ARMKEIL

Microcontroller Tools

Getting started with MDK

Create applications with pVision

®

for ARM® Cortex®-M microcontrollers

K3 wvision &= o %
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
1S5 d @ B 20| = |EErEmn o Vae|Qle o @B A
& (& #H @ | ¥ sTM32r7a6 Flash VK AR e
Project L |] HiTP serveret] Abstractixt v X%
=% Project: HTTP Server 108 MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE: ~
= &5 STM32FT46 Flash X 110
B & Source 11 MPU BASE Lad
00 HTTP Sererc v cons W
__] HTTP_Server_ CGl.c Tid MPU_CTRL_ENABLE Mslk
MPU CTRL_ENABLE Pos
L1 web.e 115 || MPU CTRL HENMIENA Msk vlf
3 Web files el S =
& Documentation 1 Manage Run-Time Environment X
L] Abstract.bdt
€ Board Support Software Component Sel. Variant Version Description
& cmsis # € Board Support STM32F746G-Discovery |v|1.00 | STMicroelectronics STM32F746G-Discovery Kit =
@ CMsIs Driver @ ¢ Cmsis) Cortex Mi ller Software Interface C
Device ® @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver
=€ Network ® € Compiler ARM Compiler Software Extensions
T Net_cM3 Liib (€O | & @ Device Startup, System Setup
1 Net_Config.c (COR | 5 g File System MDK-Pro 650 | File Access on various storage devices
L3 Net_Config ETHO | & @ Graphics MDK-Pro 5300 | Userinterface on graphical LCD displays
L] Net Config HTTP_ | & & Graphics Display Display Interface including configuration for emWIN
11 NetConfig TCPh | 5 @ Network MDK-Pro 650 IP Networking using Ethemet or Serial protocols
L1 Net_Config UDP.h ¢ CORE [¥| Release +|650 Networking Core for Cortex-M (Release)
© € Interface Connection Mechanism
@ @ Service Network Services =2
© @ Socket Network protocol
® ¥ use MDK-Pro 650 USB Communicstion with various device closses =l
Validation Qutput Description
= A& Keil MDK-Pro::Network:CORE Additional software components required i‘
5 require CMSISRTOS Select component from st
@ ARM:CMSIS:RTOS:Keil RTX CMSIS-RTOS RTX implementation for Cortex-M, SC000, and SC300 5]
| Resolve | SelectPacks Detais [] come Al
{1} Functions | (1 Tem < >
ST-Link Debugger L1190 C6

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2017 ARM Germany GmbH
All rights reserved.

ARM®, Keil®, uVision®, Cortex®, TrustZone®, CoreSight™ and ULINK™ are
trademarks or registered trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft” and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC" is a registered trademark of International Business Machines Corporation.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the ARM" Cortex™-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started with MDK: Create Applications with pVision

Preface

Thank you for using the ARM Keil® MDK Microcontroller Development Kit. To
provide you with the best software tools for developing ARM Cortex-M
processor based embedded applications we design our tools to make software
engineering easy and productive. ARM also offers complementary products such
as the ULINK™ debug and trace adapters and a range of evaluation boards.
MDK is expandable with various third party tools, starter kits, and debug
adapters.

Chapter overview

The book starts with the installation of MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Tools, the software
packs, and describes the product installation along with the use of example
projects.

CMSIS is a software framework for embedded applications that run on Cortex-M
based microcontrollers. It provides consistent software interfaces and hardware
abstraction layers that simplify software reuse.

Software Components enable retargeting of I/O functions for various standard
I/O channels and add board support for a wide range of evaluation boards.

Create Applications guides you towards creating and modifying projects using
CMSIS and device-related software components. A hands-on tutorial shows the
main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real
hardware and explains how to connect to development boards using a wide range
of debug adapters.

Middleware gives further details on the middleware that is available for users of
the MDK-Professional and MDK-Plus editions.

Using Middleware explains how to create applications that use the middleware
available with MDK-Professional and MDK-Plus and contains essential tips and
tricks to get you started quickly.

Preface

Contents
Preface..inniinieiniicninnncnnecnnennneisnenneesseessesssessesssessssssssssssesssses 3
MDK INtrodUCTION ..ceeeeiicrissnnrecssssnsnccssssssecsssssssesssssssssssssssssssssssssssssssssssssns 7
IMDK TOOIS .. .ieteiiieeiieeie et ettt et eieeteesteeseeessresnseasseesseesseesssesssesnsesnseenseens 7
SOFEWATE PACKS ...ttt 8
MDK EdItIONS.eeutieiieeiie ettt ettt et ettt ettt st enaee 8
L FAT] 72111 2) PSPPSR 9
Software and hardware requIremMentsccveeververienieerieereereesee e ene e 9
INStall MDK-COTC....cvviiiiiiiieiieiieciecre ettt ettt e eveeve e veestaesevesaveeareereens 9
Install Software Packs........c.cccvevierieriiriieiiciecstee e 10
MDK-Professional Trial LIiCENSe.........c.cecuverrieriienienienieeieeieeiee e see e 11
Verify Installation using Example Projectsccccoevvveviiviievienienieciecnnn, 12
Use SOftware Packscecviiviieiieiiccic et 16
AcCesS DOCUMENLALIONcuveeieeieeieeiiieeiieeie ettt sttt eee e e e steesreesenesnneenns 20
REQUEST ASSISTANCEveeveeeiieeiieeiieieeieesite ettt et eieesteeseeesaaesabesnbeenbeeseessnesnnes 20
Learning Platformi..........c.ccciiiiiiiiiieieiccece et er e 21
QUICK Start GUIAES.cceeruiiiiiiiieiteie ettt ettt ettt eeteeeeeseeseens 21
CMISTS corriiiiinnnnnicssssnnsscsssssssess 22
CMSIS-CORE ...ttt sttt et 23
USINg CMSIS-COREcooiiiieieeeeeee et 23
CMSIS-RTOS2 ...ttt ettt ettt ettt eeeeneenaeeees 26
SOFtWAIE CONCEPLSvveerereieiieiiieiieriiereestesreeteebe e e eseesseeseneenseenseenseesaens 26
USING Kl RTXSeiiiiiiiieiieteeeeee ettt s 27
Component Viewer for RTX RTOSccccoovvviiiviiiiiiiccece e, 36
CIMSIS-DISP....ceeeee ettt ettt ettt et et et et esbe et e ee st e nees 37
CIMSIS-DIIVET ..ieuvieiieiieciieeie ettt et et et esaesteebesteesseesseesseesssesssesnseenseensaens 39
CONTIGUIALIONveiiieitieciie ettt ettt e e eb e et e et e e steestaesaaesaseesbeesseessaesseenas 40
Validation Suites for Drivers and RTOSc.cooveviiiiiniiiiiceeeeee e 41
Software COMPONENLSeeieeerrrreccsssnrecssssssnesssssssesssssssssssssssssssssssssssssssass 42
Compiler:Event RECOTAETc.occviiiiieiieiieiie et 42
(0703001071 3 53 11 O TSP UUTUUSUUSRSR 43
BOArd SUPPOTT.....cciviiiiiiiiecie ettt st st eabe b e eebeebe e ba e eaenenas 45
Create APPLICAtIONS....ccceeieiveriisserinsseressssncsssrcsssncssssncssssncssssssssssssssssesnns 46
Blinky with Keil RTXSoooiiiiieieeeeee et 46
Blinky with Infinite Loop Design........ccccevciirciiriiieiieriierie e 54
Device Startup Variations..........ceeceereereeriierieereeseeseeseesnessessessseesseessessseessnes 56
Example: STM32CUDEccooviiiiieiieeieecte ettt eeve e 56
Secure/non-secure ProgramiiNgc..ccveerreerreereesreerseerseessesseessesssesseessesssenns 61

Create ARMVE-M SOftWare Projects.......cccecveeveereereereesieesieeereeseeeneeesenenenes 61

Getting Started with MDK: Create Applications with pVision

Debug APPLICALIONS ...cceeierineiiisissnericsssnrecssssnsnsssssssssssssssssssssssssssssssssssssans 62
Debugger CONNECLIONceeevieieeiieieesiesie et et et esteeseesaesaessreesseeseesseessnesnnes 62
USING the DEDUGEETveiiiiieiiieeiee ettt ettt e e evaesereeenes 63
DebUZ TOOIDATccuviceiieiiieiieieeciee ettt ettt r e v re e stee e areeaveens 64
Command WINAOWc..coeerieiirieiiriee ettt 65
Disassembly WindOWcccvevieriinieiieeireieecereee et 65
COMPONENE VIEWET ...c.vveviieeiieerietieieesiresireeereesveesseesseestaessnessseessesseessessssessns 66
Event RECOTARTouieiiiiiiee e 67
BreaKpOointScecuieriiiieieeie ettt ettt ettt ennesareenne 69
Watch WINAOW ..o 70
Call Stack and Locals Window...........cccceeieiinirierineeee e 70
RegIStEr WINAOWeeeiiieiieiieiierieeeee ettt et seae e 71
MEMOTY WINAOW.....coouiiiiieiiiiieriieniee e ete ettt seesseeseesseesseesnnesnneenns 71
Peripheral REGISIEISccviiiiiiiiiiieciie ettt e 72
TTTACE . eteeee ettt ettt e e et e e e ettt e e e ettaeeeettaeeeentaeeeentaeeessraaeeenraaaeanns 73
Trace with Serial Wire OUIPUL......cc.coceevieririiininieriereeeeeeeeeee e 74
TTace EXCEPLIONS .uvviiiiiiiiciiicii ettt ettt et stae e eav e esbeesbeeaaesenenenas 76
LOZIC ANALYZET ...ecvviiiiiciiecie ettt ettt st s e b e et eaenenas 77
Debug (Printf) VIEWETccceeriiiiiiieiieeie ettt 78
EVENt COUNTETS. ...coiuiitiiiiiiiieeie ettt st 79
Trace With 4-Pin OULPULccovieriieiieieciecteee e 80
Trace with On-Chip Trace Buffer...........ccocveiiiiiiniiniiiceeeeee, 80
M AIEWATE c.cuueeeeneeiiinrenssneissneessnnesssneessssncssssesssssessssssssssssssssssssssssssssnsces 81
NetWork COMPONENL.........cccvieiieriieriieiteeteete et etesee e seeeeeseeseesseesseessaessnessseenns 83
File System COMPONENL.........c.ccovieirieriierieiieereereesteesteesteestaeereereereesseessnessnesenas 85
USB COMPONENL....utiiiiiieiiiieiiieeieeesieeeteeesiteesreeeteeessseessseeessseessseessesessseesssesensns 86
Graphics COMPONECNLcceereriiiieieeieerieseestesreereeteeseesseessaessresssessseeseesseesseens 87
JOT CONNECHVILY ...uveeiieiieeiieeieeieeieesitestesresteereereesseesteessaesnsesnbesnseenseeseessnennnes 88
Migrating to Middleware VErsion 7cccveeevieeiieiiieeeniie e esieesreeeeveesvee e 89
FTP Server EXample........ccccveiiiiiiiieiiecececeeeee ettt 90
USING MIAAIEWATE «.cuuueriiersvuniicsissnerecsssnnsecssans 92
USB Device HID EXample........cccveviiiiieiiieiieieieniecieeieeieesiee e 94
Add Software COMPONENLS........cccvereerieeirreieeienrenreereereeseesseesseesnesseenns 95
Configure MiddIEWAre..........covievuieiiieiiiiiecie et e ia e 97
CONTIGUIE DITVETS ...eoveieiieeiieiieiteiteete sttt s esbe e eseessnesnnes 99
Implement Application Features............ccceecvevviriieciienienienieeee e 100
Build and Download...........cocoeiiiieieiieieeeee e 103
Verify and DebUZcc.oovviiiiiiiiiieeececee et 103

Preface

NOTE
This user’s guide describes how to create projects for ARM Cortex-M

microcontrollers using the uVision IDE/Debugger.

Refer to the Getting Started with DS-MDK user’s guide for information how to
create applications with the Eclipse-based DS-5 IDE/Debugger for
ARM Cortex-A/Cortex-M devices.

Getting Started with MDK: Create Applications with pVision

MDK Introduction

MDK helps you to create embedded applications for ARM Cortex-M processor-
based devices. MDK is a powerful, yet easy to learn and use development system.
It consists of MDK-Core and software packs, which can be downloaded and
installed based on the requirements of your application.

MDK-Core ARM C/C++ Compiler DS-MDK
%]
8 uVision IDE ARM Compiler 5 DS-5 IDE
; with Pack Management with Qualification Kit with Pack Management
[a]
b pVision Debugger ARM Compiler 6 DS-5 Debugger
with Streaming Trace LLVM Technology with Streamline
Device CMSIS Middleware
2
:ﬁ CMSIS-Core IPv4 Network IPvé Networl mbedTLS
B 55L/TLS Encryption
% Device HAL CMSIS-DSP USE Device m
%’ mbed Client
w CMSIS Drivers CMSIS-RTOS Flle System Graphics loT Connector

MDK Tools

The MDK Tools include all the components that you need to create, build, and
debug an embedded application for ARM based microcontroller devices.
MDK-Core consists of the genuine Keil pVision IDE and debugger with leading
support for Cortex-M processor-based microcontroller devices including the new
ARMVSE-M architecture. DS-MDK contains the Eclipse-based DS-5 IDE and
debugger and offers multi-processor support for devices based on 32-bit
Cortex-A processors or hybrid systems with 32-bit Cortex-A and Cortex-M
processors.

