

Microcontrol lers

User Manual

v2.9, 2014-06

Embedded Appl icat ions Binary
Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

TriCore™
32-bit Unified Processor

Edition 2014-06

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2014 Infineon Technologies AG

All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or

characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any

information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties

and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights

of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest

Infineon Technologies Office (www.infineon.com)

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in

question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written

approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure

of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support

devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain

and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may

be endangered.

http://www.infineon.com

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

User Manual v2.9, 2014-06

User Manual

Revision History: v2.9 2014-06

Page Subjects (major changes since last revision)

1 Cover - Now states V1.3x and V1.6x TriCore Architectures

multiple IEEE-754-2008 references replace IEEE-754-1985

10 Table 2-2, new float16 entry

Typo revised for D2 to “__float16”

15 Text change “Default use for A[0] is... “

15 Text change “Default use for A[1] is...”

15 Section 2.2.1.4 renamed to “System Global Address Registers” / body text change to “system

global address registers”

15 / 16 Text change - see red/green text for changes

24 Text change - see green text

25 section 2.5.3 renamed “Multicore Address Map” / Text changes

28 New row for EF_TRICORE_V1_6_2

EF_TRICORE_V1_6_PE renamed to EF_TRICORE_V1_6_1 and NOTE added to document

change in previous/new versions of this document.

Typo for ELF value: now reads 0010 0000

30 Section 4.2.3. ‘Note’ at the end of this section has been removed.

30 Table 4-6 New rows for .bss_a0 / .bss_a1 / .data_a0 / .data_a1

31 Table 4-6 New rows for .rodata_a0 / .rodata_a1

34 Section 4.4.3 typo correction - “an” changed to “any”

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing?

Your feedback will help us to continuously improve the quality of our documentation.

Please send your proposal (including a reference to this document) to:

ipdoc@infineon.com

mailto:ipdoc@infineon.com

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

 User Manual 4 v2.9 2014-06

Trademarks of Infineon Technologies AG

AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™,

CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,

EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,

MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™,

PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™,

SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™,

TriCore™.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,

PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR

development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,

FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.

FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of

Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data

Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of

MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics

Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA

MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of

OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF

Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™

of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.

TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™

of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas

Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes

Zetex Limited.

Last Trademarks Update 2011-11-11

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Table of Contents

User Manual 5 v2.9, 2014-06

Table of Contents . 5

1 Introduction . 7

1.1 Scope . 7

1.2 Purpose . 7

1.3 Overview . 7

1.3.1 Low-Level Run-Time Binary Interface Standards . 8

1.3.2 Object File Binary Interface Standards . 8

1.3.3 Naming Conventions . 8

1.4 Associated Documentation . 8

2 Low Level Binary Interfaces . 9

2.1 Underlying Processor Primitives . 9

2.1.1 Registers . 9

2.1.2 Fundamental Data Types . 10

2.1.3 Special Data Types . 12

2.1.3.1 Circular Buffer Pointers . 12

2.1.4 Compound Data Types . 12

2.1.4.1 Arrays . 12

2.1.4.2 Unions and Structures . 12

2.1.4.3 Bit Fields . 13

2.1.5 Non-standard Alignment Options . 15

2.1.5.1 Discrete Word and Double Word Variables . 15

2.1.5.2 Packed Unions and Structures . 15

2.2 Standard Function Calling Conventions (The Register Model) . 16

2.2.1 Register Assignments . 16

2.2.1.1 Upper Context . 16

2.2.1.2 Lower Context . 16

2.2.1.3 Implicit Operands . 16

2.2.1.4 System Global Address Registers . 16

2.2.1.5 Cross-Call Lifetimes . 17

2.2.2 Stack Frame Management . 17

2.2.2.1 Frame Layout . 17

2.2.2.2 Frame Addressing . 18

2.2.3 Argument Passing . 18

2.2.3.1 Non-Pointer Arguments . 19

2.2.3.2 64-bit Arguments . 19

2.2.3.3 Pointer Arguments . 19

2.2.3.4 64-bit Pointer Arguments (Circular Buffer Pointers) . 19

2.2.3.5 Overflow Arguments on the Stack . 19

2.2.3.6 Structure Arguments . 20

2.2.4 Variable Arguments . 20

2.2.5 Return Values . 20

2.2.5.1 Scalar Return Values . 20

2.2.5.2 Pointer Return Values . 20

2.2.5.3 Structure Return Values . 20

2.3 Alternative Function Calling Conventions (Stack-Model) . 21

2.3.1 Stack Model Directive . 21

2.3.2 Register Assignments . 21

2.3.3 Stack Frame Layout . 21

Table of Contents

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Table of Contents

User Manual 6 v2.9, 2014-06

2.3.4 Argument Passing . 21

2.3.4.1 Structure Arguments . 21

2.3.4.2 Return Values . 21

2.4 Support for Mixed Models . 21

2.4.1 Link Time Argument and Return Type Checking . 22

2.4.1.1 Link Time Type Information . 22

2.4.1.2 Type Checking in the Linker . 23

2.4.2 Runtime Model Checking . 23

2.5 Memory Models . 24

2.5.1 Data Memory Model . 24

2.5.2 Code Memory Model . 25

2.5.3 MultiCore Address Map . 26

3 High-level Language Issues . 27

3.1 C Name Mapping . 27

4 Object File Formats . 28

4.1 Header Conventions . 28

4.1.1 E_MACHINE . 28

4.1.2 E_IDENT . 28

4.1.3 E_FLAGS . 29

4.2 Section Layout . 30

4.2.1 Section Alignment . 30

4.2.2 Section Attributes . 30

4.2.3 Special Sections . 31

4.3 Symbol Table Format . 32

4.4 Relocation Information Format . 33

4.4.1 Relocatable Fields . 33

4.4.2 Relocation Values . 34

4.4.3 Extension for Small Data Area Optimization . 35

4.5 Debugging Information Format . 36

4.5.1 DWARF Register Numbers . 36

5 Extensions for Shared Object Support . 37

Keyword Index . 38

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Introduction

User Manual 7 v2.9, 2014-06

1 Introduction

1.1 Scope

This manual defines the Embedded Applications Binary Interface (EABI) for Infineon Technologies TriCore™ 32-

bit Unified microprocessor architecture.

The EABI is a set of interface standards that writers of compilers and assemblers and linker/locators must use

when creating compliant tools for the TriCore architecture. These standards cover run-time aspects as well as

object formats to be used by compatible tool chains. A standard definition ensures that all TriCore tools are

compatible and can interoperate at the binary object level.

Note: Source code compatibility and assembly language compatibility are separate issues which are not covered

by this document.

1.2 Purpose

The standards defined in this manual ensure that all conforming chains of development tools for TriCore will be

compatible at the binary object level. Compatible tools can interoperate and therefore make it possible to select

an optimum tool for each link in the chain, rather than selecting an entire chain on the basis of overall performance.

The standards in this manual also ensure that compatible libraries of binary components can be created and

maintained. Such libraries make it possible for developers to synthesize applications from binary components, and

can make libraries of common services stored in on-chip ROM available to applications executing from off-chip

memory. With established standards, developers can build up libraries over time with the assurance of continued

compatibility.

1.3 Overview

Standards in this manual are intended to enable creation of compatible development tools for the TriCore, by

defining minimum standards for compatibility between:

• Object modules generated by different tool chains

• Object modules and the TriCore processor

• Object modules and source level debugging tools

These standards do not entirely disallow vendor-specific extensions and feature enhancements aimed at

differentiating a vendor’s product. However, to claim compliance with this manual, a tool set must support an “EABI

compliance mode”, in which any incompatible extensions are suppressed. “Incompatible extensions” are defined

as those that, if used, would prevent the object module output of the tool chain from being linked in and used by

applications compiled with tool chains supporting only the standards defined herein.

