

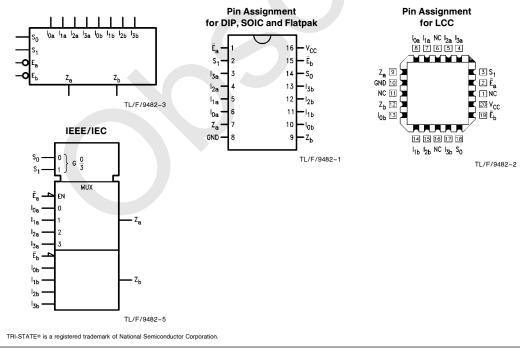
54F/74F153 Dual 4-Input Multiplexer

General Description

The 'F153 is a high-speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the 'F153 can generate any two functions of three variables.

Features

■ Guaranteed 4000V minimum ESD protection


Commercial	Military	Package Number	Package Description	
74F153PC		N16E	16-Lead (0.300" Wide) Molded Dual-In-Line	
	54F153DM (Note 2)	J16A	16-Lead Ceramic Dual-In-Line	
74F153SC (Note 1)		M16A	16-Lead (0.150" Wide) Molded Small Outline, JEDEC	
74F153SJ (Note 1)		M16D	16-Lead (0.300" Wide) Molded Small Outline, EIAJ	
	54F153FM (Note 2)	W16A	16-Lead Cerpack	
	54F153LM (Note 2)	E20A	20-Lead Ceramic Leadless Chip Carrier, Type C	

Note 1: Devices also available in 13" reel. Use suffix = SCX and SJX.

Note 2: Military grade device with environmental and burn-in processing. Use suffix = DMQB, FMQB and LMQB.

Logic Symbols

Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9482

RRD-B30M75/Printed in U. S. A.

December 1994

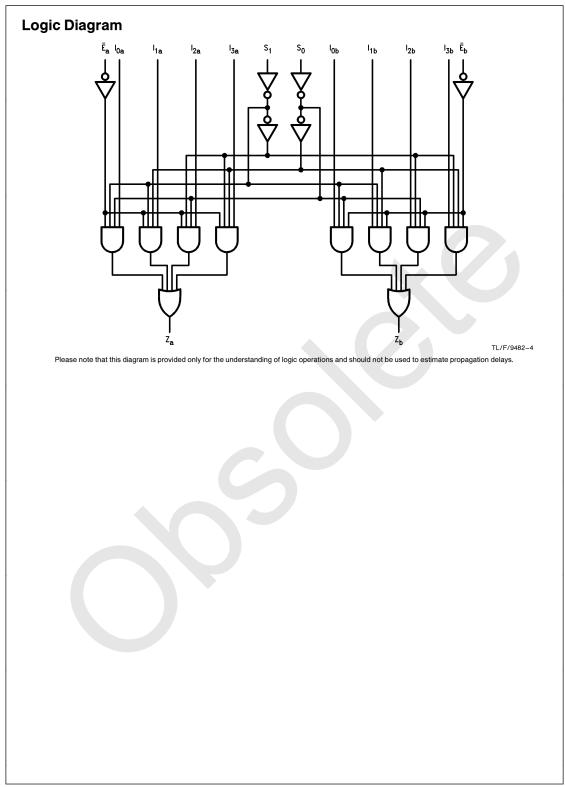
Unit Loading/Fan Out

		54F/74F			
Pin Names	Description	U.L. HIGH/LOW	Input I _{IH} /I _{IL} Output I _{OH} /I _{OL}		
$I_{0a} - I_{3a}$	Side A Data Inputs	1.0/1.0	20 µA/−0.6 mA		
I _{0b} -I _{3b}	Side B Data Inputs	1.0/1.0	$20 \mu\text{A}/-0.6 \text{mA}$		
S ₀ , S ₁	Common Select Inputs	1.0/1.0	20 µA/−0.6 mA		
Ēa	Side A Enable Input (Active LOW)	1.0/1.0	20 µA/−0.6 mA		
Ē _a Ē _b	Side B Enable Input (Active LOW)	1.0/1.0	20 µA/ - 0.6 mA		
Za	Side A Output	50/33.3	-1 mA/20 mA		
Zb	Side B Output	50/33.3	-1 mA/20 mA		