MDK includes two ARM C/C++ Compilers with assembler, linker, and highly
optimize run-time libraries tailored for optimum code size and performance:

* ARM Compiler version 5 is the reference C/C++ compiler available with a
TUV certified qualification kit for safety applications, as well as long-term
support and maintenance.

* ARM Compiler version 6 is based on the innovative LLVM technology and
supports the latest C language standards including C++11 and C++14. It
offers the smallest size and highest performance for Cortex-M targets.

MDK Introduction

Software Packs

Software packs contain device support, CMSIS libraries, middleware, board
support, code templates, and example projects. They may be added any time to
MDK-Core or DS-MDK, making new device support and middleware updates
independent from the toolchain. The IDE manages the provided software
components that are available for the application as building blocks.

MDK Editions

The product selector, available at www.keil.com/editions, gives an overview of
the features enabled in each edition:

= MDK-Lite is code size restricted to 32 KByte and intended for product
evaluation, small projects, and the educational market.

= MDK-Essential supports Cortex-M processor-based microcontrollers up to
Cortex-M7 and non-secure programming of Cortex-M23 and M33 targets.

= MDK-Plus adds middleware libraries for [Pv4 networking, USB Device, File
System, and Graphics. It supports ARM Cortex-M, selected ARM Cortex-R,
ARM?7, and ARM9 processor based microcontrollers. It also includes
DS-MDK for programming heterogeneous devices.

= MDXK-Professional contains all features of MDK-Plus. In addition, it
supports IPv4/IPv6 dual-stack networking, IoT connectivity, and a USB Host
stack. It also offers secure and non-secure programming of Cortex-M23 and
M33 targets as well as multicore debugging of heterogeneous devices
including the Linux kernel and Streamline performance analysis.

License Types

With the exception of MDK-Lite, all MDK editions require activation using a
license code. The following licenses types are available:

Single-user license (node-locked) grants the right to use the product by one
developer on two computers at the same time.

Floating-user license or FlexNet license grants the right to use the product on
several computers by a number of developers at the same time.

For further details, refer to the Licensing User’s Guide
at www.keil.com/support/man/docs/license.

http://www.keil.com/
http://www.keil.com/support/man/docs/license

Getting Started with MDK: Create Applications with pVision

Installation

Software and hardware requirements

MDK has the following minimum hardware and software requirements:

= A PC running a current Microsoft Windows desktop operating system
(32-bit or 64-bit)

= 4 GB RAM and 8 GB hard-disk space

= 1280 x 800 or higher screen resolution; a mouse or other pointing device

Install MDK-Core

Download MDK from www.keil.com/download - Product Downloads and run
the installer.

Follow the instructions to install MDK-Core on your local computer. The
installation also adds the software packs for ARM CMSIS and MDK
Middleware.

MDK version 5 is capable of using MDK version 4 projects after installation of
the legacy support from www.keil.com/mdkS/legacy. This adds support for
ARM7, ARMY, and Cortex-R processor-based devices.

After the MDK-Core installation is complete, the Pack Installer starts
automatically, which allows you to add supplementary software packs. As a
minimum, you need to install a software pack that supports your target
microcontroller device.

http://www.keil.com/download
http://www.keil.com/mdk5/legacy

10 MDK Introduction

Install Software Packs

The Pack Installer manages software packs on the local computer.

@) The Pack Installer runs automatically during the installation, but also can
be run from pVision using the menu item Project — Manage — Pack
Installer. To get access to devices and example projects, install the software
pack related to your target device or evaluation board.

NOTE
To obtain information of published software packs the Pack Installer connects
to www.keil.com/pack.

@81 Pack Installer - C:\Keil vS\ARMIPACK - o x
File Packs Window Help
%Y | Device: ARM - ARMCM23
(4] 7 powe i v |[4] 7 Packs | Examples | |
Search: - X Pack Action Description
v [Summary =/ Device Specific 0Packs ARMCM23 selected -
=7 All Devices 3755Devices ||| F-Generic 16 Packs
G- @ ABOVSemiconductor 10 Devices £ ARMECMSIS @ Uptodate | CMSIS (Cortex Micracontroller Software Interface Standard)
5@ AmbiqMicro T 1-5.0.1-dev3 (8 Remove | CMSIS (Cortex Micracontroller Software Interface Standard)
- ® Analog Devices 20 Devices 500 R016-11-17) |8 Remove | CMSIS (Cortex Micracontroller Softwar Interface Standard)
5@ ARM 35 Devices | & Previous ARM:CMSIS - Previous Pack Versions
©4 ARM Cortex MO 2 Devices 41 ARMECMSIS-Driver Validation | & Install CMSIS-Driver Validation
5% ARM Cortex MO plus 3 Devies 1 ARMECMSIS-RTOS Validation | & Install CMSIS-RTOS Validation
298 ARM Cortex M3 2 Devices - ARM:mbedClient Install ___| ARM mbed Client for Cortex-M devices
542 ARM Cortex M4 T Devices | ? ARM:mbedTLS & tnstal ARM mbed Cryptographic snd SSLATLS library for Cortex-M
248 ARM Cortex M7 6 Devices & | Install___| mbed 05 Scheduler for Cortex-M devices
£t ARM Cortex M23 2 Devices = [T ¢ Uotodste | Keil ARM Compiler extensions
8 ARMCM23 \RM Cort ; 1 Keik:Jansson & _lnstall | Jansson is a C library for encoding, decoding and maripulat
T — TR 51 Keil:MDK-Middleware Up to dete _| Keil MDK-ARM Professional Middleware for ARM Cortex-M
59 ARM Cortex M33 T &) hwiP:hwlP % lnstall___| wlP is 2 ight-weight implementation of the TCP/IP protoce |
5% ARM 5C000 TeviE) Micrium:RTOS < _Install _| Micrium software components
o % ARMSC200 1 Device i+ Onpe-Embedded:Middieware |5 lnstall ___| Middleware Package (CycloneTCP, CycloneSSL and Cyclont
5 ARME-M Baseline 2 Devices 1 RealTimeLogic:SharkSSL-Lite | Instal | SharkssL-Lite s a super small and super fast pre-compiled ¢
598 ARMyE-M Mainfine e & RealTimeLogic:SMQ | Install____| Simple Message Queues (SMQ) s an easy to use loT publist «
F @ Atmel 263 Devices gid | K1 { _'1—]
Qutput 2 x
Refresh Pack descriptions
Update available for Keil:LPC54000_DFP (installed: 2.1.0, awailable: 2.2.0)
Completed to read Pack descriptions I [ONLINE

The status bar, located at the bottom of the Pack Installer, shows information
about the Internet connection and the installation progress.

T1P: The device database at www.keil.com/dd2 lists all available devices and
provides download access to the related software packs. If the Pack
Installer cannot access www.keil.com/pack you can manually install
software packs using the menu command File — Import or by double-
clicking *.PACK files.

http://www.keil.com/pack
http://www.keil.com/dd2
http://www.keil.com/pack

Getting Started with MDK: Create Applications with pVision

MDK-Professional Trial License

MDK has a built-in free seven-day trial license for MDK-Professional. This
removes the code size limits and you can explore and test the comprehensive
middleware.

Start uVision with administration rights.

(& In pVision, go to File — License Management... and click Evaluate MDK
Professional

Single-User License l Foating License | Floating License Administrator | FexLM License]

Customer Information Computer 1D
MName: | =l
Company: | Get LIC via Intemet... |

Email: |

Product | License ID Code... | Support Period
MDK-Lite Evaluation Version

New License D Code (LIC). |

L Evaluate MDK Professional I Close Help

(> On the next screen, click Start MDK Professional Evaluation for 7 Days.
After the installation, the screen displays information about the expiration
date and time.

NOTE
Activation of the 7-day MDK Professional trial version enables the option Use
Flex Server in the tab FlexLM License as this license is based on FlexNet.

12 MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a software pack for your
device, you can verify your installation using one of the examples provided in the
software pack. To verify the software pack installation, we recommend using a
Blinky example, which typically flashes LEDs on a target board.

TIP: Review the getting started video on www.keil.com/mdkS/install that
explains how to connect and work with an evaluation kit.

Copy an Example Project

@) In the Pack Installer, select the tab Examples. Use filters in the toolbar to
narrow the list of examples.

Complzid esunaed atiara orLhe

Click Copy and enter the Destination Folder name of your working directory.

Copy Example X
Destination Folder
| C:\Projects ﬂ Browse... |
¥ Use Pack Folder Structure ¥ Launch pvision
OK | Cancel |

You must copy the example projects to a working directory of your choice.

Enable Launch pVision to open the example project directly in the IDE.

http://www.keil.com/mdk5

Getting Started with MDK: Create Applications with pVision

13

Enable Use Pack Folder Structure to copy example projects into a common
folder. This avoids overwriting files from other example projects. Disable Use
Pack Folder Structure to reduce the complexity of the example path.

Click OK to start the copy process.

Use an Example Application with pVision

Now pVision starts and loads the example project where you can:

Build the application, which compiles and links the related source files.

LOAD

¥2 Download the application, typically to on-chip Flash ROM of a device.

@ Run the application on the target hardware using a debugger.

The step-by-step instructions show you how to execute these tasks. After copying
the example, pVision starts and looks similar to the picture below.

B CoPrajects\ haTK Baards\ ST STMZFFT6A_Discavery Eaky Blinkyavprajs - (¥ision - o £
File Edil View Project Flash Debug Peiipherals Toolks
| @ Bl r|e=|m =l | B cocupdate Va® Qe o s el
2 # g | FE| smuerres Flash A RS
Froject | - x
7 Froject Blinky ! project is a simple CM3IS BTOS based exanple for ,.
i 5 STMIZFTES Flash ' microcontraller waing ST 'STHAZTIEAT-Diasovery' Fit.
[& Source Files Ttex tlar interf 3 [CM5ES w2, D).
% L] Blinky.c - unetionality:
] Thresd LEDc Settings:
1= k& Documentation d
J =
= 4 Board Sugport - LED 1a blinking
& BT Buttons_ 763 Drscovery.c (Butions) - blinking iz psused while holding down the USER button
+ 7 LD TEBI Discovery.c (LED}
g omsis
W Device The Blinky program ia availlable in different targeta:
STHI2T763 RAM: configured for on-chip SRAM -
Elprogect | @5cai: | {Frundicas | I, iempiates < >
Fuiilel isput e - |
51-Link Cebugger b1 G2

TIP: Most example projects contain an Abstract.txt file with essential
information about the operation and hardware configuration.

14 MDK Introduction

Build the Application

Build the application using the toolbar button Rebuild.

The Build Output window shows information about the build process. An error-
free build shows information about the program size.

Build Output R x |
##* Using Compiler 'V5.06 update 4 (build 422)', folder: 'C:\Keil v5\ARM\ARMCC\Bin'
Rebuild target 'STM32F76%9 Flash'

compiling Thread LED.c...

compiling LED 7631 DiSCOVELY.C...

compiling Blinky.c...

compiling Buttons_769I_ Discovery.c...

compiling RTX Conf CH.c...

compliling stm32f7xx_hal cortex.c...

compiling stm32f7xx hal.c...

compiling stm32f7xx hal gpio.c...

compliling stm32f7xx_hal pwr ex.cC...

compiling stm32f7xx hal pwr.c...

assembling startup Stm32L£763xx.s...

compliling stm32f7xx_hal rcc.c...

compiling system sStm32f7xx.c...

compliling stm32f7xx_hal rcocc ex.c...

linking...
Program Size: Code=10288 RO-data=696 RW-data=68 ZI-data=4756
™ .\Flash\Blinky.axf"™ - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:09

Download the Application

Connect the target hardware to your computer
using a debug adapter that typically connects
via USB. Several evaluation boards provide
an on-board debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are
pre-configured for evaluation kits; thus, you do not need to modify these settings.

#% Click Options for Target on the toolbar and select the Debug tab. Verify
that the correct debug adapter of the evaluation board you are using is
selected and enabled. For example, CMSIS-DAP Debugger is a debug
adapter that is part of several starter kits.

KA Options for Target 'STM32F746 Flash' x

Device] Target] Output] Listing] User] C."C-l—!-l Asm] Linker Litilities]
" Use Simulator with restrictions Settings + Use: - || Settings |

[Limit Speed to Real-Time

v Load Application at Startup v Run to main() [v Load Application at Startup [V Run to main()

Getting Started with MDK: Create Applications with pVision 15

(¥ Enable Load Application at Startup for loading the application into the
uVision debugger whenever a debugging session is started.

Enable Run to main() for executing the instructions up to the first
executable statement of the main() function. The instructions are executed
upon each reset.

T1P: Click the button Settings to verify communication settings and diagnose
problems with your target hardware. For further details, click the button
Help in the dialogs. If you have any problems, refer to the user guide of the
starter kit.

Liip
¥

3 Click Download on the toolbar to load the application to your target
hardware.

Build Output (%

Load "C:\\Workspaces\\MDX\\STM32\\MDE\\Boards\\ST\\STM32F746G_Discovery\\Blinky\\Flash\\Blinky.ax"
Erase Done.

Programming Done.

Verify OK.

Application running ...

Flash Load finished at 14:38:29

The Build Output window shows information about the download progress.

Run the Application
@} Click Start/Stop Debug Session on the toolbar to start debugging the
application on hardware.

Click Run on the debug toolbar to start executing the application. LEDs
should flash on the target hardware.

16 MDK Introduction

Use Software Packs

Software packs contain information about microcontroller devices and software
components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only
the options that are relevant for the selected device.

kA Start uVision and use the menu Project - New pVision Project. After you
have selected a project directory and specified the project name, select a
target device.