Current definitions include the following types of standards:

• Low-Level Run-Time Binary Interface Standards

• Object File Binary Interface Standards

• Naming Conventions

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Introduction

User Manual 8 v2.9, 2014-06

1.3.1 Low-Level Run-Time Binary Interface Standards

• Processor specific binary interface

– The instruction set, representation of fundamental data types, and exception handling

• Function calling conventions

– How arguments are passed and results are returned, how registers are assigned, and how the calling stack

is organized

• Memory models

– How code and data are located in memory

1.3.2 Object File Binary Interface Standards

• Header convention

• Section layout

• Symbol table format

• Relocation information format

• Debugging information format

1.3.3 Naming Conventions

• ‘C’ name mapping

1.4 Associated Documentation

Please refer to the TriCore Architecture Manual for a detailed discussion of instruction set encoding and

semantics.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 9 v2.9, 2014-06

2 Low Level Binary Interfaces

2.1 Underlying Processor Primitives

The complete TriCore™ architecture is described in the TriCore Architecture Manual.

2.1.1 Registers

The TriCore EABI (Embedded Application Binary Interface) defines how to use the 32 general-purpose 32-bit

registers of the TriCore processor. These registers are named A[0] through to A[15] (Address registers), and D[0]

through to D[15] (Data registers).

TriCore also has a number of control registers. Those referenced in this document that are relevant to the

programming model are shown in the following table. Please refer to the TriCore Core Architecture manual for

further details of the control registers.

Table 2-1 TriCore Control Registers

Register Name Description Type

PSW Program Status Word CSFR

PCXI Previous Context Information CSFR

PC Program Counter (Read Only) CSFR

FCX Free Context List Head Pointer Context Pointer

LCX Free Context List Limit Pointer Context Pointer

ISP Interrupt Stack Pointer Interrupt/trap

ICR Interrupt Control Register Interrupt/trap

PIPN Pending Interrupt Priority Number Interrupt/trap

BIV Base Address Of Interrupt Vector Table Interrupt/trap

BTV Base Address Of Trap Vector Table Interrupt/trap

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 10 v2.9, 2014-06

2.1.2 Fundamental Data Types

The TriCore processor works with the following fundamental data types:

• Boolean; values FALSE (0) and TRUE (1 when set, when compared).

• Bit string; a packed field of bits.

• Unsigned/signed character of 8-bits.

• Unsigned/signed short integer of 16-bits.

• Unsigned/signed integer of 32-bits.

• Unsigned/signed long long integer of 64-bits.

– Long long integers have only limited support in the hardware and some operations can be emulated in

software.

• Address of 32-bits.

• Signed fraction of 16 bits (DSP support, 1Q.15 format).

• Signed fraction of 32-bits (DSP support, 1Q.31 format).

• IEEE-754-2008 floating point numbers.

– Depending on the particular implementation of the core architecture, IEEE-754-2008 floating point

numbers are supported by direct hardware instructions or by software emulation.

The mapping between fundamental data types and the C language data types is shown in the following table.

Note:

Table 2-2 Mapping of C Data Types to the TriCore Data Types

ANSI C Data Types Size in Bytes Alignment TriCore Data Types

char 1 1 Signed character

unsigned char 1 1 Unsigned character

short 2 2 Signed short integer

unsigned short 2 2 Unsigned short integer

long 4 4 Signed integer

unsigned long 4 4 Unsigned integer

int 4 4 Signed integer

unsigned int 4 4 Unsigned integer

enum 1, 2, 4 1, 2, 4 Signed integer

pointer 4 4 Address

long long 8 4 Unsigned integer[2]

unsigned long long 8 4 Unsigned integer[2]

__float16 2 2 Unsigned short integer

Note: __float16 is not an ANSI standard C

type, but corresponds to the IEEE-

754-2008 binary16 interchange

format

float 4 4 Unsigned integer

double 8 4 Unsigned integer[2]

long double 8 4 Unsigned integer[2]

0≠

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 11 v2.9, 2014-06

1. Characters must be stored on byte boundaries. Short integers must be two byte aligned. In EABI compliance

mode, integers and long long integers must be four byte aligned.

2. Enumeration types are signed integers of size 1, 2, or 4 Bytes. The size must be chosen to accommodate the

largest value in the enumeration. Enumerations are aligned according to their size.

3. TriCore uses little-endian byte ordering consistently for both data and instructions. The highest addressable

byte of a memory location always contains the most significant byte of the value.

4. The TriCore architecture does not support the long long int data type with 64-bit arithmentic operations.

However compliant compilers must emulate the data type.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 12 v2.9, 2014-06

2.1.3 Special Data Types

Circular Buffer Pointers are a special data type.

2.1.3.1 Circular Buffer Pointers

A circular buffer pointer is a two-Word structure containing a generic pointer and two Half-Word integers.

The pointer points to the base of an 8 Byte aligned circular buffer; the integers describe the size of the buffer and

an index into it.

Circular buffer pointers are 4 Byte aligned.

2.1.4 Compound Data Types

Arrays, structures, unions, and bit fields have special alignment characteristics, as described in the following sub-

sections.

2.1.4.1 Arrays

Arrays of byte elements may be aligned on any byte boundary. Arrays of 16-bit elements must be aligned on 2

Byte boundaries. Arrays of 32-bit (Word) or 64-bit (Double-Word) elements must be aligned on 4 Byte boundaries.

Arrays of composite elements (unions, structures, or subarrays) must be aligned according to the alignment

requirement of the composite elements comprising the array.

Note: Any array used as a circular buffer (i.e. whose elements are accessed using the circular addressing mode)

must be aligned on a Double-Word boundary.

2.1.4.2 Unions and Structures

Unions and structures have the most restrictive alignment of their members. For example, a structure containing

a char and an int must have 4 Byte alignment to match the alignment of the int field. In addition, the size of a union

or structure must be an integral multiple of its alignment. Padding must be applied to the end of a union or structure

to make its size a multiple of the alignment.

Members must be aligned within a union or structure according to their type; padding must be introduced between

members as necessary to meet this alignment requirement.

To facilitate copy operations, any structure larger than 1 Byte must have a minimum 2 Byte alignment, even if its

only members are byte elements.

Examples:

struct one

{

 char c1;

 int i1;

 char c2;

}

will have the following layout:

Table 2-3

4n c1

4(n+1) i1 (LSB) i1 i1 i1 (MSB)

4(n+2) c2

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 13 v2.9, 2014-06

struct two

{

 char c1;

 short s1;

 char *a1;

}

will have the following layout:

struct three

{

 char c1;

 double d1;

}

will be laid out as follows:

2.1.4.3 Bit Fields

Individual bit fields cannot exceed 32-bits in width, neither can they cross more than one Half-Word (16-bit)

boundary. Outside of these restrictions, adjacent bit fields are packed together with no padding in between, except

as required for the special case of a zero-width bit field (A zero-width bit field, as specified by ANSI C, forces

alignment to a storage unit boundary, which for TriCore is one byte).

Bit fields are assigned in little-endian order; i.e. the first bit field occupies the least significant bits while subsequent

fields occupy higher bits.

• Unsigned bit fields range from 0 to 2W - 1 (where W is the size in bits).

• Signed bit fields range from -2W -1 to 2W-1 - 1.

• Plain int bit fields are unsigned.

In ANSI C, bit fields must be declared as integer types. However, in implementations compliant with this manual,

the alignment requirements they impose as members of unions or structures are the same as those that would be

imposed by the smallest integer-based data types wide enough to hold the fields. Therefore:

• Fields whose width is 8-bits or less impose only byte alignment.

• Fields whose width is from 9 to 16-bits impose Half-Word alignment.

• Fields whose width is from 17 to 32-bits impose Word alignment.

Except for the special case of zero-width bit fields, or to comply with the prohibition against crossing more than

one Half-Word boundary, bit fields are always allocated beginning with the next available bit in the union or

structure. No alignment padding is inserted, except for the two cases noted. In the following example therefore,

the character c will occupy bit positions [7:0], while the 17-bit field f17 will occupy positions [24:8]. Padding will be

inserted in bits [31:25] to complete a full Word, and the structure will be Word alignmened.