Functional Description

The 'F153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (S₀, S₁). The two 4-input multiplexer circuits have individual active LOW Enables (\overline{E}_a , \overline{E}_b) which Enables (\overline{E}_a , \overline{E}_b) are the UPL to the the component of the component of the component of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are as follows:

$$\begin{split} \mathsf{Z}_a &= \overline{\mathsf{E}}_a \bullet (\mathsf{I}_{0a} \bullet \overline{\mathsf{S}}_1 \bullet \overline{\mathsf{S}}_0 + \mathsf{I}_{1a} \bullet \overline{\mathsf{S}}_1 \bullet \mathsf{S}_0 + \mathsf{I}_{2a} \bullet \mathsf{S}_1 \bullet \overline{\mathsf{S}}_0 + \mathsf{I}_{3a} \bullet \mathsf{S}_1 \bullet \mathsf{S}_0) \end{split}$$


$$Z_{b} = E_{b} \bullet (I_{0b} \bullet S_{1} \bullet S_{0} + I_{1b} \bullet S_{1} \bullet S_{0} + I_{2b} \bullet S_{1} \bullet \overline{S}_{0} + I_{3b} \bullet S_{1} \bullet S_{0})$$

The 'F153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The 'F153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Truth Table

Select Inputs			Output				
S ₀	S 1	Ē	I ₀	l ₁	I ₂	l ₃	z
Х	Х	н	х	х	х	х	L
L	L	L	L	Х	Х	Х	L
L	L	L	н	Х	X	Х	Н
н	L	L	Х	L	x	X	L
н	L	L	Х	н	X	X	н
L	н	L	Х	Х	L	Х	L
L	н	L	Х	X	Н	X	Н
н	н	L	Х	Х	X	L	L
Н	Н	L	Х	X	Х	н	Н

X = Immaterial

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

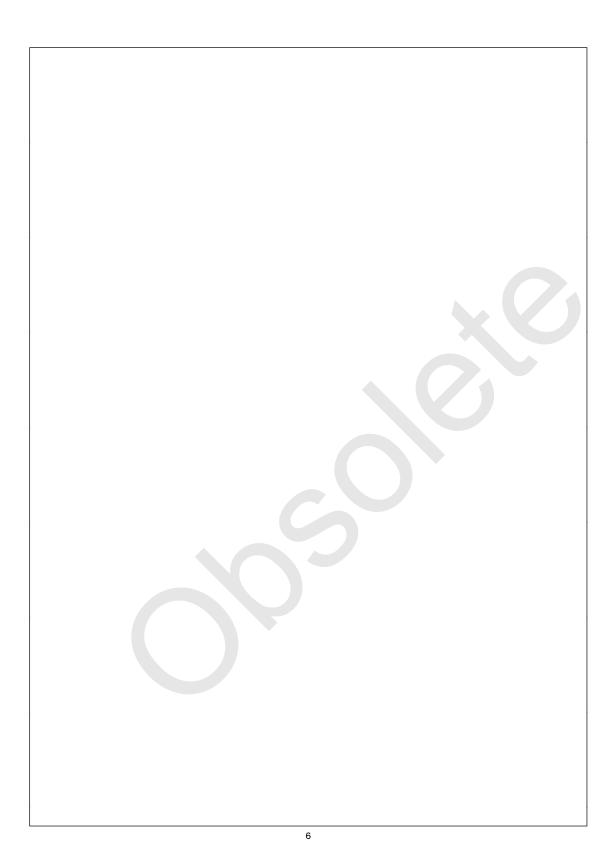
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +175°C
Plastic	-55°C to +150°C
V _{CC} Pin Potential to	
Ground Pin	-0.5V to $+7.0V$
Input Voltage (Note 2)	-0.5V to $+7.0V$
Input Current (Note 2)	-30 mA to $+5.0$ mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
TRI-STATE® Output	-0.5V to +5.5V
Current Applied to Output	
in LOW/ State (Max)	twice the rated $loc(mA)$