Select Device for Target ‘Target 1'.., *

Device]

]Soﬂware Packs _:J

Vendor: STMicroelectronics
Device: STM32F746BETx

Toolset: ARM
Search: |
Description:
=¥ STMicroelectronics _A_l The STM32F7 family incorporates high-speed embedded memories and
o %2 STM32FT Seri an extensive range of enhanced [/0s and perpherals connected to
b two APB buses, three AHB buses and a 32-bit mutti-AHB bus matrx.

=¥ STM32F745
- 64-Kbyte of CCM {core coupled memory) data RAM

B STM32FT46 - LCD parallel interface, 8080/6800 modes

=% STM32F746BE - Timer with quadrature {incremental) encoder input

amy 7 - 5 Violerant |/0s

B STMB32F746BE] - Parallel camera interface
=T STM3IZFTA6BG - True random number generator
- RTC: subsecond accuracy, hardware calendar
-1 STM32F746IE - 965t unique 1D
® T STM32FT461G
4 e

oK] Cangel] Help]

T1P: Only devices that are part of the installed software packs are shown. If you
are missing a device, use the Pack Installer to add the related software
pack. The search box helps you to narrow down the list of devices.

Getting Started with MDK: Create Applications with pVision

€ After selecting the device, the Manage Run-Time Environment window
shows the related software components for this device.

KA Manage Run-Time Environment S
Software Component Sel. Variant Version Description
= @ CMSIS Cortex Microcontroller Software Interface Components _:j
¥ CORE e [420 | CMSIS-CORE for Cortex-M._SC00D, and SC300
@ Dsp [[146 | CMSIS-DSP Library for Cortex-M, SCO0D, and SC300
i3} 0 RTOS (AP]) 10 | CMSIS-RTOS API for Cortex-M. SCO00, and SC300
= @ CMSIS Driver | | Unified Device Drivers compliant to CMSIS-Driver Specifications
[@ Ethernet (API) a0 Ethernet MAC and PHY Driver AP for Cortex-M
i 4 Ethemet MAC (API) |201 | Ethemet MAC Driver AP for Cortex M
@ Ethemet PHY (AP) [200 | Ethemet PHY Driver API for Cortex-M
4 Flash (P)) [200 | Flash Driver API for CortecM
- 12C (aPY |202 | 12C Driver API for Cortex-M
- 12C i 1.1 12C Driver for STM32F7 Series
- MCI (AP |202 | MCI Driver AP! for Cortex-M
€ NAND (AP) |201 | NAND Flash Driver API for Cortex-M
4 SAI(APN) [1.00 [SAl Driver API for CortecM
-4 SPI(AP)) |201 | SPI Driver API for Cortex-M
2} @ USART (&PI) 20 USART Driver AP| for Cortex-M
-4 USB Device (API) |201 | USB Device Driver AP| for Cortex-M i
] @ USE Host [API) 201 USB Host Driver APl for Cortex-M
R Compiler | | ARM Compiler Software Extensions
= @ Device | .Startug Systermn Setup
@ Startup i 1.0 System Startup for STMicroelectronics STM32FT Series
-4 STM32Cube Framework (API) | | STM32Cube Framework
S N VL] Can T L e S N Y S S S Y ¥ Y R VU El
Validation Qutput Description
=4 Keil:CMSIS Driver:12C Additional software components required e |
- require Device:STM32Cube HAL:DMA Select component from list
¥ Keil:Device:5TM32Cube HAL:DMA DMA controller (DMA) HAL driver
- require Device:5TM32Cube HAL: Commen Select component from list
@ Keil:Device:5STM32Cube HAL:Cornmen Common HAL driver
- require Device:5TM32Cube HALRCC Select component from list
- W Keil:Device:STM32Cube HALRCC Reset and clock control (RCC) HAL driver ;]
Resolve Select Packs Details Cancel Help

T1P: The links in the column Description provide access to the documentation of
each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to
components. For example, :: CMSIS:CORE refers to the component CMSIS-
CORE selected in the dialog above.

18 MDK Introduction

Software Component Overview

The following table shows the software components for a typical installation.
Depending on your selected device, some of these software components might
not be visible in the Manage Run-Time Environment window. In case you have
installed additional software packs, more software components will be available.

Board Support Interfaces to the peripherals of evaluation boards. 45

CMSsIS CMSIS interface components, such as CORE, DSP, 22
and CMSIS-RTOS.

CMSIS Driver Unified device drivers for middleware and user 39
applications.

Compiler ARM Compiler specific software components to retarget 42

I/O operations for example for printf style debugging.
Event recorder for debugging software components and
user application code.

Device System startup and low-level device drivers. 47

File System Middleware component for file access on various 85
storage device types.

Graphics Middleware component for creating graphical user 87
interfaces.

Network Middleware component for TCP/IP networking using 83
Ethernet or serial protocols.

uUsB Middleware component for USB Host and USB Device 86

supporting standard USB Device classes.

Product Lifecycle Management with Software Packs

MDK allows you to install multiple versions of a software pack. This enables
product lifecycle management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

Concept: Definition of major project requirements and exploration with a
functional prototype.

Design: Prototype testing and implementation of the product based on the final
technical features and requirements.

Release: The product is manufactured and brought to market.

Service: Maintenance of the products including support for customers; finally
phase-out or end-of-life.

Getting Started with MDK: Create Applications with pVision 19

In the concept and design phase, you normally want to use the latest software
packs to be able to incorporate new features and bug fixes quickly. Before
product release, you will freeze the software components to a known tested state.
In the product service phase, use the fixed versions of the software components to
support customers in the field.

44 The dialog Select Software Packs helps you to manage the versions of each
software pack in your project:

B3 Select Software Packs for Target 'SAMV7 Flash DAP' X

™ Uselatest versions of all installed Software Packs

Pack Selection Version Description
El-ARM:CMSIS fixed w430 CMSIS (Cortex Microcontroller Software Interface Standard)
440 ['
43.0 i3
Infineon:XMC1000_DFP | excluded |~ | Infineon XMC1000 Series Device Support
Infineon:XMCA000_DFP | excluded |~ | Infineon XMC4000 Series Device Support, Drivers and Examples
Keil:: ARM_Compiler fixed ~ | 1.00 | Keil ARM Compiler extensions
- Keil:MDE-Middleware latest | 6.60-RC1 | Keil MDK-ARM Professional Middleware for ARM Cortex-M based devices |

RC1 [~

r
- Keil:: SAM-ESVT_SFP fixed w220 .Atmel SAM V71, V70, E70, 570 Software Foundation (HAL, Driver, BSP)
230-RC1 r |
2.20 I
Keil:SAM-V_DFP fixed w220 | Atmel SAMVT Series Device Support
Keil::STM32F 7 DFP excluded |« | STMicroelectronics STM32F7 Series Device Support, Drivers and Examples

oK I Cancel I Help

When the project is completed, disable the option Use latest version of all
installed Software Packs and specify the software packs with the settings under
Selection:

latest: use the latest version of a software pack. Software components are updated
when a newer software pack version is installed.

fixed: specify an installed version of the software pack. Software components in
the project target will use these versions.

excluded: no software components from this software pack are used.

The colors indicate the usage of software components in the current project
target:
Some software components from this pack are used.
Some software components from this pack are used, but the pack is
excluded.
No software component from this pack is used.

20 MDK Introduction

Software Version Control Systems (SVCS)

uVision carries template files for GIT, SVN, CVS, and others to support
Software Version Control Systems (SVCS).

Application note 279 “Using Git for Project Management with uVision”
(www.keil.com/appnotes/docs/apnt 279.asp) describes how to establish a
robust workflow for version control of projects using software packs.

Access Documentation

MDK provides online manuals and context-sensitive help. The pVision Help
menu opens the main help system that includes the uVision User’s Guide, getting
started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS
functions, compiler directives, or library routines. Use F1 in the command line of
the Output window for help on debug commands, and some error and warning
messages.

The Books window may include device reference guides, data sheets, or board
manuals. You can even add your own documentation and enable it in the Books
window using the menu Project — Manage — Components, Environment,
Books — Books.

The Manage Run-Time Environment dialog offers access to documentation via
links in the Description column.

In the Project window, you can right-click a software component group and open
the documentation of the corresponding element.

You can access the pVision User’s Guide on-line
at www.keil.com/support/man/docs/uv4.

Request Assistance

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support and information channels are accessible
at www.keil.com/support.

When reporting an issue, include your license code (if you have one) and product
version, available from the pVision menu Help — About.

http://www.keil.com/appnotes/docs/apnt_279.asp
http://www.keil.com/support/man/docs/uv4
http://www.keil.com/support

Getting Started with MDK: Create Applications with pVision

21

Learning Platform

Our www.keil.com/learn website helps you to learn more about the
programming of ARM Cortex-based microcontrollers. It contains tutorials,
videos, further documentation, as well as useful links to other websites.

Cortex-M Learning Platl X =+

& = 0O ‘-:.".'.!ksil.cumr":'-1-‘Z'—ﬁ-..

ARMKEIL

Microcontroller Tools

A Products Download Events Support

Home / MDK / Leaming Platform for Cortex-M Micrecontroller Users

Learning Platform for Cortex-M Microcontroller Users

This is a collection of resources that Nelp you 1o create application software for ARM® Conex@-M
microcontrollers. It covers various topics from getting started to debugging your application and
contains links to videos, example projects, application notes, and documentation.

¥ New ARMvB-M: ARM Cortex-M23 and ARM Cortex-M33

Using TrustZone on Cortex-M23 and Cortex-M33

ARM recently announced the first two processors using
Using TrustZone for ARMvE-M on

ARM Cortex-M23 and the ARMvE-M architecture, ARM Cortex-MM23 and Cortex-
ARM Correx-M33

M33. ARM TrustZone for ARMv8-M adds security
features to these cores that allow applications and
services to operate securely while safeguarding the
secure resources from being misused, corrupted or
inspected by intruders. This webinar recording will explain
how to program secure and non-secure domains on a processor with TrustZone.

Topic Description

== Pfida dodl of the *Lging TrusiZone on Corlex-M23 and Cortex-M33"
httpi/s tubs bed/0LpCEwWSfADs rel toplay=1

Quick Start Guides

[Cortex-M7

The CMSIS workshop provides
step-by-step instructions to
create and debug embedded
applications

The ARM Cortex-M7 support
page offers webinar recordings,
quick start guides and fechnical
reference material

AN[—]

—

pplication notes provide in-
depth information about
development tools and various
micrecontroller applications and
help to solve complex problems.

The knowledge base contains
articles created by members of
our support team, answering
Trequently asked questions.

Quick start guides help you to bring up your target hardware quickly. They

describe the required steps to get a development board up and running with MDK

and list required software packs as well as driver requirements for integrated

debug adapters.

NOTE

www.keil.com/mdk5/qsg explains how to download the quick start guides

http://www.keil.com/learn
http://www.keil.com/mdk5/qsg

22 CMSIS

CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provides a
ground-up software framework for embedded applications that run on Cortex-M
based microcontrollers. CMSIS enables consistent and simple software interfaces
to the processor and the peripherals, simplifying software reuse, reducing the
learning curve for microcontroller developers.

CMSIS is available under an Apache 2.0 license and is publicly developed on
GitHub: https://github.com/ARM-software/CMSIS 5.

NOTE
This chapter is a reference section. The chapter Create Applications on page 46
shows you how to use CMSIS for creating application code.

CMSIS provides a common approach to interface peripherals, real-time operating
systems, and middleware components. The CMSIS application software
components are:

= CMSIS-CORE: Defines the API for the Cortex-M processor core and
peripherals and includes a consistent system startup code. The software
components ::CMSIS:CORE and ::Device:Startup are all you need to
create and run applications on the native processor that uses exceptions,
interrupts, and device peripherals.

= CMSIS-RTOS2: Provides a standardized real-time operating system API and
enables software templates, middleware, libraries, and other components that
can work across supported RTOS systems. This manual explains the usage of
the Keil RTXS implementation.

= CMSIS-DSP: Is a library collection for digital signal processing (DSP) with
over 60 Functions for various data types: fix-point (fractional q7, q15, q31)
and single precision floating-point (32-bit).

= CMSIS-Driver: Is a software API that describes peripheral driver interfaces
for middleware stacks and user applications. The CMSIS-Driver API is
designed to be generic and independent of a specific RTOS making it
reusable across a wide range of supported microcontroller devices.

https://github.com/ARM-software/CMSIS_5

Getting Started with MDK: Create Applications with pVision 23

CMSIS-CORE

This section explains the usage of CMSIS-CORE in applications that run natively
on a Cortex-M processor. This type of operation is known as bare-metal, because
it does not use a real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component
::CMSIS:CORE, which should be used together with the software component
::Device:Startup. These components provide the following central files:

<device> i i
The startup <device>.s file with startup_<device>.c CMSIS-CORE device files

reset handler and exception vectors. |

f CMSIS-CORE header fil
CMSIS device startup] eader files

The system_<device>.c configuration [] User program
file for basic device setup (clock and
memory bus), system_<device>.c partition_<device>.h
. CMSIS system & clock Secure attributes &
The <device>.h heaqer file for user configuration .l'l interrupt assignment
code access to the microcontroller ,"f
device.This file is included in C /
<user>.c/c++ { <device>.h
source files and defines: L
User application CMSIS
- Pel‘ipheral access with main() { ... } device peripheral access

standardized register layout.

= Access to interrupts and exceptions, and the Nested Interrupt Vector
Controller (NVIC).

» Intrinsic functions to generate special instructions, for example to activate
sleep mode.

= Systick timer (SYSTICK) functions to configure and start a periodic timer
interrupt.

= Debug access for printf-style I/O and ITM communication via on-chip
CoreSight.

