /* no transmit hold */
 munichCtrlCfg.channelSpec[channel0].fa = 0; /* no flag adjustment */
 munichCtrlCfg.channelSpec[channel0].tflag = 0; /* only for TMA */
 munichCtrlCfg.channelSpec[channel0].tflagCs = 0; /* CRC select */
 munichCtrlCfg.channelSpec[channel0].inv = 0; /* no bit inversion */
 munichCtrlCfg.channelSpec[channel0].crc = 0; /* 16-bit CRC */
 munichCtrlCfg.channelSpec[channel0].trv = 0; /* transmission rate */
 munichCtrlCfg.channelSpec[channel0].mode = 3; /* HDLC Mode */
 munichCtrlCfg.channelSpec[channel0].iftf = 0; /* idle code flags */
 munichCtrlCfg.channelSpec[channel0].itbs = 9; /* transmit buffer size */

 munichCtrlCfg.channelSpec[channel0].ftda = txDescr; /* first transmit */
 /* descriptor address */

PEB 20320

Appendix

User’s Manual 251 01.2000

 /*=== Transmit Descriptor ===*/

 /* the next pointer of the last txDescr points to the zero pointer */

 for (; txDescr ->next; txDescr = txDescr ->next)
 {
 txDescr ->fnum = 3; /* 3 interframe timefill char */
 txDescr ->hold = 0; /* clear hold bit */
 txDescr ->hi = 0; /* clear host initiated interrupt bit */
 txDescr ->fe = 0; /* clear frame end bit */
 txDescr ->v110 = 0; /* clear v110 bit */
 }
 txDescr ->fe = 1; /* set frame end bit */
 txDescr ->hold = 1; /* set hold bit */

 /*=== Receive Descriptor ==*/

 rcDescr = AllocReceiveDescriptor(10); /* Alloc e.g. ten */
 /* receive descriptors */
 /* with 32 data byte each */

 munichCtrlCfg.channelSpec[channel0].frda = rcDescr; /* first receive */
 /* descriptor address */

 /*=== Prepare Receive Descriptor 1 to 9 =================================*/

 for (; rcDescr ->next; rcDescr = rcDescr ->next)
 {
 rcDescr ->hold = 0; /* not the last descriptor */
 rcDescr ->hi = 0; /* no host interrupt */
 rcDescr ->no = 32; /* 32 data byte available */
 rcDescr ->fe = 0; /* clear frame end bit */
 rcDescr ->c = 0; /* clear data section complete bit */
 }
 /*=== Prepare The Last Receive Descriptor, Number 10 ====================*/

 rcDescr ->hold = 1; /* last available descriptor */
 rcDescr ->hi = 1; /* no host interrupt */
 rcDescr ->no = 32; /* 32 data byte available */
 rcDescr ->fe = 0; /* clear frame end bit */
 rcDescr ->c = 0; /* clear data section complete bit */

 channelControl[0].lasttxdescr = txDescr; /* store last transmit pointer */
 channelControl[0].lastrcdescr = rcDescr; /* store last receive pointer */

 MUNICH32_ACTION_REQUEST (); /* generate MUNICH32 activation request */
}

PEB 20320

Appendix

User’s Manual 252 01.2000

/*--
 - Function : TxHdlcFrame -
 --
 - Description : Transmit an HDLC frame via channel 0 -
 --
*/

static void TxHdlcFrame (MUNICH_TX_DESCR_PTR m32TxDescr)
{
 ..
 ..
 /*

*/

 m32TxDescr = txDescr; /* store transmit descriptor pointer */

 channelControl[0].lasttxdescr ->next = txDescr; /* Add frame to existing */
 /* channel0 frame queue */

 /*=== Transmit Descriptor ===*/

 for (; txDescr ->next; txDescr = txDescr ->next)
 {
 txDescr ->fnum = 3; /* 3 interframe timefill char */
 txDescr ->hold = 0; /* clear hold bit */
 txDescr ->hi = 0; /* clear host initiated interrupt bit */
 txDescr ->fe = 0; /* clear frame end bit */
 txDescr ->v110 = 0; /* clear v110 bit */
 }
 txDescr ->fe = 1; /* set frame end bit */
 txDescr ->hold = 1; /* set hold bit */

 channelControl[0].lasttxdescr ->hold = 0; /* the polling MUNICH32 */
 /* will then detect the */
 /* cleared hold bit and */
 /* send the following */
 /* frame */

 channelControl[0].lasttxdescr = txDescr; /* store last transmit pointer */
}

	1 Introduction
	1.1 Features
	1.2 Pin Configuration
	1.3 Pin Definitions and Functions
	1.4 Logic Symbol
	1.5 Functional Block Diagram
	1.6 System Integration

	2 Functional Description
	2.1 Serial Interface
	2.2 Microprocessor Interface
	2.2.1 Intel Mode
	2.2.2 Motorola Mode
	2.2.3 DMA Priorities

	2.3 Basic Functional Principles
	2.4 Detailed Protocol Description
	2.5 Boundary Scan Unit

	3 Operational Description
	3.1 Reset State
	3.2 Initialization Procedure

	4 Detailed Register Description
	4.1 Organization of the Shared Memory
	4.2 Control and Configuration Section
	4.2.1 Action Specification (Read Once After Each Action Request Pulse)
	4.2.2 Interrupt Queue Specification
	4.2.3 Interrupt Information
	4.2.4 Time Slot Assignment
	4.2.5 Channel Specification
	4.2.6 Current Receive and Transmit Descriptor Address

	4.3 Transmit Descriptor
	4.4 Receive Descriptor

	5 Application Notes
	5.1 Test Loops
	5.1.1 Test Loop Definitions for the MUNICH32
	5.1.1.1 Internal Complete Test Loop
	5.1.1.2 Internal Channelwise Test Loop
	5.1.1.3 External Complete Test Loop
	5.1.1.4 External Channelwise Test Loop

	5.1.2 Test Loop Activation
	5.1.3 Test Loop Deactivation and Switching
	5.1.3.1 Software Operations
	5.1.3.2 Hardware Reset Operations

	5.1.4 Test Loop Examples
	5.1.4.1 Internal Channelwise Test Loop
	5.1.4.2 External Channelwise Test Loop

	5.2 MUNICH32 in a LAN/WAN Router
	5.2.1 Introduction
	5.2.2 Hardware
	5.2.3 Software
	5.2.3.1 Device Driver Module MUNICH32
	5.2.3.2 Application Module MROUTE

	5.2.4 Performance Considerations
	5.2.5 Final Remarks
	5.2.6 Adaption of the 68040 mP Signals
	5.2.7 Schematics

	5.3 Memory Bus Occupancy for a Single MUNICH32
	5.3.1 Bus Occupancy Calculations
	5.3.2 Bus Occupancy for Idle Tx Channels

	6 Application Hints
	6.1 Frequency Adaption in an Intel 368 Common Bus System
	6.2 MUNICH32 Memory Space Requirement
	6.3 Serial Interface to different PCM Systems
	6.3.1 MUNICH32 for SIEMENS Primary Access Interface
	6.3.2 MUNICH32 in Systems with MITEL ST BUS

	7 Electrical Characteristics
	7.1 Absolute Maximum Ratings
	7.2 DC Characteristics
	7.3 Capacitances
	7.4 AC Characteristics
	7.5 Microprocessor Interface Intel Bus Mode
	7.6 Microprocessor Interface Motorola Bus Mode

	8 Package Outlines
	9 Appendix
	9.1 Source Code Extract MUNICH32
	9.2 Source Code