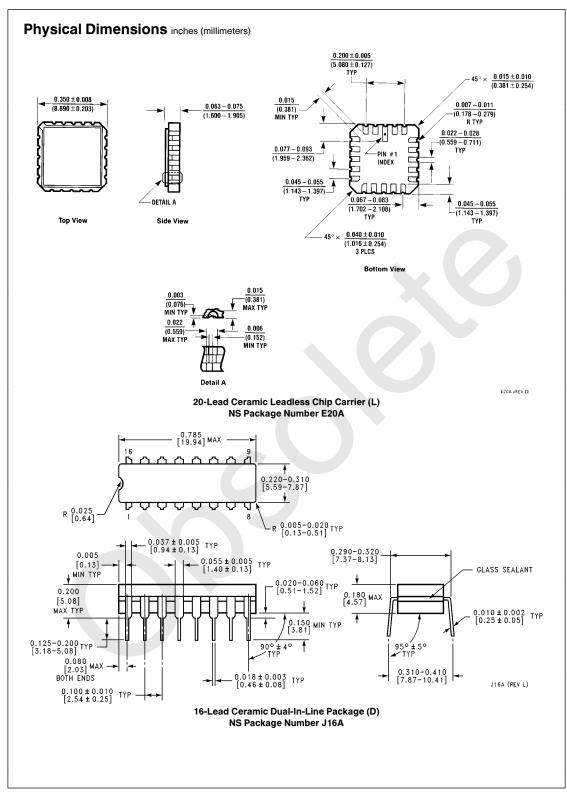
Recommended Operating Conditions

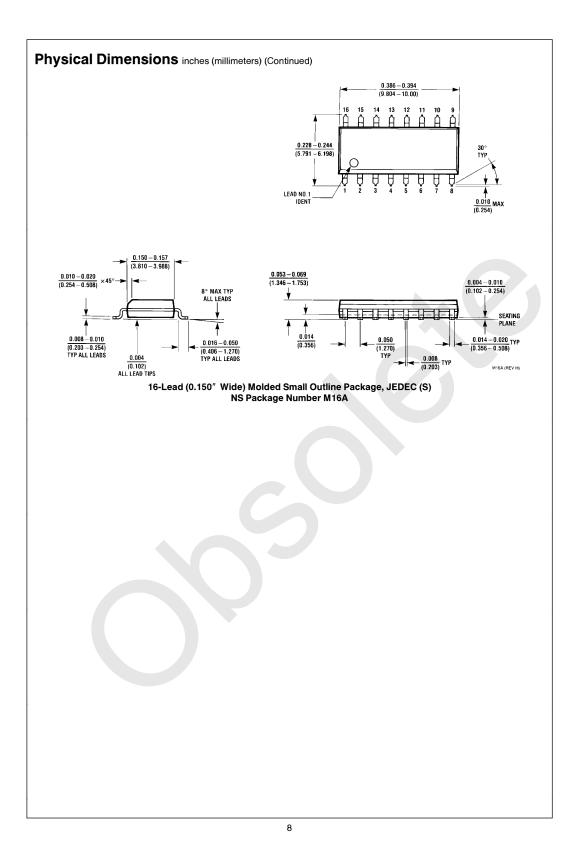
Free Air Ambient Temperature

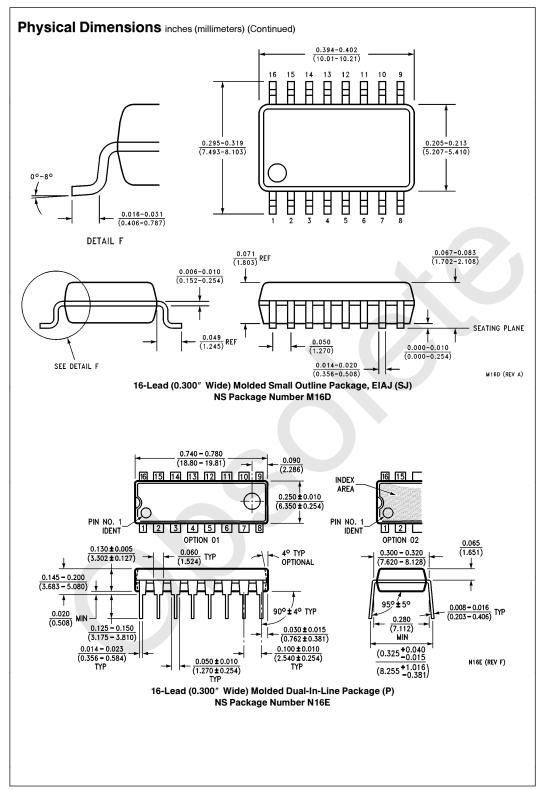
-55°C to +125°C
0°C to +70°C
+4.5V to +5.5V
+4.5V to +5.5V