The partition_<device>.h header file contains the initial setup of the TrustZone
hardware in an ARMv8-M system (refer to chapter Secure/non-secure
programming).

NOTE
In actual file names, <device> is the name of the microcontroller device.

24

CMSIS

Adding Software Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added
to a project using the uVision dialog Manage Run-Time Environment. Just
select the software components as shown below:

%) Manage Run-Time Environment *
Software Component Sel. Variant Version Description
& @ Board Support STM32F746G-Discovery |~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit =1
=] @ _ | | Cortex Microcontroller Software Interface Components
¥ CORE [420 | CMSIS-CORE For Cortex-M, SCODD, and SC300
¥ Dsp =l 146 | CMSIS-DSP Library for Cortex-M, SCODD, and SC300
-4 RTOS (4P1) 1.0 | CMSIS-RTOS AP for Cortex-M, SC000, and SC300
[CMSIS Driver | Unified Device Drivers compliant to CMSIS-Driver Specifications
& @ Compiler |ARM Compiler Software Extensions
= @ Device Startup, System Setup
¥ Startup I T.0.1 System Startup for STMicroelectronics STM32F7 Series .
=] @ STM32Cube Framework (API) STM32Cube Framework
=] @ STM32Cube HAL STM32Fx Hardware Abstraction Layer (HAL) Drivers
2] @ File System MDE-Pro 6.6.0 File Access on various storage devices
Bl @ Graphics MDK-Pro 5.30.0 | User Interface on graphical LCD displays j
Validation Output Description
Resolve Select Packs Details Cancel Help

The pVision environment adds the related files.

Source Code Example

The following source code lines show the usage of the CMSIS-CORE layer.

Example of using the CMSIS-CORE layer

#include "stm32f4xx.h"

uint32 t volatile msTicks;
uint32_t volatile frequency;

void SysTick Handler (void) {
msTicks++;

}

void WaitForTick (void) {
uint32 t curTicks;
curTicks = msTicks;
while (msTicks == curTicks) {
__WFE ();
}
}

void TIM1 UP_IRQHandler (void) {
; // Add user code here
}

//

//
//

//
//

//
//
//

File name depends on device used

Counter for millisecond Interval
Frequency for timer

SysTick Interrupt Handler
Increment Counter

Save Current SysTick Value
Wait for next SysTick Interrupt
Power-Down until next Event

Timer Interrupt Handler

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563

Getting Started with MDK: Create Applications with pVision

25

void timerl init(int frequency) { // Set up Timer (device specific)
NVIC SetPriority (TIM1 UP IRQn, 1); // Set Timer priority
NVIC EnableIRQ (TIM1 UP_ IRQn) ; // Enable Timer Interrupt

}

// Configure & Initialize the MCU
void Device Initialization (void) {
if (SysTick Config (SystemCoreClock / 1000)) { // SysTick 1lms
: // Handle Error

}
timerl init (frequency); // Setup device-specific timer
}

// The processor clock is initialized by CMSIS startup + system file
int main (void) { // User application starts here
Device Initialization () // Configure & Initialize MCU

while (1) { // Endless Loop (the Super-Loop)
__disable irq () // Disable all interrupts
// Get_InputValues ();
__enable irq ()’ // Enable all interrupts
// Process Values ();
WaitForTick () // Synchronize to SysTick Timer
}
}

For more information, right-click the group CMSIS in the Project window, and
choose Open Documentation, or refer to the CMSIS-CORE
documentation www.keil.com/cmsis/core.

[3] overview X + — (m] x
& = 0 i keil.com/pack/do sis/Core/htn : M v | =

' "I}MSIS CMSIS'CORE Version 5.0.0

w | compLianT

s CMSIS-CORE support for Cortex-M processor-based devices

General Core Driver | DSP | RIOSvi | RTOSv2 | Pack | SVD | DAP |

Main Page Usage and Description I Reference | Q- Search
¥ CMSIS-CORE o -

» Overview VE LU OAN

Revision History of CMSIS-CORE

» Using CMSIS in Embedded Applications | CMSIS-CORE implements the basic run-time system for a Cortex-M device and gives the user access to the
processer core and the device peripherals. In detail it defines:

> Using TrustZone for ARMvE-M

P CMSIS-Core Device Templates + Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized definitions for
MISRA-C Deviations ¥he SysTick, NVIC, System Control Block registers, MPU registers, FPU registers, and core access
unctions.

Register Mapping

System exception names to interface to system exceptions without having compatibility issues.

b Reference Methods to organize header files that makes it easy to learn new Cortex-M microcontroller products
+ Data Structures and improve software portability. This includes naming conventions for device-specific interrupts.

* Methods for system initialization to be used by each MCU vendor. For example, the standardized
SystemlInit() function is essential for configuring the clock system of the device.

Intrinsic functions used to generate CPU instructions that are not supported by standard C functions.
= A variable to determine the system clock frequency which simplifies the setup the SysTick timer.

Data Fields

Generated on Fri Nov 11 2016 12:41:20 for CMSIS-CORE by ARM Ltd. All rights reserved.

http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f
http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
http://www.keil.com/cmsis/core

26 CMSIS

CMSIS-RTOS2

This section introduces the CMSIS-RTOS2 API and the Keil RTXS real-time
operating system, describes their features and advantages, and explains
configuration settings of Keil RTXS5.

NOTE

MDK is compatible with many third-party RTOS solutions. However,
CMSIS-RTOS Keil RTX5 is well integrated into MDK, is feature-rich and tailored
towards the requirements of deeply embedded systems.

Software Concepts

There are two basic design concepts for embedded applications:

Infinite Loop Design: involves running the program as an endless loop. Program
functions (threads) are called from within the loop, while interrupt service
routines (ISRs) perform time-critical jobs including some data processing.

RTOS Design: involves running several threads with a real-time operating
system (RTOS). The RTOS provides inter-thread communication and time
management functions. A pre-emptive RTOS reduces the complexity of interrupt
functions, because high-priority threads can perform time-critical data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typically triggered by
hardware interrupts, execute in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-critical
and run in the background.

Getting Started with MDK: Create Applications with pVision 27

Advantages of an RTOS Kernel

RTOS kernels, like the Keil RTXS, are based on the idea of parallel execution
threads (tasks). As in the real world, your application will have to fulfill multiple
different tasks. An RTOS-based application recreates this model in your software
with various benefits:

Thread priority and run-time scheduling is handled by the RTOS kernel, using a
proven code base.

The RTOS provides a well-defined interface for communication between threads.

A pre-emptive multi-tasking concept simplifies the progressive enhancement of
an application even across a larger development team. New functionality can be
added without risking the response time of more critical threads.

Infinite loop software concepts often poll for occurred interrupts. In contrast,
RTOS kernels themselves are interrupt driven and can largely eliminate polling.
This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is
mandatory for systems with hard real-time requirements. Communication
facilities can be used for IRQ-to-task communication and allow top-half/bottom-
half handling of your interrupts.

Using Keil RTX5

The Keil RTX 5 implements the CMSIS-RTOS API v2 as a native RTOS
interface for Cortex-M processor-based devices.

Once the execution reaches main(), there is a recommended order to initialize the
hardware and start the kernel. The main() of your application should implement at
least the following in the given order:

» Initialization and configuration of hardware including peripheral, memory,
pin, clock and interrupt system.

= Update SystemCoreClock using the respective CMSIS-CORE function.
= [Initialize CMSIS-RTOS kernel using osKernellnitialize.

= Optionally, create a new thread app_main, which is used as a main thread
using osThreadNew. Alternatively, threads can be created in main directly.

= Start RTOS scheduler using osKernelStart. osKernelStart does not return in
case of successful execution. Any application code after osKernelStart will
not be executed unless osKernelStart fails.

28

CMSIS

The software component ::CMSIS:RTOS2 (API):Keil RTX5 must be used
together with the components ::CMSIS:CORE and ::Device:Startup. Selecting
these components provides the following central Keil RTXS files:

The file RTX <core>.lib is the
library with RTOS functions
while rtx_lib.c contains the
RTXS5 library configuration.

The configuration files

RTX Config.c/.h define thread
options, timer configurations, and
RTX kernel settings.

The header file cmsis 0s2.h
exposes the RTX functionality to
the user application.

Once these files are part of the
project, developers can start
using the CMSIS-RTOS RTX
functions. The code example
shows the use of CMSIS-RTOS
RTX functions.

startup_<device>.c

CMSIS device startup

system_<device>.c

CMSIS system & clock

CMSIS:CORE companent

D Device:Startup component

configuration CMSIS:RTOS2 (API):Keil
RTX5 compeonent
RTX_<core>lib rtx_lib.c

CMSIS compliant
RTOS-RTX library

Keil RTXS library
configuration file

RTX_Config.c/h

Keil RTX5 configuration
files

cmsis_os2.h

f CMSIS-RTOS RTX
/ interface

<user>.c/c++

User application
maini) ;

- cMsIs

<device>.h

device peripheral access

NOTE

In the actual file names, <device> is the name of the microcontroller device;
<device core> represents the device processor family.

#include "cmsis_os2.h"

void app main (void *argument) {

// CMSIS RTOS header file

tid phaseA = osThreadNew (phaseA, NULL, NULL);

osDelay (osWaitForever) ;
while (1) ;
}

int main (void) {
// System Initialization
SystemCoreClockUpdate () ;
osKernellInitialize();

osThreadNew (app_main, NULL, NULL) ;

// Initialize CMSIS-RTOS

if (osKernelGetState() == osKernelReady) {
// Start thread execution

osKernelStart() ;

}
while (1) ;
}

// Create application main thread

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html

Getting Started with MDK: Create Applications with pVision 29

Header File cmsis_os2.h

The file cmsis_os2.h is a standard header file that interfaces to every
CMSIS-RTOS API v2 compliant RTOS. Each implementation is provided the
same cmsis_os2.h that defines the interface to the CMSIS-RTOS2.

Using the cmsis_0s2.h along with dynamic object allocation allows to create
source code or libraries that require no modifications when using on a different
CMSIS-RTOS v2 implementation.

All definitions in the header file are prefixed with os to give a unique name space
for the CMSIS-RTOS functions. All definitions and functions that belong to a
module are grouped and have a common prefix, for example, osThread for
threads.

Refer to section Reference: CMSIS-RTOS2 API of the online documentation
available at www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html, for
more information.

http://www.keil.com/pack/doc/CMSIS/RTOS2/html/index.html

30

CMSIS

Keil RTX5 Configuration

The file RTX Config.h contains configuration parameters for Keil RTX5. A copy

of this file is part of every project using the RTX component.

_] RTX_Configh v x
Epand Al | Colapse Al | Hep | ShowGnd
Option Value
= 5ystern Configuration
Global Dynamic Memaory size [bytes] 4096
Kernel Tick Frequency [Hz] 1000
=~ Round-Robin Thread switching ica
Round-Robin Timeout 5
(- Event Recording
ISR FIFQ Queue 16 entries
(=~ Thread Configuration
- Object specific Memaory allocation [
MNumber of user Threads 1
MNumber of user Threads with default Stack si 0
Total Stack size [bytes] for user Threads with user-provided Stack size |0
Default Thread Stack size [bytes] 200
Idle Thread Stack size [bytes] 200
Stack overrun checking v
Stack usage watermark [

Processor mode for Thread execution
1-Tirner Configuration
1-Event Flags Configuration
Mutex Configuration
Semaphore Configuration

Memory Pool Configuration

e R e R e R e B e R]

|- Message Queue Configuration

Privileged mode

[\ TextEditor_}, Configuration Wizard /

You can set parameters for the thread stack, configure the Tick Timer, set Round-

Robin time slice, and define user timer behaviour for threads.

For more information about configuration options, open the RTX documentation

from the Manage Run-Time Environment window. The section Configure
RTX v5 describes all available settings. The following highlights the most

important settings that need adaptation in your application.

Getting Started with MDK: Create Applications with pVision

31

System Configuration

-)--Systern Configuration

+--Event Recording
I5R FIFO Queue

Global Dynamic Memory size [bytes] 4096
Kernel Tick Frequency [Hz] 1000
---Round-Robin Thread switching v
Round-Rebin Timeout 5

16 entries

In this section, you can define the size of global dynamic memory used for all
RTOS objects. Also, you can change the kernel tick frequency (if required),
disable the round-robin thread switching and control the event recording if you
are using the source code (refer to Compiler:Event Recorder on page 42).

Thread Configuration

-)--Thread Configuration

=)--Object specific Memory allocation I
Mumber of user Threads 1
MNumber of user Threads with default Stack size 0
Total Stack size [bytes] for user Threads with user-provided Stack size |0
Default Thread Stack size [bytes] 200
Idle Thread Stack size [bytes] 200
Stack overrun checking [v
Stack usage watermark I
Processor mode for Thread execution Privileged mode

The Keil RTXS5 kernel uses a separate stack space for each thread and provides
two methods for defining the stack requirements:

= Static allocation: when osThreadAttr_t::stack_mem and
osThreadAttr t::stack size specify a memory area which is used for the
thread stack.

» Dynamic allocation: when osThreadAttr_t is NULL or
osThreadAttr t::stack_mem is NULL, the system allocates the stack
memory from:

o

Global memory pool when “Object specific Memory allocation”
is disabled or osThreadAttr_t::stack size is not 0.

Object-specific memory pools when “Object specific Memory
allocation” is enabled and osThreadAttr_t::stack size is O (or
osThreadAttr_t is NULL).

Number user Threads specifies maximum number of user threads that can be
active at the same time. This applies to user threads with system provided
memory for control blocks.

32 CMSIS

Number user Threads with default Stack size specifies maximum number of
user threads with default stack size. This applies to user threads with zero stack
size specified.