Table 2-4

4n c1 s1 (LSB) s1 (MSB)

4(n+1) a1 (LSB) a1 a1 a1 (MSB)

Table 2-5

4n c1

4(n+1) d1 (LSB) d1 d1 d1

4(n+2) d1 d1 d1 d1 (MSB)

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 14 v2.9, 2014-06

struct bits_1 {

 char c;

 int f17 : 17;

};

If the size of field is increased to 25-bits however, the Half-Word boundary crossing rule applies, and 8-bits of

padding are inserted in bits [15:8].

struct bits_2 {

 char c;

 int f25 : 25;

};

In the following example, the structure bits_3 has 2 Byte alignment and will have size of 2 Bytes. The 2 Byte

alignment follows from the rule that any structure larger than 1 Byte must have at least 2 Byte alignment, not from

the presence of the bit fields. The field ’second’ occupies bits [10:3] of the structure.

struct bits_3 {

 int first : 3;

 unsigned int second : 8;

};

In this final example, the offset of the field ’character’ is one byte. The structure itself has 2 Byte alignment and is

2 Bytes in size.

struct bits_4 {

 int bitfield : 5;

 char character;

};

Table 2-6

4n c f17 f17

Table 2-7

4n c f25 (LSB) f25

4(n+1) f25

Table 2-8

2n first second

Table 2-9

2n bitfield character

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 15 v2.9, 2014-06

2.1.5 Non-standard Alignment Options

2.1.5.1 Discrete Word and Double Word Variables

In general the TriCore architecture supports access to 32-bit integer variables on Half-Word boundaries.

Depending on memory configuration, Double-Word variables may also be accessed on Half-Word boundaries.

However there are exceptions and limitations on such accesses that preclude use of Half-Word alignment as the

EABI standard for Word and Double-Word data objects. A tool vendor may nonetheless elect to support Half-Word

alignment of these objects, provided that the support is conditional on the compilation mode or specific user

directives. In EABI compliance mode, Word alignment must be followed.

The following are among the restrictions of which tool vendors should be aware, when deciding whether to support

an option for Half-Word alignment of Word and Double-Word data objects:

• Unaligned Word or Double-Word access to some memories may be restricted in some implementations. See

the TriCore Architecture Manual and relevant User Manual for more information.

• Unaligned access may incur a performance penalty.

• Pointers must always be Word aligned, if they are to be loaded into or stored from the address register file.

Legacy source code that assumes the interchangeability of integers and pointers may fail, if the two are

handled differently.

• The SWAP.W, LDMST and other Read-Modify-Write instructions require the address to be Word aligned (See

the TriCore Architecture Manual).

2.1.5.2 Packed Unions and Structures

In order to minimize space consumed by alignment padding within unions and structures, an implementation may

elect to support a compilation mode in which integer and Double-Word member elements follow the minimum

architecturally imposed alignment requirements (Half-Word boundaries), rather than the more conservative Word

alignments specified above. However, support for this mode is not an EABI requirement, and users must be

warned that its use will result in creation of binary objects that are not EABI compliant.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 16 v2.9, 2014-06

2.2 Standard Function Calling Conventions (The Register Model)

2.2.1 Register Assignments

The context of a task is divided into the upper context and the lower context.

2.2.1.1 Upper Context

The upper context consists of the upper address registers A[10] through A[15] and the upper data registers D[8]

through D[15], as well as the Processor Status Word (PSW) and the Previous Context Information (PCXI). The

upper context is saved automatically as the result of an external interrupt, exception, system call, or function call.

It is restored automatically as a result of executing a RET or RFE instruction.

2.2.1.2 Lower Context

The lower context consists of the lower address registers A[2] through A[7], the lower data registers D[0] through

D[7], and the saved program counter (A11). The lower context is not preserved automatically across interrupts,

exceptions, or calls. There are special instructions, SVLCX and RSLCX, to save and restore the lower context.

2.2.1.3 Implicit Operands

Some of the general purpose registers serve as an implicit source or destination for certain instructions. These are

listed in the following table:

2.2.1.4 System Global Address Registers

Address registers A[0], A[1], A[8], and A[9] are designated as system global address registers. They are not part

of either context partition and are not saved/restored across calls. They can be protected against write access by

user applications.

By convention, A[0] and A[1] are reserved for compiler use. Default use for A[0] is as a base pointer to the “small”

data section, where global data elements can be accessed using base + offset addressing. It is part of the

execution environment and will always be initialized in the startup code for any EABI-compliant RTOS.

Default use for A[1] is as a base pointer to the “literal data section”. The literal data section is a read-only data

section intended for holding address constants and program literal values. Like A[0], it is initialized in the startup

code for any EABI-compliant RTOS.

Tools should support individual configuration for each system global address register.

The allowed choices should include:

• Use as a base pointer with tool chain address base allocation

Table 2-10 Register Assignments

Register Use

A[0], A[1], A[8],

A[9]

System Global Address Registers

D[15] Implicit data register for many 16-bit instructions.

A[10] Stack Pointer (SP).

A[11] Return address register (RA) for CALL, JL, JLA, and JLI

Return PC value on interrupts .

A[15] Implicit base address register for many 16-bit load/store instructions.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 17 v2.9, 2014-06

• Use as a base pointer with user address base allocation

• Not used by the tool chain

Note: Use as a base pointer should freely support data variables or literals.

See “Special Sections” on Page 31, for further information.

2.2.1.5 Cross-Call Lifetimes

Upper context registers are preserved automatically across function calls implemented with the TriCore CALL and

RET instructions. All upper context registers other than A[10](SP) and A[11](RA)), are architecturally undefined

after a CALL, and the registers can not be used to pass arguments to a called function. Lower context registers

are not preserved; the calling function is responsible for preserving any values residing in lower context registers

that are live across a call. The callee may use both upper and lower context registers without concern for saving

and restoring their contents.

2.2.2 Stack Frame Management

2.2.2.1 Frame Layout

The stack pointer (SP) points to the bottom (low address) of the stack frame. The stack pointer alignment is 8 Bytes

(i.e. the OS must initialize the stack pointer to a Double-Word boundary, and the compiler must size all stack

frames to an integral number of Double-Words.)

“Stack Frame Layouts for Three Calls” on Page 18 shows typical stack frames for three functions. The

argument overflow area (see “Overflow Arguments on the Stack” on Page 19) for outgoing arguments must

be located at the bottom (low address end) of the frame, with the first overflow argument at zero offset from the

stack pointer.

The caller is responsible for allocating the overflow area on the stack. The caller must also reserve stack space

for return variables that do not fit in the first two result registers (e.g. structure returns). This return buffer area is

typically located with the local variables. This space is typically allocated only in functions that make calls returning

structures, and is not required otherwise.

Local variables that do not fit into the local registers are allocated space in the Local Variable area of the stack. If

there are no such variables, this area is not required.

Beyond these basic requirements the conventions used for stack frame layout are at the discretion of the compiler

implementation. For example, an implementation may choose to sort local data items by size, placing byte

variables together at the bottom of the frame, followed by all Half-Word variables, etc. This enables all alignment

constraints to be met with a total of at most seven bytes of padding in the frame. It also optimizes the frame layout

for TriCore’s addressing model, which allows only 10-bit offsets for addressing of byte and Half-Word variables,

but supports 16-bit offsets for Word variables (Note: This addressing restriction does not apply to TriCore V1.6

and subsequent versions of the TriCore architecture). However, it is not required that all compiler implementations

adopt this model. Frame layout is not a binary compatibility issue, because C does not present any reason for a

called function to be aware of its caller’s frame layout.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 18 v2.9, 2014-06

Figure 2-1 Stack Frame Layouts for Three Calls

2.2.2.2 Frame Addressing

As with the frame layout conventions, the conventions by which applications code addresses local data items

within frames are the responsibility of the compiler, and are not dictated by this document.

