
STH300NH02L-6

Datasheet – production data

Automotive-grade N-channel 24 V, 0.95 mΩ typ., 180 A STripFET™ III Power MOSFET in a H²PAK-6 package

Figure 1. Internal schematic diagram

Features

Order code	V _{DSS}	R _{DS(on)} max.	I _D ⁽¹⁾
STH300NH02L-6	24 V	< 1.2 m Ω	180 A

1. Current limited by package.

- Designed for automotive applications and AEC-Q101 qualified
- Conduction losses reduced
- Low profile, very low parasitic inductance, high current package

Applications

• Switching applications

Description

This device is an N-channel enhancement mode Power MOSFET produced using STMicroelectronics' STripFET[™] III technology, which is specifically designed to minimize onresistance and gate charge to provide superior switching performance.

Table 1. Device summary

Order code	Marking	Package	Packaging
STH300NH02L-6	300NH02L	H ² PAK-6	Tape and reel

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Packaging mechanical data 1	3
6	Revision history1	5

1

Electrical ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	24	V
V _{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	180	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	180	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	720	A
P _{TOT} ⁽³⁾	Total dissipation at T_{C} = 25 °C	300	w
	Derating factor	2	W/°C
E_{AS} ⁽⁴⁾	Single pulse avalanche energy	1.6	J
T _{stg}	Storage temperature		°C
Τj	Operating junction temperature	0010170	

1. Current limited by package

2. Pulse width limited by safe operating area

3. This value is rated according to $\rm R_{\rm thj-c}$

4. Starting $T_j = 25 \text{ °C}$, $I_D = 60 \text{ A}$, $V_{DD} = 20 \text{ V}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.5	°C/W
$R_{thj\text{-pcb}}^{(1)}$	Thermal resistance junction-pcb max	35	°C/W

1. When mounted on 1 inch2 FR-4 2 oz Cu.

2 Electrical characteristics

(Tcase = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 250 μA	24			v
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 24 V, V _{DS} = 24 V, T _C =125 °C			1 10	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1			V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 80 A V _{GS} = 5 V, I _D = 40 A		0.95 1.15	1.2 1.5	mΩ

Table 4. On /off states

Table 5. Dynamic

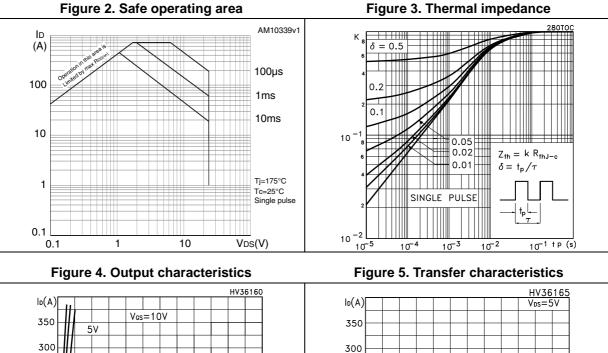
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	7050	-	pF
C _{oss}	Output capacitance	V _{DS} = 15 V, f = 1 MHz, V _{GS} =0	-	3250	-	pF
C _{rss}	Reverse transfer capacitance		-	307	-	pF
Qg	Total gate charge	V _{DD} = 20 V, I _D = 120 A,	-	109	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	30	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14)	-	26	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 20 \text{ V}, \text{ I}_{D} = 80 \text{ A}$	-	18	-	ns
t _r	Rise time	R _G = 4.7 Ω, V _{GS} = 10 V, (see Figure 13)	-	275	-	ns
t _{d(off)}	Turn-off delay time	V _{DD} = 20 V, I _D = 80 A	-	138	-	ns
t _f	Fall time	R_G = 4.7 Ω, V_{GS} = 10 V, (see Figure 13)	-	94.4	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾ I _{SD} ⁽²⁾	Source-drain current Source-drain current (pulsed)		-		180 720	A A
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 180 A, V _{GS} = 0	-		1.3	V
t _{rr}	Reverse recovery time	I _{SD} = 120 A,di/dt = 100 A/µs	-	65		ns
Q _{rr}	Reverse recovery charg	V _{DD} = 20 V, T _j = 150 °C	-	90		nC
I _{RRM}	Reverse recovery current	(see Figure 15)	-	2.8		А