Total Stack size [bytes] for user Threads with user-provided Stack size
specifies the combined stack size for user threads with user-provided stack size. It
applies to user threads with user-provided stack size and system provided
memory for stack.

Default Thread stack size [bytes] specifies the stack size (in words) for threads
with zero stack size specified.

Idle Thread stack size [bytes] is the stack requirement for the idle thread.

Stack overrun checking is done at each thread switch. Enabling this option
slightly increases the execution time of a thread switch.

Stack usage watermark initializes the thread stack with a watermark pattern at
the time of the thread creation. This enables monitoring of the stack usage for
each thread (not only at the time of a thread switch) and helps to find stack
overflow problems within a thread. Enabling this option increases significantly
the execution time of thread creation.

NOTE
Consider these settings carefully. If you do not allocate enough memory or you
do not specify enough threads, your application will not work.

Other Configuration Options

Other configuration options are related to specific RTOS objects, such as timers,
event flags, mutexes, semaphores, memory pools, and message queues. Please
consult the documentation for detailed information about the available settings.

Getting Started with MDK: Create Applications with pVision 33

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the
application.

(% In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, select any template and click Add.

Add Mew Item to Group "Source Group 1' *
Add template file(s) to th ject,
@ CFle () mplate file(s) e proje
+ Component Name
@ G+ File opp) =% CMsis
\ﬂ psm File (5) RTOS2:Keil RTX5 CMSIS-RTOS2 'main’ function
RTOS2:Keil RTX5 CMSIS-RTOS2 Events
\ﬂ Header File (h) RTO52:Keil RTX3 CM5IS-RTOS2 Memory Pool
—® RTOS52:Keil RTX3 CMSIS-RTOS2 Message Queue
\é Tet File (bd) RTOS2Keil RTXS | CMSIS-RTOS2 Mutex
; RTO52:Keil RTX3 CM5IS-RTOS2 Semaphaore
2=l Image File (%)
B RTOS52:Keil RTX5 CMSIS-RTOS2 Thread
7‘*@ User Code Template RTOS2:Keil RTX5 CMSIS-RTOS2 Timer
Type: I User Code Template
MName: I main. ¢
Location: I C:\Projects'\Blinky_RTOS |
Add Close Help |

Keil RTX5 API Functions

The table below lists the various API function categories that are available with
the Keil RTXS.

API Category Description

Kernel Information and Control Provide system information and start the RTOS Kernel.
Thread Management Define, create, and control thread functions.

Thread Flags Synchronize threads using flags.

Event Flags Create events using flags.

Generic Wait Functions Wait for a time period or unspecified events.

Timer Management Create and control timer and callback functions.

Mutexes Synchronize thread execution with a Mutex.

Semaphores Control simultaneous access to shared resources.
Memory Pool Manage thread-safe fixed-size blocks of dynamic memory.
Message Queue Control, send, receive, or wait for messages.

34 CMSIS

Thread Management
The thread management functions allow you to define, create, and control your
own thread functions in the system.

Active Threads

event occurs

WAITING

INACTIVE

CMSIS-RTOS RTXS5 assumes that threads are scheduled as shown in the figure
above. Thread states change as described below:

A thread is created using the function osThreadNew(). This puts the thread into
the READY or RUNNING state (depending on the thread priority).

CMSIS-RTOS is pre-emptive. The active thread with the highest priority
becomes the RUNNING thread provided it is not waiting for any event. The
initial priority of a thread is defined during the creation of the thread but may be
changed during execution using the function osThreadSetPriority().

The RUNNING thread transfers into the WAITING state when it is waiting for
an event.

Active threads can be terminated any time using the function
osThreadTerminate(). Threads can also terminate by exit from the usual forever
loop and just a return from the thread function. Threads that are terminated are in
the INACTIVE state and typically do not consume any dynamic memory
resources.

Getting Started with MDK: Create Applications with pVision

Single Thread Program

A standard C program starts execution with the function main(). For an embedded
application, this function is usually an endless loop and can be thought of as a
single thread that is executed continuously.

Preemptive Thread Switching

Threads with the same priority need a round robin timeout or an explicit call of
the osDelay() function to execute other threads. In the following example, if job2
has a higher priority than job1, execution of job2 starts instantly. job2 preempts
execution of job1 (this is a very fast task switch requiring a few ms only).

Simple RTX Program using Round-Robin Task Switching

#include "RTE Components.h"
#include CMSIS device_ header
#include "cmsis_os2.h"

int counterl;
int counter2;

void jobl (void *argument) {
while (1) { // Loop forever
counterl++; // Increment counterl
}
}

void job2 (void *argument) {
while (1) { // Loop forever
counter2++; // Increment counter2
}
}

void app main (void *argument) {

osThreadNew (jobl, NULL, NULL) ; // Create a new thread
osThreadNew (job2, NULL, NULL) ; // Create a new thread
for (;;) {}

}
int main (void) {

// System Initialization
SystemCoreClockUpdate () ;

osKernellInitialize() ; // Initialize CMSIS-RTOS
osThreadNew (app_main, NULL, NULL); // Create application main thread
osKernelStart() ; // Start thread execution

for (;;) {}

36 CMSIS
Component Viewer for RTX RTOS
Keil RTX5 comes with an SCVD file for the Component Viewer for RTOS
aware debugging. In the debugger, open View — Watch Windows — RTX
RTOS. This window shows system state information and the running threads.
The System property shows e iE
general information about the | pgpeny Value
RTOS configuration in the - System

application.

The Threads property shows
details about thread execution
of the application. For each
thread , it shows information
about priority, execution state
and stack usage.

If the option Stack usage
watermark is enabled for
Thread Configuration in the
file RTX Config.h, the field
Stack shows the stack load.
This allows you to:

= Identify stack overflows
during thread execution
or

= Optimize and reduce the
stack space used for
threads.

@ Kernel State
Kernel Tick Frequency
Round Robin Tick
Round Robin Timeout
Global Dynarmic Memory
Stack Overrun Check
Stack Usage Watermark
Default Thread Stack Size
W ISR FIFO Queue
=~ Threads
id: (210001284, osRiddleThread
id: 0:10000010, app_main
[=l-id: 010000130, blink_LED
¥ State
¥ Priority
¥ Attributes
¥ Waiting
[=-Stack
¥ Used
¥ Top
¥ Limit
¥ Size
¥ Flags

L S S R R S

osKernelRunning

1000

0

5

Base: 0:10000000, Size: 4096
Enabled

Disabled

200

Size: 16, Used: 0

osThreadReady, osPriorityldle
osThreadRunning, osPriorityNormal
osThreadBlocked, osPricrityMNormal
osThreadBlocked

osPriorityNormal
osThreadDetached

Used: 32% [64]
64

0:10000248
0:10000180
200
000000000

NOTE

The uVision debugger also provides also a view with detailed runtime
information. Refer to Event Recorder on page 67 for more information.

Getting Started with MDK: Create Applications with pVision

CMSIS-DSP

The CMSIS-DSP library is a suite of common digital signal processing (DSP)
functions. The library is available in several variants optimized for different
ARM Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the Manage Run-
Time Environment dialog, the appropriate library for the selected device is
automatically included into the project.

kA Manage Run-Time Environment
Software Component Sel. Variant Version Description
©- 4 Board Support STM32F746G-Discovery ~ 1.0.0 STMicroelectronics STM32F746G-Discovery Kit
= @ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE [+ 420 CMSIS-CORE for Cortex-M, SC000, and SC300
*EH 146 | CMSIS-DSP Library for Cortex-M, SCO0D, and SC300
w4 RTOS (API) 1.0 CMSIS-RTOS API for Cortex-M, SCO00, and SC300

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions
#include "arm math.h" // BRM: :CMSIS:DSP

const float32 t buf A[9] = { // Matrix A buffer and values
1.0, 32.0, 4.0,
1.0, 32.0, 64.0,

1.0, 16.0, 4.0,

};

float32_t buf AT[9]; // Buffer for A Transpose (AT)
float32_t buf ATmA[9] ; // Buffer for (AT * A)

arm matrix instance £32 A; // Matrix A

arm matrix instance £32 AT; // Matrix AT (A transpose)

arm matrix instance £32 ATmA; // Matrix ATmA(AT multiplied by A)
uint32_t rows = 3; // Matrix rows

uint32_t cols = 3; // Matrix columns

int main(void) ({
// Initialize all matrixes with rows, columns, and data array
arm mat _init £32 (&A, rows, cols, (float32 t *)buf A); // Matrix A

arm mat init £32 (&AT, rows, cols, buf AT); // Matrix AT
arm mat init £32 (&ATmA, rows, cols, buf ATmA); // Matrix ATmA
arm mat trans £32 (&A, &AT); // Calculate A Transpose (AT)

arm mat mult £32 (&AT, &A, &ATmA); // Multiply AT with A

while (1)

38 CMSIS

For more information, refer to the CMSIS-DSP documentation
on www.keil.com/cmsis/dsp.

Reference x4+ (] x
& = 0O ‘ keil.com/pac ﬁ | =
cmsls CMSIS-DSP version 1.49
SOMPLIANT .
e CMSIS DSP Software Library
General | Core | Driver | DSP RTOSvi | RTOSv2 | Pack | SVD DAP |
MainPage | Usage and Description Referonce
v CMSIS-DSP Ref ;
CMSIS DSP Software Library SIerence
Change Log
Depracated List Here is a list of all modules:
Reference [detail level 1 2]

» Data Structures Basic Math Functions

» Data Fields Fast Math Functions
Complex Math Functions
Filtering Functions

Matrix Functions

>

>

»

»

>

¥ Transform Functions
¥ Controller Functions
P Statistics Functions

¥ Support Functions

» Interpolation Functions
»

Examples

Generated on Fri Nov 11 2016 12:41:33 for CMSIS-DSP by ARM Ltd. All nghts reserved.

http://www.keil.com/cmsis/dsp

Getting Started with MDK: Create Applications with pVision

CMSIS-Driver

Device-specific CMSIS-Drivers provide the interface between the middleware
and the microcontroller peripherals. These drivers are not limited to the MDK
middleware and are useful for various other middleware stacks to utilize those
peripherals.

The device-specific drivers are usually part of the software pack that supports the
microcontroller device and comply with the CMSIS-Driver standard. The device
database on www.keil.com/dd?2 lists drivers included in the software pack for the
device.

Software Packs

Microcontroller Device Middleware

Centrol
Startup/System strucls

USBE USB Ceontroller USB Device Driver USED0 USB Device
saf] SAl Controller SAl Driver

Eth:rn:tE Ethernet PHY Ethernet PHY ETH PBHY0
|
Ethernet MAC ETH MACO

TCP/IP
Networking

Hﬁ

rRaTx g USART USART Driver USARTO

E CAN Controller CAND
SPII E SPI Controller Flash Driver

SDIODE sDlo MCI Driver HCLD File System

IJOE Memory Controller MNAND Driver NARDO

o] Uss Conveler |~ JTTYTINTNO oo ._m

RTE Device.h
Contigquration File

Middleware components usually have various configuration files that connect to
these drivers. For most devices, the RTE Device.h file configures the drivers to
the actual pin connection of the microcontroller device.

The middleware/application code connects to a driver instance via a control
struct. The name of this control struct reflects the peripheral interface of the
device. Drivers for most of the communication peripherals are part of the
software packs that provide device support.

http://www.keil.com/dd2

40 CMSIS

Use traditional C source code to implement missing drivers according the
CMSIS-Driver standard.

Refer to www.keil.com/cmsis/driver for detailed information about the API
interface of these CMSIS drivers.

Configuration

There are multiple ways to configure a CMSIS-Driver. The classical method is
using the RTE Device.h file that comes with the device support.

Other devices may be configured using third party graphical configuration tools
that allow the user to configure the device pin locations and the corresponding
drivers. Usually, these configuration tools automatically create the required C
code for import into the pVision project.

Using RTE_Device.h

For most devices, the RTE Device.h file configures the drivers to the actual pin
connection of the microcontroller device:

_] RTE_Device.h v x
Egand Al | Colapse Al | Hep | I ShowGnd
Option Value
[=)--USBO0 Controller [Driver_USBDO and Driver_USBHO] ¥ -
E-Pin Configuration
USBO_PPWR (Host) P6_3 v
USBO_PWR_FAULT (Host)
USBO_INDO
USBO_IND1

Device [Driver_USBDO]
USE1 Controller [Driver_USBD1 and Driver_USBH1]
EMET (Ethernet Interface) [Driver_ETH_MACD] r J
USBO_PPWR (Host)
VBUS drive signal (towards external charge pump or power management
unit).

Text Editor_, Configuration Wizard

Using the Configuration Wizard view, you can configure the driver interfaces in
a graphical mode without the need to edit manually the #defines in this header
file.

http://www.keil.com/cmsis/driver

Getting Started with MDK: Create Applications with pVision 41

Using STM32CubeMX

MDK supports CMSIS-Driver configuration using STM32CubeMX. This
graphical software configuration tool allows you to generate C initialization code
using graphical wizards for STMicroelectronics devices.

Simply select the required CMSIS-Driver in the Manage Run-Time Environment
window and choose Device:STM32Cube Framework (API):STM32CubeMX.
This will open STM32CubeMX for device and driver configuration. Once
finished, generate the configuration code and import it into pVision.

For more information, visit the online documentation
at www.keil.com/pack/doc/STM32Cube/General/html/index.html.

Validation Suites for Drivers and RTOS

Software packs to validate user-written CMSIS-Drivers or a new implementation
of a CMSIS-RTOS are available from www.keil.com/pack. They contain the
source code and documentation of the validation suites along with required
configuration files, and examples that show the usage on various target platforms.