If an implementation does not support dynamic allocation of variably-sized local data objects on the stack, then

the offset to any local data object from the stack pointer will be static. In that case the most natural and efficient

convention is to address locals through base + offset addressing, with the stack pointer as base. However, this is

a recommendation, not a requirement.

For implementations that support the Gnu C _alloca() intrinsic, or other extensions that allow local allocation of

objects whose size is determined at run time, it is not always feasible to use the stack pointer as a base for

addressing local data items. A separate frame pointer will sometimes be needed.

Note: It is the responsibility of the calling function to manage its own frame pointer.

The called function is not required to have any knowledge of the caller’s frame pointer conventions, or to co-

operate in management of the frame pointer. If the caller uses an upper context address register as its frame

pointer, then no action is needed to insure that the frame pointer is preserved across the call. If a lower context

register is used (For example A[3], which is otherwise used only for the high-order part of a 64-bit circular buffer

pointer return value), then the caller must save and restore the frame pointer value.

2.2.3 Argument Passing

This section describes the default argument passing conventions. It is mandatory for conforming tools.

The following conventions require correct use of function prototypes throughout the source code. Where a

prototype is not provided the compiler must infer it from the actual parameters.

The conventions described here assume the use of the TriCore call / return mechanism, which automatically saves

registers D[8] through D[15] and A[10] through A[15] as a side effect of the CALL instruction, and restores them

as a side effect of the RET instruction. The registers saved automatically include the stack pointer A[10], so a

called function requires no epilog to restore the caller's stack pointer value prior to returning.

Local Variables Frame 1

Argument Overflow Area,

(high address)

Local Variables Frame 2

Argument Overflow Area,
Function 3 Arguments

Local Variables Frame 3

Argument Overflow Area

(low address)

(first argument passed on stack)

Stack Pointer (SP) at
entry (CALL) to Function 3

Function 2 Arguments

(Stack growing direction)

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 19 v2.9, 2014-06

The TriCore uses eight registers (D[4] through D[7], and A[4] through A[7]) to pass up to four non-pointer

arguments and up to four pointer arguments from the caller to the called routine.

Arguments beyond those that can be passed in registers are passed on the stack, at the bottom (low address end)

of the caller's stack frame. On entry to a called routine, the first of such arguments is at offset zero from the stack

pointer; subsequent arguments are at higher offsets.

2.2.3.1 Non-Pointer Arguments

Up to four 32-bit non-pointer arguments are passed in registers D[4] through D[7], with no more than one argument

assigned per register. Integral arguments whose natural size in memory is less than 32-bits (characters and short

integers) are expanded to 32-bits for purposes of argument passing.

Argument registers are generally allocated to arguments in numeric order, left to right, according to argument type.

D[4] would be allocated to the first non-pointer argument.

Small arguments that are passed on the stack are placed in the overflow area with the same orientation they would

have if passed in a register; a char is passed in the low-order byte of its overflow Word. Such small overflow

arguments need not be sign-extended or zero-extended as required within the argument Word, as they would be

if passed in a register.

2.2.3.2 64-bit Arguments

Up to two 64-bit arguments are passed in the register pairs D[4]/D[5] (extended register E[4]) and D[6]/D[7]

(extended register E[6]). 64-bit arguments must not be split when there are too few argument registers to hold the

entire argument. Arguments larger than 64-bits must always be passed on the stack.

Because they occupy even-odd register pairs, the presence of 64-bit arguments can alter the strict left-to-right

allocation order of arguments to D-registers. If the order of non-pointer arguments is, for example, WORD1,

DOUBLE1, WORD2, then the allocations will be D[4],D[6]/D[7] (E[6]), and D[5].

2.2.3.3 Pointer Arguments

Up to four pointer arguments are passed in registers A[4] through A[7]. Pointer arguments include the base

address for arrays passed as arguments and for structure arguments whose size is greater than 64-bits, and other

similar objects, such as C++ references.

Argument registers are generally allocated to arguments in numeric order, left to right, according to argument type.

A[4] would be allocated to the first pointer argument.

2.2.3.4 64-bit Pointer Arguments (Circular Buffer Pointers)

Up to two 64-bit pointer arguments are passed in the register pairs A[4]/A[5] and A[6]/A[7]. 64-bit arguments must

not be split when there are too few argument registers to hold the entire argument.

Because they occupy even-odd register pairs, the presence of 64-bit pointer arguments can alter the strict left-to-

right allocation order of arguments to address registers, in the same way described for non-pointer arguments.

2.2.3.5 Overflow Arguments on the Stack

There is a region of stack space, at the bottom of the caller’s stack frame and the top of the callee's stack frame,

that serves as an overflow area for those arguments of the call that do not fit into registers (see “Stack Frame

Layouts for Three Calls” on Page 18).

The first overflow argument is mapped to the lowest Word (or Double-Word), and subsequent arguments are

mapped to successive Words or Double-Words. No gaps are needed for alignment of Double-Word arguments,

as the architecture allows Double-Word access on Word boundaries.

If no arguments are passed on the stack, the overflow area is empty (size of zero).

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 20 v2.9, 2014-06

2.2.3.6 Structure Arguments

Structures and unions whose size is less than or equal to 64-bits are passed in a Data register, or Data register

pair, regardless of the types of their individual fields. This holds even if the structure or union contains only

addresses. Structures and unions are never split between one or more registers and the stack.

Structures and unions whose size is greater than 64-bits are passed via pointer. The pointer will point directly to

the structure or union being passed. The caller does not need to make a copy of the structure. The callee is entirely

responsible for copying the structure if necessary.

2.2.4 Variable Arguments

ANSI C requires that when calling a varargs function, a prototype must be provided. By convention, non-ANSI

(legacy) C code compliant with the TriCore EABI must also provide prototypes for all varargs functions called. The

caller therefore knows the number and types of the fixed arguments, and which arguments are variable.

The fixed arguments are passed using the same register conventions as a regular call. All variable arguments are

passed on the stack. Variable arguments on the stack begin immediately after the location of the last fixed

argument on the stack, or at SP offset zero if no fixed arguments are passed on the stack.

2.2.5 Return Values

2.2.5.1 Scalar Return Values

32-bit return values, other than pointers, are returned in D[2]. This includes all types whose size in memory is less

than 32-bits; they are expanded to 32-bits through zero-extension or sign-extension, according to the type.

64-bit scalar return values are returned in E[2] (register pair D[2]/D[3]).

2.2.5.2 Pointer Return Values

32-bit pointer return values are returned in A[2].

64-bit pointer return values such as circular buffer pointers are returned in the register pair A[2]/A[3].

2.2.5.3 Structure Return Values

Structure return values smaller than 32-bits are returned in D[2] regardless of their field types. Return values up

to 64-bits are returned in the register pair D[2]/D[3] (E[2]) regardless of their field types. This holds true even if all

fields are addresses.

Functions returning structures or unions larger than 64-bits have an implicit first parameter, which is the address

of the caller-allocated storage area for the return value. This first parameter is passed in A[4]. The normal pointer

arguments then start in register A[5] instead of in A[4].

The caller must provide for a buffer of sufficient size. The buffer is typically allocated on the stack to provide re-

entrancy and to avoid any race conditions where a static buffer may be overwritten.

If a function result is the right-hand side of a structure assignment, the address passed may be that of the left-hand

side, provided that it is not a global object that the called function might access. The called function does not buffer

its writes to the return structure. (i.e. it does not write to a local temporary and perform a copy to the return structure

just prior to returning).

The caller must provide this buffer for large structures even when the caller does not use the return value (for

example, the function was called to achieve a side-effect). The called routine can therefore assume that the buffer

pointer is valid and need not check the pointer value passed in A[4].