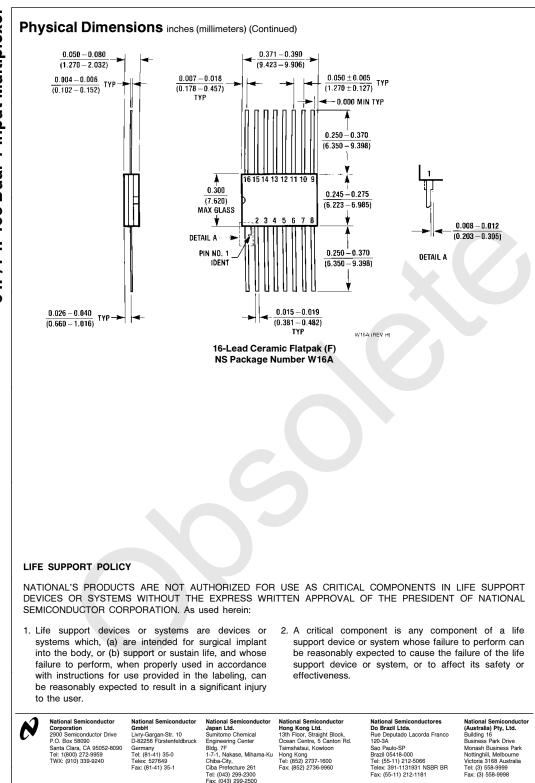
in LOW State (Max) twice the rated I_{OL} (mA) **Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under


these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics


Symbol	Parameter		54F/74F			Units	Vcc	Conditions
			Min	Тур	Max	Units	VCC	Conditions
VIH	Input HIGH Voltage	2.0			V		Recognized as a HIGH Sigr	
VIL	Input LOW Voltage			0.8	V		Recognized as a LOW Sign	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	54F 10% V _{CC} 74F 10% V _{CC} 74F 5% V _{CC}	2.5 2.5 2.7			v	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	54F 10% V _{CC} 74F 10% V _{CC}			0.5 0.5	V	Min	$I_{OL} = 20 \text{ mA}$ $I_{OL} = 20 \text{ mA}$
IIH	Input HIGH Current	54F 74F			20.0 5.0	μΑ	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test	54F 74F			100 7.0	μΑ	Max	$V_{IN} = 7.0V$
ICEX	Output High Leakage Current	54F 74F			250 50	μΑ	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	74F	4.75			V	0.0	$I_{ID} = 1.9 \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current	74F			3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
l _{OS}	Output Short-Circuit C	Current	-60		-150	mA	Max	$V_{OUT} = 0V$
ICCL	Power Supply Current	t		12	20	mA	Max	$V_{O} = LOW$


Symbol	Parameter	$74F \\ T_A = +25^{\circ}C \\ V_{CC} = +5.0V \\ C_L = 50 \text{ pF}$			54F T _A , V _{CC} = Mil C _L = 50 pF		$74F$ $T_{A}, V_{CC} = Com$ $C_{L} = 50 \text{ pF}$		Units
PLH	Propagation Delay	4.5	8.1	10.5	4.5	14.0	4.5	12.0	ns
PHL	S _n to Z _n	3.5	7.0	9.0	3.5	11.0	3.5	10.5	
PLH	Propagation Delay	4.5	7.1	9.0	4.5	11.5	4.5	10.5	ns
PHL	\overline{E}_n to Z_n	3.0	5.7	7.0	2.5	9.0	2.5	8.0	
PLH PHL	Propagation Delay I _n to Z _n	3.0 2.5	5.3 5.1	7.0 6.5	2.5 2.5	9.0 8.0	3.0 2.5	8.0 7.5	ns
7	nperature Range Family 4F = Commercial 64F = Military		<u>74F</u>	<u>153 S</u>		ecial Variatio QB = Milita enviro			
	vice Type ———					proce	essing		
						X = Devic	es shipped	in 13" reel	
Pac	ckage Code					mperature Ra		1 7000)	
	D = Ceramic DIP F = Flatpak					C= Comme M= Military		,	
	L = Leadless Chip Car	rier (LCC)							
	S = Small Outline SOI	CJEDEC							
	SJ = Small Outline SOI	CEIAJ							

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.