The CMSIS-Driver validation suite performs the following tests:
= Generic validation of API function calls
* Validation of configuration parameters
= Validation of communication with loopback tests
= Validation of communication parameters such as baudrate
= Validation of event functions

The test results can be printed to a console, output via ITM printf, or output to a
memory buffer. Refer to the section Driver Validation in the CMSIS-Driver
documentation available at www.keil.com/cmsis/driver.

The CMSIS-RTOS validation suite performs generic validation of various RTOS
features. The test cases verify the functional behavior, test invalid parameters and
call management functions from ISR.

The validation output can be printed to a console, output via ITM printf, or output
to a memory buffer. Refer to the section Driver Validation in the CMSIS-Driver
documentation available at www.keil.com/cmsis/rtos.

http://www.keil.com/pack/doc/STM32Cube/General/html/index.html
http://www.keil.com/pack
http://www.keil.com/cmsis/driver
http://www.keil.com/cmsis/rtos

42 Software Components

Software Components

Compiler:Event Recorder

Modern microcontroller applications often contain middleware components,
which are normally a "black box" to the application programmer. Even when
comprehensive documentation and source code is provided, analyzing of
potential issues is challenging.

The software component Compiler:Event Recorder uses event annotations in
the application code or software component libraries to provide event timing and
data information while the program is executing. This event information is stored
in an event buffer on the target system that is continuously read by the debug unit
and displayed in the event recorder window of the pVision debugger.

Application Code

Event Annotations

!

Event Recorder Debug

1

Event Buffer

Memory

During program execution, the uVision debugger reads the content of the event
buffer using a debug adapter that is connected via JTAG or SWD to the
CoreSight Debug Access Port (DAP). The event recorder requires no trace
hardware and can therefore be used on any Cortex-M processor based device.

To display the data stored in the event buffer in a human readable way, you need
to create a Software Component Viewer Description (SCVD) file. Refer
to: www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

The section Event Recorder on page 67 shows how to use the event recorder in a
debug session.

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

Getting Started with MDK: Create Applications with pVision

43

Compiler:1/O

The software component Compiler:1/O allows you to retarget I/O functions of
the standard C run-time library. Application code frequently uses standard I/O
library functions, such as printf{(), scanf(), or fgetc() to perform input/output
operations.

The structure of these functions in the standard ARM Compiler C run-time
library is:

High-Level Functions [
printf, scanf, etc. ‘

¥
Hardware independent

Low-Level Functions ’
fputc, fgetc, etc.

System I/O Functions
_sys_write, _sys_read, etc.

Hardware
dependent

The high-level and low-level functions are not target-dependent and use the
system I/O functions to interface with hardware.

The MicroLib of the ARM Compiler C run-time library interfaces with the
hardware via low-level functions. The MicroLib implements a reduced set of
high-level functions and therefore does not implement system I/O functions.

The software component Compiler:1/O retargets the I/O functions for the various
standard I/O channels: File, STDERR, STDIN, STDOUT, and TTY:

kd Manage Run-Time Environment X
Software Component Sel. Variant Version Description
El@ Board Support MCB1800 1.00 Keil Development Board MCB1800
& & CMsIs . . | Cortex Microcontroller Software Interface Components
&4 CMSIS Driver | . | Unified Device Drivers cmp_lian;‘. to CMSIS-Driver Specifications
=4 Compiler | ARM Compiler |1.20 | Compiler Extensions for ARM Compiler ARMCC and ARMClang
. ..¥ EventRecorder I_ | DAP | 1.1.0 .E\renf Recording using Deﬁuq Access PUr‘i: ;,'D.AP.]
El 0 /0 | | .Retarge‘tlngug'Outgut
W File [l [File System 120 |Use retargetiﬁg together with the File S;ystem component.
@ STDERR I |Brea kpoint [Cl120 .Stop program execution at a breakpoint when using STDERR
@ son [1™ [v|120 |Retrieve STDIN from a debug output window using ITM
~@ sToout [|EvR w120 |Redirect STDOUTto a debug output window using Event Recorder
v TTY |l | User v 120 | Redirect TTY to a user defined outpu‘t.target
Validation Qutput Description
Resolve | | Select Packs | Detais | ITI Cancel Help |

44

Software Components

1/0 Channel

Description

File
STDERR
STDIN
STDOUT
TTY

Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)
Standard error stream of the application to output diagnostic messages.
Standard input stream going into the application (scanf etc.).

Standard output stream of the application (printf etc.).

Teletypewriter which is the last resort for an error output.

The variant selection allows you to change the hardware interface of the /O

channel.
Variant Description
File System Use the File System component as the interface for File related operations
EVR Use the event recorder to display printf debug messages
Breakpoint When the I/O channel is used, the application stops with BKPT instruction.
IT™ Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.
User Retarget 1/0O functions to a user defined routines (such as USART, keyboard).
. Debug [printf) Viewer
The software component Compiler adds the file oD valoc — 0xiol
retarget io.c that will be configured acording to the AD value = 0x101
. - ., . LD wvalue = 0x101
variant settings. For the User variant, user code 5D value = ox101
: : 1 = 0x101
templates are aYallat?le that help you to 1mplemept hy ootue T ot
your own functionality. Refer to the documentation AD value = 0x101
. . 2D value = 0x101
for more information. D value — 0x101
. . 2D value = 0x101
ITM in the Cortex-M3/M4/M7 supports printf style AD value = 0x101
debugging. If you choose the variant ITM, the I/O
library functions perform I/O operations via the !
Debug (printf) Viewer window. FACall Stack = Locals | 53 Debug (printf) Vi...

As ITM is not available in Cortex-M0/M0+ devices, you can use the event
recorder to display printf debug messages. Use the EVR variant of the STDOUT
I/O channel for this purpose (works with all Cortex-M based devices).

Getting Started with MDK: Create Applications with pVision

45

Board Support

There are a couple of interfaces that are frequently used on development boards,
such as LEDs, push buttons, joysticks, A/D and D/A converters, LCDs, and
touchscreens as well as external sensors such as thermometers, accelerometers,
magnetometers, and gyroscopes.

The Board Support Interface API provides standardized access to these
interfaces. This enables software developers to concentrate on their application
code instead of checking device manuals for register settings to toggle a
particular GPIO.

Many Device Family Packs (DFPs) have board support included. You can choose
board support from the Manage Run-Time Environment window:

Software Component Sel. Variant Version Description
=4 Board Support STM32F746G-Discovery |z| 100 STMicroelectronics STM32F746G-Discovery Kit
= @ Buttons (APT) 1.00 Buttons Interface
¥ Buttons [+ 100 Buttons Interface for STMicroelectronics STM32F746G-Discovery Kit
@ Drrivers Kinetis BSP Dirivers
@ Graphic LCD (APT) 1.00 Graphic LCD Interface
=4 LED (AP]) 1.00 LED Interface
¥ LED [+ 100 LED Interface for STMicroelectronics STM32F746G-Discovery Kit
@ Touchscreen (APT) 1.00 Touchscreen Interface
@ emWin LCD (APT) 11 emWin LCD Interface

Be sure to select the correct Variant to enable the correct pin configurations for
your particular development board.

You can add board support to your custom board by creating the required support
files for your board’s software pack. Refer to the API documentation available
at: www.keil.com/pack/doc/mw/Board/html/index.html

http://www.keil.com/pack/doc/mw/Board/html/index.html

46 Create Applications

Create Applications

This chapter guides you through the steps required to create and modify projects
using CMSIS described in the previous chapter.

NOTE
The example code in this section works for the MCB1800 evaluation board
(populated with LPC1857). Adapt the code for other starter kits or boards.

The tutorial creates the project Blinky in these two basic design concepts:
= RTOS design using Keil RTXS.
* Infinite loop design for bare-metal systems without RTOS Kernel.

Blinky with Keil RTX5

The section explains the creation of the project using the following steps:

= Setup the Project: create a project file and select the microcontroller device
along with the relevant CMSIS components.

= Configure the Device Clock Frequency: configure the system clock.
= (Create the Source Code Files: add and create the application files.

= Build the Application Image: compile and link the application for
downloading it to an on-chip Flash memory of a microcontroller device.

= Using the Debugger on page 63 guides you through the steps to connect
your evaluation board to the PC and to download the application to the
target.

For the project Blinky, you will create the following application files:

main.c This file contains the main() function that initializes the RTOS
kernel, the peripherals, and starts thread execution.

LED.c The file contains functions to initialize and control the GPIO port
and the thread function blink LED(). The LED Initialize() function
initializes the GPIO port pin. The functions LED On() and
LED_Off() control the port pin that interfaces to the LED.

LED.h The header file contains the function prototypes for the functions in
LED.c and is included into the file main.c.

Getting Started with MDK: Create Applications with pVision

Setup the Project
From the pVision menu bar, choose Project — New pVision Project.

r% Select an empty folder and enter the project name, for example, Blinky.
Click Save, which creates an empty project file with the specified name

(Blinky.uvprojx).
Next, the dialog Select Device for Target opens.

r% Select the LPC1857 and click OK.

The device selection defines essential tool settings such as compiler controls, the
memory layout for the linker, and the Flash programming algorithms.

The Manage Run-Time Environment dialog opens and shows the software
components that are installed and available for the selected device.

r% Expand ::CMSIS:RTOS2(API) and enable :Keil RTXS (Library).
Expand ::Device and enable :GPIO and :SCU.

Resolve Select Packs Details

kA Manage Run-Time Environment *
Software Component Sel. Variant Version Description
& 4 Board Support MCB1800 1.00 Keil Development Board MCB1800
=4 CMSIS Cortex Microcontroller Software Interface Components
? CORE r 500 | CMSIS-CORE for Cortex-M, SCO00, SC300, ARMvE-M
@ Dsp [146 | CMSIS-DSP Library for Cortex-M, SC000, and SC300
23] @ RTOS (API) 10 CMSIS-RTOS AP for Cortex-M, SCOD0, and SC300
- RTOS2 (AP) 21 | CMSIS-RTOS AP for Cortex-M_ SC000, and SC300
- ¥ Keil RTXS 2 Library ~|51.0 CMSIS-RTOS2 RTXS for Cortex-M, SC000, €300 and ARMvE-M (Library)
& 4 CMSIS Driver | Unified Device Drivers compliant to CMSIS-Driver Specifications
w49 Compiler ARM Compiler | 120 | Compiler Extensions for ARM Compiler ARMCC snd ARMClang
= @ Device Startup, System Setup
¥ GPDMA [13 | GRDMA driver used by RTE Drivers for LPC1800 Series
@ GPIO 17 1.0 GPIO driver used by RTE Drivers for LPC1800 Series
» 71| SCU driver used by RTE Drivers for LPC1800 Series
@ Startup [100 | System Startup for NXP LPC1200 Series
5 4 File System MDK-Pro |v|690 |File Access on various storage devices
& 4 Graphics |MDK-Pre |+ 5366 | UserInterface on graphical LCD displays
& @ Network MDK-Pro | 73.0 Pva/IPv6 Networking using Ethernet or Serial protocols
w4 USB |[MDK-Pro [++|6.90 | USB Communication with various device classes
Validation Output Description
B A ARM:=CMSIS:RTOS2:Keil RTXS Additional seftware components required i
= require Device:Startup Select companent from list
@ Keil:Device:Startup System Startup for NXP LPC1800 Series
= -require CMSIS:CORE Select component from list
¥ ARM:CMSIS:CORE CMSIS-CORE for Cortex-M, SCO00, SC300, ARMvE-M
£ & Keil:DeviceGPIO Additional software components required
= require CMSIS:CORE | Select component from list
¥ ARM:CMSIS:CORE CMSIS-CORE for Cortex-M, SC000, SC300, ARMvE-M
=8 Keil:DeviceSCU | Additional software components required
=-require CMSIS:CORE Select component from list Lj

Help

48

Create Applications

The Validation Output field shows dependencies to other software components.
In this case, the components ARM::CMSIS:CORE and ::Device:Startup are

required.

T1P: A click on a message highlights the related software component.

r% Click Resolve.

This resolves all dependencies and enables other required software components

(here ARM::CMSIS:Core and ::Device:Startup).

= Click OK.

The selected software components are included into
the project together with the startup file, the RTX
sources and configuration files, as well as the CMSIS
system files. The Project window displays the
selected software components along with the related
files. Double-click on a file to open it in the editor.

Project

=1 Project: Blinky
=50 Target1

|

% [d Seurce Group 1
=24 cmsis
BT RTX_CM3.lib (RTOS2:Keil RTXS)
o [ric lib.c (RTOS2:Keil RTXS)
@] RTX_Cenfig.c (RTOS2:Keil RTX3)
] RTX_Config.h (RTOS2:Keil RTXS)
= @ Device
=[5 GPIO_LPCIZ0ce (GPIO)
w0 [T sCuU LPCIBoce (5CU)
_1 RTE_Device.h (Startup)
_1 startup_LPC18xes (Startup)
3] system LPC18wccc (Startup)

E]Proje:t|@3::: {} Functions | (), Templates

Getting Started with MDK: Create Applications with pVision

49

Configure the Device Clock Frequency

The system or core clock is defined in the system <device>.c file. The core clock
is also the input clock for the RTOS Kernel Timer and, therefore, the RTX
configuration file needs to match this setting.

NOTE
Some devices perform the system setup as part of the main function and/or use a
software framework that is configured with external utilities.

Refer to Device Startup Variations on page 56 for more information.

The clock configuration for an application depends on various factors such as the
clock source (XTAL or on-chip oscillator), and the requirements for memory and
peripherals. Silicon vendors provide the device-specific file system <device>.c
and therefore it is required to read the related documentation.