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 21 v2.9, 2014-06

2.3 Alternative Function Calling Conventions (Stack-Model)

In order to support legacy code lacking some function prototypes, complying compilers must support an alternative

calling model passing all parameters on the stack. The Register Model is the default calling model (see “Standard

Function Calling Conventions (The Register Model)” on Page 16).

2.3.1 Stack Model Directive

Compilers must provide a source code directive which triggers the use of the stack model. When the directive is

associated with a function definition, the function must be compiled in the stack model. When the directive is

associated with a function declaration all calls to that function must be translated to the stack model (See also

“Runtime Model Checking” on Page 23 for error detection).

The stack model directive must be applicable to function pointers and function pointer typedefs.

2.3.2 Register Assignments

The register assignments are as described in “Register Assignments” on Page 16.

2.3.3 Stack Frame Layout

The stack frame layout is the same as described in “Stack Frame Management” on Page 17. However, the

“argument overflow” area at the top of the frame will generally be larger, to accommodate the larger number of

arguments passed on the stack (See below).

2.3.4 Argument Passing

All arguments occupying up to 64-bits are passed on the stack at the bottom (low address end) of the caller's stack

frame. On entry to a called routine, the first of such arguments is at the lowest Word or Double-Word (offset zero

from the stack pointer). Subsequent arguments occupy successive higher Words or Double-Words. No gaps are

needed for alignment of Double-Word arguments, as the architecture allows Double-Word access on Word

boundaries.

2.3.4.1 Structure Arguments

Structures and unions larger than 64-bits are always passed via pointer. The copying rules as described in

“Structure Arguments” on Page 20, hold true.

2.3.4.2 Return Values

Return values of up to 32-bits are returned in register D[2]. Return values of up to 64-bits are returned in the

register pair D[2]/D[3] (E[2]).

Functions returning structures or unions larger than 64-bits have an implicit parameter, which is the address of the

caller-allocated storage area for the return value. This address is passed to the callee in register A[4].

The remaining rules are as described in “Structure Return Values” on Page 20.

2.4 Support for Mixed Models

Lack of prototypes and the use of different models on the calling and called side may result in some hard-to-find

bugs. In order to give the best support possible, complying compilers and linkers must implement the following two

mechanisms:

• “Link Time Argument and Return Type Checking” on Page 22.

• “Runtime Model Checking” on Page 23.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 22 v2.9, 2014-06

2.4.1 Link Time Argument and Return Type Checking

For direct function calls, and for assignment of function addresses to prototyped function pointers, the linker can

do the type checking. Compilers must support type checking by emitting extra symbol information as described

below.

2.4.1.1 Link Time Type Information

For every direct function call in a source file, and for every assignment of a function address to a function pointer

having a specific prototype, the compiler produces an ELF symbol of the following convention, in the resulting ELF

relocatable file:

__caller.<name>.<model>.<return_type>.<parameter_types>

For every function definition, a symbol of the following convention is required:

__callee.<name>.<model>.<return_type>.<parameter_types>

The symbol value shall be the same as the value of the original symbol for the function being described. In order

to avoid type conflicts, compilers must not create a caller symbol for the main function.

The definitions for the above symbol name fields are described in Table 2-11:

Note: The possible values for <basetype> are listed in Table 2-12.

Table 2-11 Symbol Name Definitions for Link Time Type Checking

Segment Value Description

<name> Denotes the name of the function.

<model> DA | S DA = Data/Addres Register Model

S = Stack Model

<return_type> <basetype> Denotes the return type of the function.

<parameter_types> <basetype>

[<basetype>,...]

Denotes the parameter types of the

function.

Table 2-12 Basic Type Definitions

Value Description

i Scalar type of size <= 32-bits (for example; char, short, int).

l Scalar type of size 64-bits (for example; long long).

p Pointer type of size 32-bits (for example; void *, int *, struct foo *, struct foo **).

p2 Pointer type of size 64-bits (circular buffer pointer).

f Single precision float type.

d Double precision float type.

s<num> Struct type passed in <num> = 0, 1, 2 registers or stack Words (num = 0 <==> struct is passed

by reference).

v Void type.

e Start of an ellipsis.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 23 v2.9, 2014-06

2.4.1.2 Type Checking in the Linker

Linkers are required to perform type checking on the basis of the special symbols emitted by compilers.

It is an error if:

• Both the caller and the callee symbols exist but their model descriptions do not match.

• Both the caller and the callee symbols exist and specify the D/A-model, but the type descriptions do not match

exactly. There is one exception to this rule: the caller return type ‘v’ matches any callee return type.

The linker may produce a warning if:

• Both the caller and the callee symbols exist and specify the stack model, but the type descriptions do not match

exactly.

• A caller symbol exists without a corresponding callee symbol.

Linkers should never eliminate the special symbols in an incremental linkage step. If a linker/locator eliminates the

special symbols during final linkage, it must provide a switch to turn this behaviour off. This enables other tools to

exploit the information, such as incremental loaders.

2.4.2 Runtime Model Checking

As noted in “Stack Model Directive” on Page 21, the directive that specifies use of the stack model for argument

passing must be applicable to function pointers and function pointer typedefs, as well as named functions.

When a function is called indirectly through a prototyped function pointer whose value is not the result of a cast

operation, a match of the argument model and argument types is guaranteed through the same link time checking

mechanism that guarantees matches for direct function calls. However, if the pointer has no prototype, or if its

value resulted directly or indirectly from a pointer cast operation, a match cannot be guaranteed.

In order to enable software to determine at runtime, the argument model associated with a function pointer, the

following technique is mandated:

• when the address of a function is taken, and the function is one that employs the stack model for argument

passing, then the address value returned shall be offset by one byte from the value of the actual symbol for

the function.

Since all functions are aligned on at least a Half-Word boundary, offsetting the address by one byte will result in

an odd address value (bit 0 = ‘1’). The TriCore architecture ignores bit 0 for indirect calls and jumps, but the bit

can be tested by software. If, at a given point in a program where an indirect call is made, the user expects (but

can not guarantee) that a particular argument passing model will always be called for, an ASSERT macro testing

the low order bit of the pointer value can be inserted ahead of the call, to detect errors at runtime. Alternatively, if

it is legitimate for functions of either model to be called at that point, an ’if…else’ test on the bit can be used to

select the appropriate calling method. The call would be duplicated in the ’if’ and ’else’ parts, with the function

pointer cast, to a stack model pointer in one instance and and to a D/A model pointer in the other instance. An

implementation might choose to define a standard macro, named along the lines of

“CHECKED_INDIRECT_CALL”, to make this type of calling more convenient for users. However that is not an

EABI issue.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 24 v2.9, 2014-06

2.5 Memory Models

This section describes the Data Memory Model and the Code Memory Model

2.5.1 Data Memory Model

Small Data

• Compilers and linkers/locators must support a small data section.

• The small data section occupies a memory segment of up to 64 KBytes.

• Ensure that the startup code loads the A[0] register with a pointer into the small data section.

• The entire small data section must be addressable with a 16-bit offset relative to A[0].

• A[0] must never be reloaded after program startup.

• The small data section is supported with appropriate relocation information (see “Relocation Values” on

Page 34).

Absolute Data

• Compilers may create, and linkers/locators must support, absolute data sections.

• An absolute data section may contain up to 16 KBytes of data which can be addressed with 18-bit absolute

addressing and must therefore be located within the first 16 KBytes of a 256 MBytes memory segment.

• Compilers that create absolute data sections must provide a means to suppress the generation of such data.

• Libraries may not contain absolute data.

Literal Data

• Compilers may employ, and linkers/locators must support, a literal data section.

• The literal data section occupies a memory region of up to 64 KBytes.

• It is a read-only data section containing address literals and other program constants.

• Ensure that the startup code loads the A[1] register with a pointer into the literal data section.

• A[1] must never be reloaded after program startup.

• The entire literal data section must be addressable with a 16-bit offset relative to A[1].

Use of the literal data section is a recommendation, not a requirement. Compilers may place literals in other read-

only data sections, or even the text section, as long as they generate correct code to access the literals.