Table 7. Source drain diode

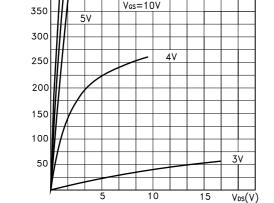

1. Current limited by package

2. Pulse width limited by safe operating area

3. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

250


200

150

100

50

2

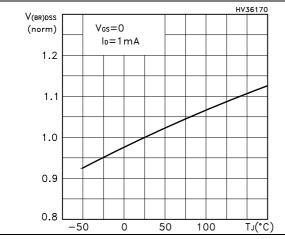


Figure 7. Static drain-source on-resistance

6

8

4

 $10 V_{GS}(V)$

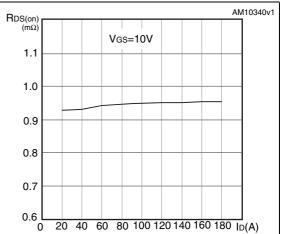


Figure 8. Gate charge vs gate-source voltage

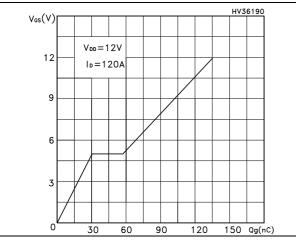
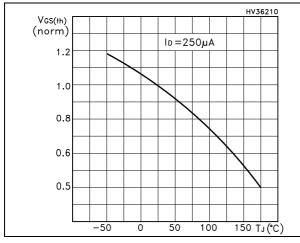
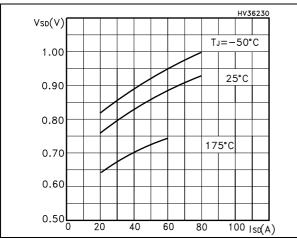


Figure 10. Normalized gate threshold voltage vs temperature

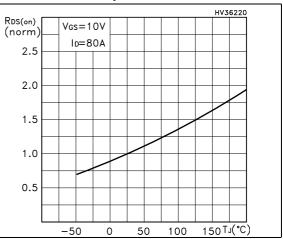

Figure 12. Source-drain diode forward characteristics

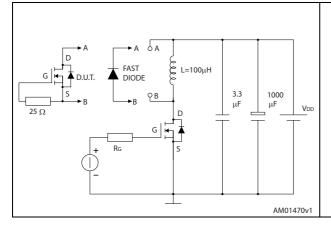
Figure 9. Capacitance variations

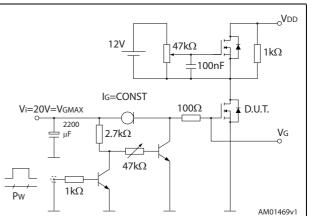
Figure 11. Normalized on resistance vs temperature

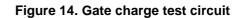
3 Test circuits

Figure 13. Switching times test circuit for resistive load

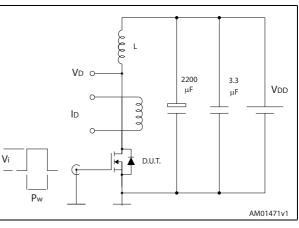
Figure 15. Test circuit for inductive load switching and diode recovery times




Figure 17. Unclamped inductive waveform


VD

IDM


lр

V(BR)DSS

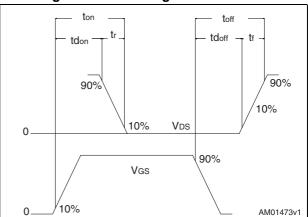


Figure 18. Switching time waveform

Vdd

AM01472v1

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	2.34	-	2.74
e1	4.88	-	5.28
e2	7.42	-	7.82
E	0.45		0.60
F	0.50		0.70
Н	10.00	-	10.40
H1	7.40		7.80
L	14.75	-	15.25
L1	1.27	-	1.40
L2	4.35		4.95
L3	6.85	-	7.25
L4	1.5	1	1.75
М	1.90		2.50
R	0.20	1	0.60
V	0°		8°