TIP: Open the reference manual from the Books window for detailed
information about the microcontroller clock system.

The MCB1800 development kit runs with an external 12 MHz XTAL. The PLL
generates a core clock frequency of 180 MHz. As this is the default, no
modifications are necessary. However, you can change the settings for your
custom development board in the file system LPC18xx.c.

r% To edit the file system LPCI18xx.c, expand the group Device in the Project
window, double-click on the file name, and modify the code as shown
below.

Set PLL Parameters in system_LPC18xx.c

/* PLL1 output clock: 180MHz, Fcco: 180MHz,

N=1, M= 15, P = x */

#define PLL1 NSEL 0 /* Range [0 - 3]: Pre-divider ratio N */
#define PLL1 MSEL 14 /* Range [0 - 255]: Feedback-div ratio M */
#define PLL1_ PSEL 0 /* Range [0 - 3]: Post-divider ratio P */
#define PLL1 BYPASS 0 /* 0: Use PLL, 1: PLL is bypassed */
#define PLL1 DIRECT 1 /* 0: Use PSEL, 1: Don't use PSEL */
#define PLL1 FBSEL 0 /* 0: FCCO is used as PLL feedback */
/* 1: FCLKOUT is used as PLL feedback */

Keil RTX5 automatically detects the clock setting so that a manual adaption is
not required.

50

Create Applications

Create the Source Code Files

Add your application code using pre-configured User Code Templates
containing routines that resemble the functionality of the software component.

r% In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group.

Add Mew Item to Group "Source Group 1'

@ C File (.c)
@ C++ File (cpp)
\ﬂ Asm File (s)

Component

=4 CMsIS

Add template file(s) to the project.

MName

RTO52:Keil RTX5 CMSIS-RTOS2 'main’ function

RTOS2:Keil RTX5 CMSIS-RTOS2 Events
\ﬂ Header File (h) RTO52:Keil RTX3 CM5IS-RTOS2 Memory Pool
—®) RTOS52:Keil RTX3 CMSIS-RTOS2 Message Queue
\é Tet File (bd) RTOS2Keil RTXS | CMSIS-RTOS2 Mutex
; ; RTO52:Keil RTX3 CM5IS-RTOS2 Semaphaore
2=l Image File (%)
B RTOS52:Keil RTX5 CMSIS-RTOS2 Thread
7‘*@ User Code Template RTOS2:Keil RTX5 CMSIS-RTOS2 Timer
Type: | User Code Template
MName: | min. ¢
Location: | C:\Projects'\Blinky_RTOS
Add Close |

=l
Help

r% Click on User Code Template to list available code templates for the
software components included in the project. Select CMSIS-RTOS2 ‘main’

function and click Add.

This adds the file main.c to the project group Source Group 1. Now you can add
application specific code to this file.

Getting Started with MDK: Create Applications with pVision

51

r% Add the code below to create a function blink LED() that blinks LEDs on

the evaluation kit.

Code for main.c

* CMSIS-RTOS 'main' function template

#include
#include
#include
#include

"RTE Components.h"
CMSIS device header
"cmsis os2.h"
"LED.h"

#ifdef RTE Compiler EventRecorder
#include "EventRecorder.h"
#endif

void app main (void *argument) {

Init_BlinkyThread ()
for (;;) {}
}

int main (void) ({
// System Initialization

SystemCoreClockUpdate () ;
#ifdef RTE Compiler EventRecorder

// Initialize and start Event Recorder

// Start Blinky thread

//EventRecorderInitialize (EventRecordError, 1U) ;

#endif
/...
LED Initialize ()

osKernellInitialize();
osThreadNew (app_main, NULL, NULL);

// Initialize LEDs

// Initialize CMSIS-RTOS
// Create application main thread

osKernelStart() ; // Start thread execution
for (;;) {}

}

NOTE

The file RTE_Components.h includes a define/macro specifying the name of the
device header file such that you can specify the device include in a device
agnostic way using #include CMSIS device header.

52 Create Applications

% Create an empty C-file named LED.c using the dialog Add New Item to
Group and add the code to initialize and access the GPIO port pins that
control the LEDs.

Code for LED.c

#include "SCU LPC18xx.h"
#include " GPIO_LPCl 8xx.h"
#include "cmsis_os2.h" // ARM: :CMSIS:RTOS:Keil RTX5

osThreadld t tid blink LED; // Thread id of thread blink LED
void blink LED (void *argument); // Prototype function

void LED Initialize (void) {
GPIO_PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN CFG PULLDOWN EN)) ;
GPIO SetDir (6, 24, GPIO DIR OUTPUT);
GPIO_PinWrite (6, 24, 0);

}

void LED On (wvoid) ({
GPIO_PinWrite (6, 24, 1); // LED on: set port
}

void LED Off (void) {
GPIO_PinWrite (6, 24, 0); // LED off: clear port
}

// Blink LED function
void blink LED(void *argument) {

for (;;) {
LED On ()’ // Switch LED on
osDelay (500) ; // Delay 500 ms
LED Off (); // Switch off
osDelay (500) ; // Delay 500 ms

}
}

void Init_ BlinkyThread (void) {
tid blink LED = osThreadNew (blink LED, NULL, NULL); // Create thread
}

NOTE
You can also use the functions as provided by the Board Support component
described on page 45Error! Bookmark not defined..

Getting Started with MDK: Create Applications with pVision 53

r% Create an empty header file named LED.# using the dialog Add New Item
to Group and define the function prototypes of LED.c.

Code for LED.h
/B coe e csom eSS CE oS oSS C SO TS SO S CE TS SC S CSOToT
* File LED.h
P —————— e */
void LED Initialize (void); // Initialize GPIO
void LED On (void); // Switch Pin on
void LED Off (void); // Switch Pin off
void blink LED (void const *argument); // Blink LEDs in a thread
void Init BlinkyThread (void); // Initialize thread

Build the Application Image

Build the application, which compiles and links all related source files.

Build Output shows information about the build process. An error-free
build displays program size information, zero errors, and zero warnings.

Build Qutput a @

*%% Using Compiler 'V5.06 update 4 (build 422)', folder: 'C:\Keil wS\ARM\ARMCC\Bin'
Rebuild target 'Target 1'

compiling LED.c...

compiling rtx_lib.c...

compiling main.c...

compiling RIX Config.c...

assembling startup LPCLEXX.S...

compiling GPIO LPCI1BxX.c...

compiling SCU LPCl8xx.c...

compiling system LEC18xX.c...

linking...

Program Size: Code=8664 RO-data=1036 RW-data=5504 ZI-data=1632

After Build - User command $1: C:\Keil v5\/ARM/BIN/ELfDwT.exe .\Objects\Blinky.axf BASEADDRESS (0x1A000000)
ELFDWT - Signature Creator V1.2.0.0

COPYRIGHT Copyright (C) 2014-2016, ARM Ldt. and ARM Germany GmbH

#% Updated Signature over Range[32] (0x1A000000 - Ox1A000018): @0x1R00001C = O0x53FFCD46
*** Processing completed, no Errors.

".\Cbjects\Blinky.axf" - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:02

7|

The section Using the Debugger on page 63 guides you through the steps to
connect your evaluation board to the workstation and to download the application
to the target hardware.

T1P: You can verify the correct clock and RTOS configuration settings of the
target hardware by checking the one-second interval of the LED.

54 Create Applications

Blinky with Infinite Loop Design

Based on the previous example, we create a Blinky application with the infinite
loop design and without using CMSIS-RTOS functions. The project contains the
user code files:

main.c This file contains the main() function, the function Systick Init() to
initialize the System Tick Timer and its handler function
SysTick Handler(). The function Delay() waits for a certain time.

LED.c The file contains functions to initialize the GPIO port pin and to set
the port pin on or off. The function LED Initialize() initializes the
GPIO port pin. The functions LED On() and LED _Off{) enable or
disable the port pin.

LED.h The header file contains the function prototypes created in LED.c
and must be included into the file main.c.

Open the Manage Run-Time Environment and deselect the software
component ::CMSIS:RTOS (API):Keil RTX.

r% Open the file main.c and add the code to initialize the System Tick Timer,
write the System Tick Timer Interrupt Handler, and the delay function.

/) Somscmmososco oo s CE eSS CE SISO E eSO SO SO CC S SO S OSSOSO S DSOS S OIS OSoOS oS
* file main.c
P —————— e */
#include "LPC18xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port
int32 t volatile msTicks = 0; // Interval counter in ms

// Set the SysTick interrupt interval to 1ms
void SysTick_Init (void) {
if (SysTick Config (SystemCoreClock / 1000)) {
// handle error
}
}

// SysTick Interrupt Handler function called automatically
void SysTick_Handler (void) ({
msTicks++; // Increment counter

}

// Wait until msTick reaches 0

void Delay (wvoid) {
while (msTicks < 499); // Wait 500ms
msTicks = 0; // Reset counter

}

Getting Started with MDK: Create Applications with pVision 55

int main (void) ({
// initialize peripherals here

LED Initialize (); // Initialize LEDs
SystemCoreClockUpdate () ; // Update SystemCoreClock to 180 MHz
SysTick Init (); // Initialize SysTick Timer
while (1) {

LED On (); // Switch on

Delay () // Delay

LED Off (); // Switch off

Delay (); // Delay
}

}

r% Open the file LED.c and remove unnecessary functions. The code should

look like this.
/* __
* File LED.c
K ———— */

#include "SCU LPC18xx.h"
#include "GPIO LPC18xx.h"

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4 | SCU_PIN CFG_PULLDOWN_EN)) ;

GPIO_SetDir (6, 24, GPIO DIR OUTPUT) ;
GPIO_ PinWrite (6, 24, 0);
}
void LED On (void) ({
GPIO PinWrite (6, 24, 1); // LED on: set port
}
void LED Off (void) ({
GPIO PinWrite (6, 24, 0); // LED off: clear port
}
% Open the file LED.h and modify the code.
Vs
* file: LED.h
o) o 5 o 0 0 5 e 0 0 5 e 0 0 5 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5 0 0 5 0 0 0 5 0 0 0 0 0 0 5 0 0 0 5 0 0) 0 5 0 0 0 e e e o */
void LED_ Initialize (void); // Initialize LED Port Pins
void LED On (void) ; // Set LED on

void LED Off (void); // Set LED off

56 Create Applications

Build the Application Image

The section Using the Debugger on page 63 guides you through the steps to
connect your evaluation board to the PC and to download the application to the
target hardware.

TIP: You can verify the correct clock configuration of the target hardware by
checking the one-second interval of the LED.

Device Startup Variations

Some devices perform a significant part of the system setup as part of the device
hardware abstraction layer (HAL) and therefore the device initialization is done
from within the main function. Such devices frequently use a software
framework that is configured with external utilities.

The ::Device software component may contain therefore additional components
that are required to startup the device. Refer to the online help system for further
information. In the following section, device startup variations are exemplified.

Example: STM32Cube

Many STM32 devices are using the STM32Cube Framework that can be
configured with a classical method using the RTE Device.h configuration file or
by using STM32CubeMX.

The classic STM32Cube Framework component provides a specific user code
template that implements the system setup. Using STM32CubeMX, the main.c
file and other source files required for startup are copied into the project below
the STM32CubeMX:Common Sources group.

Getting Started with MDK: Create Applications with pVision

Setup the Project using the Classic Framework

This example creates a project for the STM32F746G-Discovery kit using the
classical method. In the Manage Run-Time Environment window, select the
following:

r% Expand ::Device:STM32Cube Framework (API) and enable :Classic.

Expand ::Device and enable :Startup.

%] Manage Run-Time Environment X
Software Component Sel. Variant Version Description
-4 Board Suppert | STM32F746G-Discovery ~ | 1.0.0 STMicroelectronics STM32F746G-Discovery Kit = |
) Q CMSIS Cortex Microcontroller Software Interface Components
& 4 CMSIS Driver | | Unified Device Drivers compliant to CMSIS-Driver Specifications
@ 4 Compiler | | ARM Cornpiler Software Extensions
=] 0 Device Startup, System Setup
@ Startup v 101 System Startup for STMicroelectranics STM32F7 Series
o | STM32Cube Framework
¥ Classic ~ 1.0.0 Configuration via RTE Device.h
¥ STM32CubeMX O 1.00 Configuration via STM32CubeMX
ez} é STM32Cube HAL | | STM32FTiec Hardware Abstraction Layer (HAL) Drivers
[0 File System MDE-Pro | 6.5.0 Eile Access on various storage devices
R Graphics MDK-Pro 5300 | UserInterface on graphical LCD displays
w4 Graphics Display | | Display Interface including configuration for emWIN
2] 0 Network .MDK-PrD .6.5.0 [P Networking using Ethernet or Serial protocols il
2} @ use MDK-Pro 6.5.0 USB Communication with various device classes __1
Validation Output Description
Resolve Select Packs Details Cancel Help

r% Click Resolve to enable other required software components and then OK.

r% In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

2l New hem to Group "Source Files' x
| ﬂc Hele) A temciate Fefs) b the praject,
) Cormpanert Mirne
] G Pl Lopwh wd CMSIS
3 L :
A fam Az (3] @ Deice
gl ‘msin’ module for STM3ZCube
ﬂ femder File () STMEICube Framework-Classe Eeception Handlers and Pedpheral IRD
= STMI2Cube Framewerk Classic MCU Specific HAL Infializstion / De-Inii...
% Tesd Fio () Satup Fach {Irne- Time programmahle Bytes
"-‘H renge i {1 Startup Tiach Opticn Dytes
wﬁ User Cade Template

Typee: User Code Template

— [Fantmanc

Lacation: | £ Miorspacas NDH T2 MDA Boar ds TISTHIZFTASE Discovery Blrky

Ade Dos= Help

r% Click on User Code Template to list available code templates for the
software components included in the project. Select ‘main’ module for
STM32Cube and click Add.