However, linkers and locators for conforming implementations are required to support linking of library modules

compiled for use of the literal data section, whether or not their associated compilers make use of the section. The

specific support requirements are detailed in “Relocation Values” on Page 34.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 25 v2.9, 2014-06

2.5.2 Code Memory Model

The TriCore architecture provides three alternative addressing modes for calls and unconditional jumps: PC

relative, absolute, and register indirect. PC relative addressing provides a 24-bit, Half-Word, scaled relative offset,

supporting a target address span of +/-16 MBytes around the calling point. This is almost always sufficient for calls

to functions located within the same memory segment, but is not sufficient for calls across physical memory

segments. Absolute addressing provides a two-component absolute address, with four bits of target segment ID

and twenty bits of Half-Word scaled offset within that segment. It can therefore reach targets within any memory

segment, but only within the first two MBytes of each segment.

Register indirect addressing provides a full 32-bit target address, held in a register specified in the instruction. Any

target address is reachable with this mode, and its use presents no special complications for binary compatibility.

However the instructions required to load the register with the target address represent added overhead that is

seldom necessary, in practice.

In order to allow compilers to generate efficient calls to external functions whose final segment and offset are

unknown at compile time, a special relocation mode is defined. The model for its operation is as follows:

1. The compiler issues a CALL, J, or JL, to the external symbol. These instructions imply PC relative addressing.

2. If the branch address resolves to a location within the +/-16 MBytes span of the CALL, J, or JL instruction, the

locator resolves it normally.

3. Otherwise, if the branch address lies within the first 2 MBytes of the segment to which it is mapped, the locator

changes the opcode bits that specify the addressing mode of the instruction, changing the mode to absolute,

and resolves the branch address using that mode.

4. If neither of the above two conditions holds, the action taken by the locator is implementation dependent.

The recommended action in the final case, is for the locator to redirect the CALL, J, or JL instruction to a labelled

location within the first 2 MBytes of the segment containing an indirection (trampoline) to the actual target address;

i.e. a jump table entry. At the location within the first 2 MBytes of the segment, the locator will place either a 32-bit

PC-relative jump to the actual target address, or a 10-byte sequence to load register A[12] with the actual target

address, and jump to it with register indirect addressing. The choice of jump table entry formats will depend on the

offset from the jump table entry to the jump target address. If it is less than 16 MBytes, a 32-bit PC-relative jump

can be used. Otherwise the 10-byte register-indirect sequence must be used.

The following procedure can be used to build the jump table:

• Build a dictionary of function entry symbols located in the segment, with values defined as offsets from the end

of the jump table that will be located at the start of the segment. The dictionary should be ordered by offset

value.

• Build the actual jump table, working from last entry to first. The offset to a symbol is its dictionary offset, plus

the running size of jump table entries built up to the point of the current entry referencing that symbol. If that

offset is greater than 16 MBytes, use an indirect jump sequence. Otherwise, use a PC-relative jump.

• Halt when the offset becomes less than 2 MBytes. Any entry symbol whose offset is less than 2 MBytes is

directly reachable via absolute addressing, and does not require a jump table entry.

The designated use of A[12] for indirect jump sequences is transparent to compiled code using the standard calling

mechanism. The sequence follows a CALL that has already saved the caller’s A[12] value before the sequence is

executed; the contents of A[12] (and all other upper context registers other than A[10](SP) and A[11](RA)), are

architecturally undefined after a CALL, and the registers can not be used to pass arguments to a called function.

However if assembly language programmers call external functions using the JL mechanism, they need to be

aware of the possibility that A[12] will be modified.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Low Level Binary Interfaces

User Manual 26 v2.9, 2014-06

2.5.3 MultiCore Address Map

AURIX and future TriCore based products support local (core specific) and global addresses for core associated

memory.

Tools must support:

1. A mode in which all symbols are accessed (and located) only using global addresses.

2. The explicit designation of routines and data as being accessed using core local addresses or global

addresses, via an attribute which overrides the current addressing mode.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

High-level Language Issues

User Manual 27 v2.9, 2014-06

3 High-level Language Issues

3.1 C Name Mapping

Externally visible names in the C language must be mapped through to assembly without any change.

For example:

void testfunc() { return;}

This generates assembly code similar to the following fragment:

testfunc:

 RET

Additionally, the symbols described in “Link Time Argument and Return Type Checking” on Page 22, are

created.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 28 v2.9, 2014-06

4 Object File Formats

TriCore™ tools use ELF 2.0 (or higher) object file formats. ELF provides a suitable basis for representing the

information needed for embedded applications.

This section describes particular fields in the ELF format that differ from the base standards for those formats.

4.1 Header Conventions

4.1.1 E_MACHINE

The e_machine member of the ELF header contains the decimal value 44 (hexadecimal 2CH) which is defined as

the name EM_TRICORE.

4.1.2 E_IDENT

The TriCore-specific contents of the e_ident fields are specified in the following table:

Table 4-1 e_ident Field Values

Field Value Description

e_ident[EI_CLASS] ELFCLASS32 Identifies 32 bit architecture. Mandatory for all 32-bit

implementations.

e_ident[EI_DATA] ELFDATA2LSB Identifies 2’s complement, little-endian data encoding.

Mandatory for all implementations.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 29 v2.9, 2014-06

4.1.3 E_FLAGS

The e_flags field of the ELF header record is used to identify one or more specific core derivatives of the TriCore

architecture for which generated code is present in the object file. It also identifies the Peripheral Control Processor

(PCP), when the object file includes output from the PCP assembler.

The following e_flags values are defined for identifying the presence of code for the different architecture

derivatives of the core and the PCP:

Note: If object files with different e_flags fields are combined together, the e_flags field in the resulting file must be

set to the value corresponding to the highest version present in the input files. For example, if object files for

TriCore V1.2 and for TriCore V1.3 are linked together into an executable file then the version number for the

output file must be set to TriCore V1.3

Table 4-2 e_flags Identifying TriCore/PCP Derivatives

Name Value Description

Reserved 8000 0000H Reserved

EF_TRICORE_V1_2 4000 0000H
• TriCore V1.2

EF_TRICORE_V1_3 2000 0000H
• TriCore V1.3 adds an MMU and related instructions to the

TriCore V1.2 architecture.

• TriCore V1.3 is upward compatible with TriCore V1.2.

EF_TRICORE_V1_3_1 0080 0000H
• TriCore V1.3.1 adds an expanded instruction set.

• TriCore V1.3.1 is upwards compatible with TriCore V1.3.

EF_TRICORE_V1_6 0040 0000H
• TriCore V1.6 is upward compatible with TriCore V1.3.1.

EF_TRICORE_V1_6_1 0020 0000H
• TriCore V1.6P and V1.6E as implemented in the AURIX

product family.

• TriCore V1.6.1 is upward compatible with TriCore V1.6.

Note: Versions of the EABI document prior to V2.9 referred to the

name EF_TRICORE_V1_6_PE. Since V2.9 of the

document, this has been renamed to

EF_TRICORE_V1_6_1.

EF_TRICORE_V1_6_2 0010 0000H
• TriCore V1.6.2 is upward compatible with TriCore V1.6.1.

EF_TRICORE_PCP 0100 0000H
• The original PCP.

EF_TRICORE_PCP2 0200 0000H
• A superset of the original PCP.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 30 v2.9, 2014-06

4.2 Section Layout

4.2.1 Section Alignment

The object generator (compiler or assembler) provides alignment information for the linker. The default alignment

is 2 Bytes. Object producers must ensure that generated objects specify required alignment.

When a tool merges sections, it must apply the strictest alignment attribute of any of its components to the resulting

section.

4.2.2 Section Attributes

Table 4-3 defines section attributes that are available for TriCore tools. These attributes are additions to the ELF

standard flags shown in Table 4-4.