Table 8	3. H2PAK-6	mechanical	data

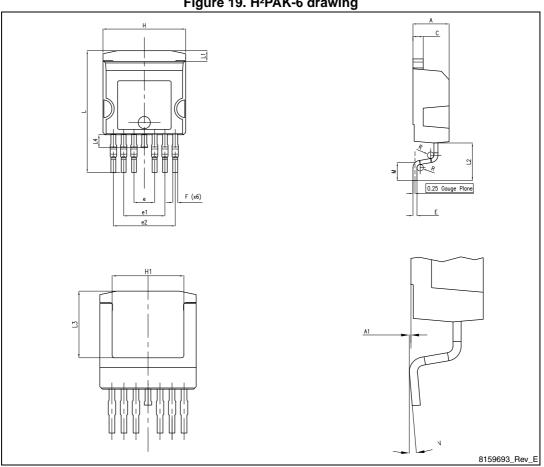
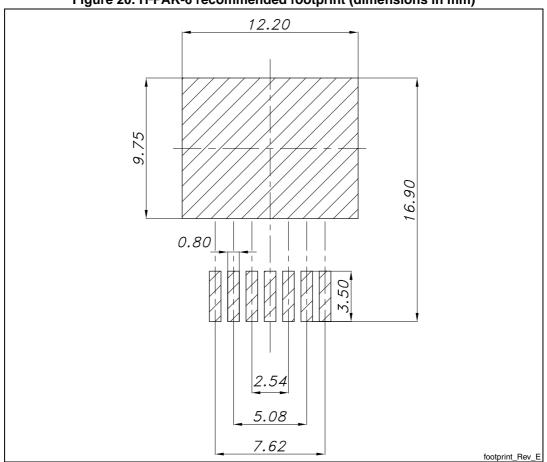



Figure 19. H²PAK-6 drawing

Figure 20. H²PAK-6 recommended footprint (dimensions in mm)

5 Packaging mechanical data

	Таре			Reel		
Dim.	mm		Dim	mm		
	Min.	Max.	— Dim.	Min.	Max.	
A0	10.5	10.7	А		330	
B0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
Е	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty 1000		
P2	1.9	2.1		Bulk qty 1000		
R	50					
Т	0.25	0.35				
W	23.7	24.3				

Table 9. Tape and reel mechanical data

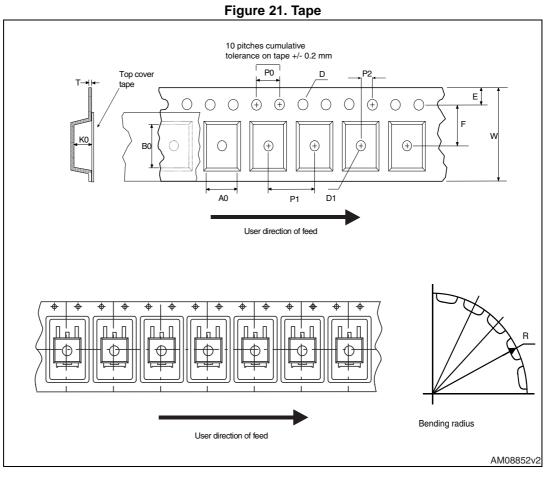
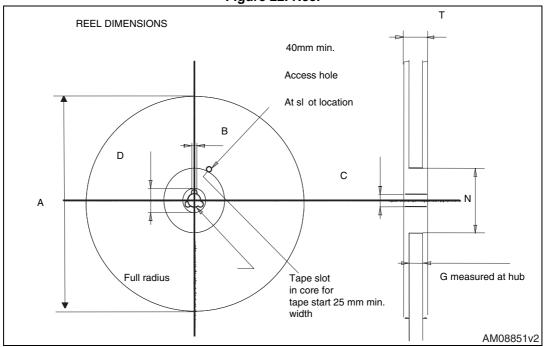



Figure 22. Reel

DocID019022 Rev 4

6 Revision history

Table 10. Document	revision history
--------------------	------------------

Date	Revision	Changes
12-Jul-2011 1		initial release
24-Oct-2011 2		Updated test conditions in <i>Section Table 5.: Dynamic</i> and <i>Section Table 7.: Source drain diode</i> .
15-May-2013	3	 Updated: title, <i>Applications</i> and <i>Description</i> in cover page Minor text changes
22-Jul-2013 4		 Updated title in cover page.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID019022 Rev 4