The SHF_TRICORE_NOREAD attribute allows the specification of code that is executable but not readable. Plain

ELF assumes that all segments have read attributes, which is why there is no read permission attribute in the ELF

attribute list. In embedded applications, “execute-only” sections that allow hiding the implementation are often

desirable.

The SHF_TRICORE_ABS attribute allows the specification of absolute sections. Absolute sections cannot

themselves be relocated, although they can contain references to external symbols that may be relocatable.

Please refer to the ELF specification for a description of the standard section attributes.

Table 4-3 TriCore Section Attribute Flags

Name Value

SHF_TRICORE_ABS 400H

SHF_TRICORE_NOREAD 800H

Table 4-4 ELF Section Attributes

Name Value

SHF_WRITE 0000 0001H

SHF_ALLOC 0000 0002H

SHF_EXECINSTR 0000 0004H

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 31 v2.9, 2014-06

4.2.3 Special Sections

Various sections hold program and control information. The sections listed in Table 4-5 have special meaning

which must be supported by TriCore linker and locator.

The section names pre-defined by ELF are shown in Table 4-6. Please refer to the ELF specification for a

description of each section.

Table 4-5 TriCore Special Section Names

Name Type Attributes Description

.ldata SHT_PROGBITS SHF_ALLOC Read-only address constants and other

literal data.

.sbss SHT_NOBITS SHF_ALLOC+SHF_WRITE Uninitialized data which goes into the

small data section. The section must be

initialized with zeros at startup.

.sdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE Initialized data which goes into the

small data section.

.zbss SHT_NOBITS SHF_ALLOC+SHF_WRITE Uninitialized data which goes into a

memory region reachable with absolute

data addressing. The section must be

initialized with zeros at program startup.

.zdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE Initialized data which goes into a

memory region reachable with absolute

data addressing. The size of each

absolute data section is limited to 16

KBytes.

Table 4-6 ELF Reserved Section Names

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC+SHF_WRITE

.bss_a0 SHT_NOBITS SHF_ALLOC+SHF_WRITE

.bss_a1 SHT_NOBITS SHF_ALLOC+SHF_WRITE

.bss_a8 SHT_NOBITS SHF_ALLOC+SHF_WRITE

.bss_a9 SHT_NOBITS SHF_ALLOC+SHF_WRITE

.comment SHT_PROGBITS none

.data SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.data_a0 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.data_a1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.data_a8 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.data_a9 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.debug SHT_PROGBITS none

.dynamic SHT_DYNAMIC --

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 32 v2.9, 2014-06

Note: It is recommended that read-only constants, such as string literals, be placed into a read-only data section

instead of the .text section. For processor configurations with separate on-chip code and data memories,

there are several cycles of added overhead to access a data item from the .text section. For configurations

with unified code and data memories, there is no penalty for access to data items in the .text section, but

neither is there any advantage.

4.3 Symbol Table Format

The small data section and the literal data section are supported by two special symbols:

extern Elf32_Addr _SMALL_DATA_[];

extern Elf32_Addr _LITERAL_DATA_[];

These symbols are used to load the registers A[0] and A[1] respectively, in the startup code. Data items in the

small data section are relocated relative to the contents of A[0], while those in the literal data section are relocated

relative to A[1]. Locators must resolve these symbols to locations that lie within no more than 32 KBytes above

the start of their respective sections, and no more than 32 KBytes below the ends. A value equal to the start of the

section plus 8000H is guaranteed to meet these constraints, so long as the sections themselves are within their

maximum allowed sizes of 64 KBytes each.

.fini SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.interp SHT_PROGBITS --

.line SHT_PROGBITS none

.note SHT_NOTE none

.pcpdata SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.pcptext SHT_ PROGBITS SHF_ALLOC+SHF_EXECINSTR

.rel* SHT_REL --

.rela* SHT_RELA --

.rodata SHT_PROGBITS SHF_ALLOC

.rodata_a0 SHT_PROGBITS SHF_ALLOC

.rodata_a1 SHT_PROGBITS SHF_ALLOC

.rodata_a8 SHT_PROGBITS SHF_ALLOC

.rodata_a9 SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.srodata SHT_PROGBITS SHF_ALLOC

.strtab SHT_STRTAB --

.symtab SHT_SYMTAB --

.text SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.zrodata SHT_PROGBITS SHF_ALLOC

Table 4-6 ELF Reserved Section Names (cont’d)

Name Type Attributes

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 33 v2.9, 2014-06

4.4 Relocation Information Format

4.4.1 Relocatable Fields

Table 4-7 describes the TriCore relocatable field types. The names of the field types in capital letters are taken

from the corresponding instruction formats. However, more than one instruction format may correspond to a field

type.

Note: In the following table; RV = Relocation Value. IW = Instruction Word.

Table 4-7 Relocation Types

Type Description

word32 A 32-bit field occupying four bytes. This address is NOT required to be 4-byte aligned.

word16 A 16-bit field occupying two bytes.

relB A 32-bit instruction word, where:

• bits 1-16 of the RV go into bits 16-31 of the IW.

• bits 17-24 of the RV go into bits 8-15 of the IW.

• the RV must be in the range [-16777216,16777214].

bit 0 of the RV must be zero.

absB A 32-bit instruction word, where:

• bits 1-16 of the RV go into bits 16-31 of the IW.

• bits 17-20 of the RV go into bits 8-11 of the IW.

• bits 0 and 21 to 27 of the RV must be zero.

• bits 28-31 of the RV go into bits 12-15 of the IW.

BO A 32-bit instruction word where:

• bits 0-5 of the RV go into bits 16-21 of the IW.

• bits 6-9 of the RV go into bits 28-31 of the IW.

• bits 10-31 of the RV must be zero.

BOL A 32-bit instruction word, where:

• bits 0-5 of the RV go into bits 16-21 of the IW.

• bits 6-9 of the RV go into bits 28-31 of the IW.

• bits 10-15 of the RV go into bits 22-27 of the IW.

• bits 16-31 of the RV must be zero.

BR A 32-bit instruction word, where:

• bits 1-15 of the RV go into bits 16-30 of the IW.

• bits 16-31 of the RV must be zero.

RLC A 32-bit instruction word, where:

• bits 0-15 of the RV go into bits 12-27 of the IW.

• bits 16-31 of the RV must be zero.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 34 v2.9, 2014-06

4.4.2 Relocation Values

This section describes values and algorithms used for relocations. In particular it describes values the

compiler/assembler must leave in place and how the linker modifies those values.

All TriCore relocations are .rela relocations. The target bits of a relocation operation should be zero. They will be

overwritten regardless of their contents.

Table 4-8 shows the semantics of relocation operations. In the following table:

• Key S indicates the final value assigned to the symbol referenced in the relocation record.

• Key A is the addend value specified in the relocation record.

• Key P indicates the address of the relocation (for example, the address being modified).

• Key A[0] is the content of the small data base register A[0].

ABS A 32-bit instruction word, where:

• bits 0-5 of the RV go into bits 16-21 of the IW.

• bits 6-9 of the RV go into bits 28-31 of the IW.

• bits 10-13 of the RV go into bits 22-25 of the IW.

• bits 14-27 of the RV must be zero.

• bits 28-31 of the RV go into bits 12-15 of the IW.

SBR A 32-bit instruction word, where:

• bits 0-3 of the RV go into bits 8-11 of the IW.

• bits 4-32 of the RV must be zero.

pcpPage A 16-bit instruction word, where:

• bits 8-15 of the RV go into bits 8-15 of the IW.

• bits 0-7 and 16-31 of the RV must be zero.

PI A 16-bit instruction word, where:

• bits 0-5 of the RV go into bits 0-5 of the IW.

• bits 6-15 of the RV must be zero.

Table 4-8 Relocation Type Encodings

Name Value Field Calculation

R_TRICORE_NONE 0 none none

R_TRICORE_32REL 1 word32 S + A - P

R_TRICORE_32ABS 2 word32 S + A

R_TRICORE_24REL 3 relB S + A - P

R_TRICORE_24ABS 4 absB S + A

R_TRICORE_16SM 5 BOL S + A - A[0]

R_TRICORE_HI 6 RLC S + A + 8000H >> 16

R_TRICORE_LO 7 RLC S + A & FFFFH

R_TRICORE_LO2 8 BOL S + A & FFFFH

R_TRICORE_18ABS 9 ABS S + A

R_TRICORE_10SM 10 BO S + A - A[0]

Table 4-7 Relocation Types (cont’d)

Type Description

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 35 v2.9, 2014-06

4.4.3 Extension for Small Data Area Optimization

In any of the following relocation types the linker may substitute the indicated base address register (A0, A1, A8,

A9) with a different address register:

• R_TRICORE_16SM

• R_TRICORE_10SM

• R_TRICORE_10LI

• R_TRICORE_16LI

• R_TRICORE_10A8

• R_TRICORE_16A8

• R_TRICORE_10A9

• R_TRICORE_16A9

This extension may be employed by the linker to optimize the allocation of base registers and maximize the use

of relative addressing modes.

If this extension is implemented, it must be possible to disable it (for example by a command line option).

R_TRICORE_15REL 11 BR S + A - P

R_TRICORE_10LI 12 BO S + A - A[1]

R_TRICORE_16LI 13 BOL S + A - A[1]

R_TRICORE_10A8 14 BO S + A - A[8]

R_TRICORE_16A8 15 BOL S + A - A[8]

R_TRICORE_10A9 16 BO S + A - A[9]

R_TRICORE_16A9 17 BOL S + A - A[9]

R_TRICORE_PCPHI 25 word16 S + A >> 16

R_TRICORE_PCPLO 26 word16 S + A & FFFFH

R_TRICORE_PCPPAGE 27 pcpPage S + A & FF00H

R_TRICORE_PCPOFF 28 PI (S + A >> 2) & 3FH

R_TRICORE_PCPTEXT 29 word16 (S + A >> 1) & FFFFH

Table 4-8 Relocation Type Encodings (cont’d)

Name Value Field Calculation

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Object File Formats

User Manual 36 v2.9, 2014-06

4.5 Debugging Information Format

TriCore tools must support DWARF 2.0 (or higher) debugging information formats.

4.5.1 DWARF Register Numbers

DWARF represents register names efficiently as small integers. These numbers are used in the OP_REG and

OP_BASEREG atoms to locate values. The mapping of DWARF register numbers to the Tricore register set is

shown in Table 4-9.

Table 4-9 DWARF Register Mapping for TriCore

Atom Register Atom Register Atom Register Atom Register

0 D[0] 16 A[0] 32 E[0] 48 BIV

1 D[1] 17 A[1] 33 E[2] 49 BTV

2 D[2] 18 A[2] 34 E[4]

3 D[3] 19 A[3] 35 E[6]

4 D[4] 20 A[4] 36 E[8]

5 D[5] 21 A[5] 37 E[10]

6 D[6] 22 A[6] 38 E[12]

7 D[7] 23 A[7] 39 E[14]

8 D[8] 24 A[8] 40 PSW

9 D[9] 25 A[9] 41 PCXI

10 D[10] 26 A[10] 42 PC

11 D[11] 27 A[11] 43 FCX

12 D[12] 28 A[12] 44 LCX

13 D[13] 29 A[13] 45 ISP

14 D[14] 30 A[14] 46 ICR

15 D[15] 31 A[15] 47 PIPN

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Extensions for Shared Object Support

User Manual 37 v2.9, 2014-06

5 Extensions for Shared Object Support

Please contact your Infineon Sales Office to request a description of the optional extensions to the EABI for shared

object support.

Embedded Applications Binary Interface (EABI)
V1.3x and V1.6x TriCore™ Architectures

Keyword Index

User Manual 38 v2.9, 2014-06

A
Address 10

Alignment 12

Argument Passing 18

B
Bit String 10

Boolean 10

Byte Order 11

C
Calling Convention 18

Character 10

Control Register 9

D
Data Type 10

DSP 10

E
Epilog 18

Exception 16

F
Floating Point 10

Fraction 10

G
General Purpose Register 9, 16

I
IEEE-754-1985 10

Integer 10

Interrupt 16

L
libraries 7

Lifetime 17

Little-Endian 11, 13

Local Variable 17

Lower Context 16

P
PCXI 16

Previous Context Information 16

Processor Status Word 16

Program Counter 16

PSW 16

R
Register 9

Register Assignment 16

S
Short Integer 10

Single-Precision 10

Stack Frame 17

Stack Pointer 17, 18

Standard 7

Structure 12

System Call 16

System Global Register 16

U
Union 12

Upper Context 16, 17

Keyword Index

Published by Infineon Technologies AG

w w w . i n f i n e o n . c o m

http://www.infineon.com

	1 Introduction
	1.1 Scope
	1.2 Purpose
	1.3 Overview
	1.3.1 Low-Level Run-Time Binary Interface Standards
	1.3.2 Object File Binary Interface Standards
	1.3.3 Naming Conventions

	1.4 Associated Documentation

	2 Low Level Binary Interfaces
	2.1 Underlying Processor Primitives
	2.1.1 Registers
	2.1.2 Fundamental Data Types
	2.1.3 Special Data Types
	2.1.3.1 Circular Buffer Pointers

	2.1.4 Compound Data Types
	2.1.4.1 Arrays
	2.1.4.2 Unions and Structures
	2.1.4.3 Bit Fields

	2.1.5 Non-standard Alignment Options
	2.1.5.1 Discrete Word and Double Word Variables
	2.1.5.2 Packed Unions and Structures

	2.2 Standard Function Calling Conventions (The Register Model)
	2.2.1 Register Assignments
	2.2.1.1 Upper Context
	2.2.1.2 Lower Context
	2.2.1.3 Implicit Operands
	2.2.1.4 System Global Address Registers
	2.2.1.5 Cross-Call Lifetimes

	2.2.2 Stack Frame Management
	2.2.2.1 Frame Layout
	2.2.2.2 Frame Addressing

	2.2.3 Argument Passing
	2.2.3.1 Non-Pointer Arguments
	2.2.3.2 64-bit Arguments
	2.2.3.3 Pointer Arguments
	2.2.3.4 64-bit Pointer Arguments (Circular Buffer Pointers)
	2.2.3.5 Overflow Arguments on the Stack
	2.2.3.6 Structure Arguments

	2.2.4 Variable Arguments
	2.2.5 Return Values
	2.2.5.1 Scalar Return Values
	2.2.5.2 Pointer Return Values
	2.2.5.3 Structure Return Values

	2.3 Alternative Function Calling Conventions (Stack-Model)
	2.3.1 Stack Model Directive
	2.3.2 Register Assignments
	2.3.3 Stack Frame Layout
	2.3.4 Argument Passing
	2.3.4.1 Structure Arguments
	2.3.4.2 Return Values

	2.4 Support for Mixed Models
	2.4.1 Link Time Argument and Return Type Checking
	2.4.1.1 Link Time Type Information
	2.4.1.2 Type Checking in the Linker

	2.4.2 Runtime Model Checking

	2.5 Memory Models
	2.5.1 Data Memory Model
	2.5.2 Code Memory Model
	2.5.3 MultiCore Address Map

	3 High-level Language Issues
	3.1 C Name Mapping

	4 Object File Formats
	4.1 Header Conventions
	4.1.1 E_MACHINE
	4.1.2 E_IDENT
	4.1.3 E_FLAGS

	4.2 Section Layout
	4.2.1 Section Alignment
	4.2.2 Section Attributes
	4.2.3 Special Sections

	4.3 Symbol Table Format
	4.4 Relocation Information Format
	4.4.1 Relocatable Fields
	4.4.2 Relocation Values
	4.4.3 Extension for Small Data Area Optimization

	4.5 Debugging Information Format
	4.5.1 DWARF Register Numbers

	5 Extensions for Shared Object Support