58

Create Applications

The main.c file contains the function SystemClock Config(). Here, you need to
make the settings for the clock setup:

Code for main.c

static void SystemClock Config (void) {
RCC_ClkInitTypeDef RCC ClkInitStruct;
RCC_OscInitTypeDef RCC OscInitStruct;

/* Enable HSE Oscillator and activate

RCC OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.
RCC_OscInitStruct.

HSEState = RCC_HSE ON;
HSIState = RCC_HSI OFF;

PLL
PLL

PLL

PLLM
PLLN
PLLP

.PLLState = RCC_PLL_ON;

.PLLSource = RCC_PLLSOURCE_HSE;
PLL.
PLL.
PLL.
.PLLQ

25;

432;
RCC_PLLP_DIV2;
9;

HAL RCC_OscConfig (&RCC_OscInitStruct);

/* Activate the OverDrive to reach the 216 MHz Frequency */

HAL PWREx EnableOverDrive() ;

PLL with HSE as source */
OscillatorType = RCC_OSCILLATORTYPE HSE;

/* Select PLL as system clock source and configure the HCLK, PCLKl and
PCLK2 clocks dividers */

RCC_ClkInitStruct.ClockType

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE PLLCLK;

(RCC_CLOCKTYPE SYSCLK | RCC_CLOCKTYPE HCLK |
RCC_CLOCKTYPE_PCLKl | RCC_CLOCKTYPE_PCLK2) ;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK DIV1;
RCC_ClkInitStruct.APBICLKDivider = RCC_HCLK DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK DIV2;

HAL RCC_ClockConfig (&RCC_ClkInitStruct, FLASH LATENCY 7);

}

Now, you can start to write your application code using this template.

Getting Started with MDK: Create Applications with pVision

Setup the Project using STM32CubeMX

This example creates the same project as before using STM32CubeMX. In the
Manage Run-Time Environment window, select the following:

r% Expand ::Device:STM32Cube Framework (API) and enable
:STM32CubeMX. Expand ::Device and enable :Startup.

kA Manage Run-Time Environment x
Software Component Sel. Variant Version Description
2} @ Board Support | STM32756G-E~ | 1.1.0 STMicroelectronics STM32756G-EVAL Board

[@ CMSIS Cortex Microcontroller Software Interface Components

@ CMSIS Driver | Unified Device Drivers compliant to CMSIS-Driver Specifications
w € Compiler | ARM Compiler | 1.2.0 Compiler Extensions for ARM Compiler ARMCC and ARMClang
=] @ Device Startup, System Setup
W Startup [v | 1.1.2 System Startup for STMicroelectronics STM32F7 Series
-4 STM32Cube Framework (API) 1.0.0 5TM32Cube Framework
Classic | 102 | Configuration via RTE Deviceh
¢ BB~ 100 | Configuration via STM32CubeM
& 9 STM32Cube HAL . STM32F hee Hardware Abstraction Layer (HAL) Drivers
w4 File System MDK-Pro ~ | 6.9.0 File Access an various storage devices
[E2] 0 Graphics MDK-Pro 5366 | UserInterface on graphical LCD displays

o Graphics Display Display Interface including configuration for emWIN

0 Metwork MDK-Pro ~|73.0 IPvd/IPv6 Metwaorking using Ethernet or Serial protocols
] @ UsB MDK-Pro w | 5,00 USB Communication with various device classes
Validation Output Description

Resolve Select Packs Details Cancel Help

% Click Resolve to enable other required software components and then OK.
A new window will ask you to start STM32CubeMX.

MDK: Selected Scftware Component Requires Code Generation by 'STM32CubeMX!' *

Component:
Keil: :Device:STM32Cube Framework: STM32CubeMy

Generator Program:
STM32CubeMX

Generates:
JRTE\Device \STM32F 746MGHx \FrameworkCubeMX, gpdsc

Start STM32CubeMX Cancel

60

Create Applications

STM32CubeMX is started with the correct device selected:

o STRIICusehd ST ubederamted o STMIZTTAERG b a *
Fiie Project Pinout Window Help

FO (o BB 4D Treesosmentsmbrbennt @ o 5 = @ 4 mnd ~ 8 B ishauser abs | 19 40

Fro, Cud Confiuralun | Confsaln | Poses Conasnplin Caiti)

7 HaddieWares i
| i rATrS
| G & PREERTOS

LR

p——
G oa ADCL

Ao anca
6 ADC3
oo ca
s ram
A& CRE
0o ac
4 0 vewm

A A -

% 5 DMAZD
d s Em
son
-0 IOMI_CEC
T I
P
Fe6 120

i -]
PR

W 1252
e d2s3
Ao o
0 LFTIML
fi & LTDe

A Ay *

% Configure your device as required. When done, go to Project > Generate

Code to create a GPDSC file. uVision will notify you:

WVision

@ For the current preject new generated code is available for import.

Project:
C\Workspaces\MDK\STM32\STM32CubeMKX\STM32CubeMX uvprojx

Generated:
C\Workspaces\MDK\STM32\STM32CubeMK\RTE D evice\ STM32F 746N
GH:x\FrameworkCubeMX.gpdsc

Import Changes?

o=] |

r% Click Yes to import the project. The main.c and other generated files are

added to a folder called STM32CubeMX:Common Sources.

Getting Started with MDK: Create Applications with pVision 61

Secure/non-secure programming

Embedded system programmers face demanding product requirements that
include cost sensitive hardware, deterministic real time behavior, low-power
operation, and secure asset protection.

Modern applications have a strong need for security. Assets that may require
protection are:

= device communication (using cryptography and authentication methods)
= secret data (such as keys and personal information)

= firmware (against IP theft and reverse engineering)

= operation (to maintain service and revenue)

The TrustZone”™ for ARMvS-M security extension is a System on Chip (SoC) and
CPU system-wide approach to security and is optimized for ultra-low power
embedded applications. It enables multiple software security domains that restrict
access to secure memory and I/O to trusted software only. TrustZone for
ARMvS-M:

= preserves low interrupt latencies for both secure and non-secure domains.
= does not impose code or cycle overhead.

= introduces efficient instructions for calls to the secure domain.

Create ARMv8-M software projects

The steps to create a new ARMv8-M software project in MDK are:
» Define the overall system and memory configuration. This has impact on:
o Setup secure and non-secure projects
o Add startup code and 'main' module to secure and non-secure projects.
o Reflect this configuration in the CMSIS-Core file partition <device>.h

= Define the API of the secure software part in a header file to allow usage
from the non-secure part

= (Create the application software for the secure and the non-secure part

Application note 291 describes the necessary steps in details and contains
example projects and best practices for secure and non-secure programming using
ARMvV8-M targets. It is available at www.keil.com/appnotes/docs/apnt 291.asp

http://www.keil.com/appnotes/docs/apnt_291.asp

62 Debug Applications

Debug Applications

The ARM CoreSight™ technology integrated into the ARM Cortex-M processor
based devices provides powerful debug and trace capabilities. It enables run-
control to start and stop programs, breakpoints, memory access, and Flash
programming. Features like sampling, data trace, exceptions including program
counter (PC) interrupts, and instrumentation trace are available in most devices.
Devices offer instruction trace using ETM, ETB, or MTB to enable analysis of
the program execution. Refer to www.keil.com/coresight for a complete
overview of the debug and trace capabilities.

Debugger Connection

MDK contains the uVision Debugger that connects to various debug/trace
adapters, and allows you to program the Flash memory. It supports traditional
features like simple and complex breakpoints, watch windows, and execution
control. Using trace, additional features like event/exception viewers, logic
analyzer, execution profiler, and code coverage are supported.

The ULINKp/us and ULINK?2 debug | T
adapters interface to JTAG/SWD debug S
connectors and support trace with the Serial
Wire Output (SWO). The ULINKpro i
debug/trace adapter also interfaces to ETM trace connectors and uses streaming
trace technology to capture the complete instruction trace for code coverage and
execution profiling. Refer to www.keil.com/ulink for more information.

CMSIS-DAP based USB JTAG/SWD debug interfaces are
typically part of an evaluation board or starter gm g
kit and offer integrated debug features. MDK
also supports several proprietary interfaces
that offer a similar technology.

MDK connects to third-party debug solutions such as Segger J-Link or J-Trace.
Some starter kit boards provide the J-Link Lite technology as an on-board
solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

Getting Started with MDK: Create Applications with pVision

63

Using the Debugger

Next, you will debug the Blinky application created in the previous chapter on
hardware. You need to configure the debug connection and Flash programming
utility.

Select the debug adapter and configure debug options.

A% From the toolbar, choose Options for Target, click the Debug tab, enable
Use, and select the applicable debug driver.

KA Options for Target 'Target 1' X
Device] Target] Output] Usting] User] C,-"CH] Asm] Linker | Debug 'Lﬂilitiesl

" Use Simulator with restrictions Settings * Use: II ULINK Pro Cortex Debugger ﬂl Settings |
[Limit Speed to Real-Time

The device selection already configures the Flash programming algorithm for on-
chip memory. Verify the configuration using the Settings button.

Program the application into Flash memory.

1 From the toolbar, choose Download. The Build Output window shows

messages about the download progress.

Build Qutput x

Load "C:\\Workspaces\\MDE\\NXP\\Blinky\\Cbjects\\Blinky.axf"
Erase Done.

Programming Done.

Verify CE.

Flash Load finished at 14:28:38

64

Debug Applications

Start debugging on hardware. From the toolbar, select Start/Stop Debug

Session
B C:\Workspaces\MDK\NXP\Blinky'Blinky.uvprajx - Vision - o X
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
| &5] B [| | &= = | @ Maee dlecs & -
HEC B DRBREaRE - D-2-8- 3 @8- -
Registers o EI Disassembly Lo = |
Register IVE\LIE 1:_ 0x1A001280 FOOOBCE6A B.W rt_psh _req (Ox1A001BS8) -
=c 14: psHerns lize {): // Initialize CMSIS-RTOS
2 RO 500000000 ¥5: L & ze peripherals here
R1 00000000 EbOxlAClOlZBﬂ FOO osKernellnitialize (Ox1A0012B0)
R2 00000000 1le: LED : // Initialize LEDs
R2 00000000 i)
i o 18: // create 'thread' functions that Start executing,
L ook 19: // example: tid name = osThreadCreate (osThread(name), NULL); v
RE 000000000 = 2
R7 00000000] DR] LEDe] RIX.ConfCM.c |] osObjectsh] mainc ||] startup_LPCios - x
RS 00000000 _ .- —_— __
‘R9 00000000 1061/~ &
“R10 00000000 11 | * madin: dindtialize and starc the syscem
R 00000000 e
Ri2 00000000 13 Flint main (void) {
R13 (5P} 010000828 bl> 14 osKernellInitialize (): /1 I lize CMSIS-RICS
R‘H(Lﬂ' Dx1A0071389. 15 /1 l1ize peripherals here
H RI5(FC) Ox1ADDT284 16 LED Initialize ():
| EfPSR 01000000 e
¥ Barked 18
- System 1g
= intemal 2 x
Moda Thread L] 21 osKernelStart (); K d execution
Friviege Privileged £ . .
Stack Fsh 23 while (1);:
9RENRD =4 24 |} v
[project | ERegisters < 2
Command 7 B Call Stack - Locals o
Load "C:\\Workspaces\\MDK\\NXP\\Blinky\\Cbjects\\Blinky.axf" — Location/Value Type
@ # osTimerThread:1 | Ox1ADO13AC Task -
o Ox1AD01284 Task
% main 0xD0000000 int
b 2 % osidle_demon:255 | OxIACDI3FA Task
> £
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet I -;-‘_‘lCaHSla(kALu(als ;@ﬂu-:t Exceptions @E ent Counters jll:n?:-l, 1
ULINK Pro Cortex Debugger t1: 0.03560590 sec L4

During the start of a debugging session, uVision loads the application, executes

the startup code, and stops at the main C function.

Click Run on the toolbar. The LED flashes with a frequency of one second.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such as:

{1 Step steps through the program and into function calls.

{* Step Over steps through the program and over function calls.

{¥ Step Out steps out of the current function.
€ Stop halts program execution.

gt Reset performs a CPU reset.

== Show to the statement that executes next (current PC location).

Getting Started with MDK: Create Applications with pVision

65

Command Window

You may also enter debug commands in the Command window.

Command

B5S \\Blinkv\main.c\32
B5 \\Blinky\main.c\23

BS Write msTicks==100, 1, "printf(\"Write Access Breakpoint:

100 ticks reached\\n\"):"

4

Write Access Breakpoint:

W5 1, "msTicks,O0x0R

W5 1, ‘CORE_CLE/1000000,0x0A

WS 1, ((SysTick Type *) ((OxE000E000OUL) + 0x0010UL)),OxOR
WS 1, *SystemCoreClock, Ox0RA

Write Access Breakpoint: 100 ticks reached 3
Write Access Breakpoint: 100 ticks reached Comamnd Line

Dynamic Command List

100 ticks reached
1

»

b

>

ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet Breaklicce

Js COVERAGE DEFINE |

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Window

TheDlsassembly aEREEEFEEEEE Bl IS
WlndOW ShOWS the Disassembly

1 1 21: woid Delay (woid)
program execution 1n CI0x0B000284 4770 BX 1r
assembly code 22 wnile (msTicks < 493);
. . . 0x08000286 BFOO NOP
intermixed with the i@ox0s2000288 420K LDR r0, [pe, $56] : @0x080002C4

0x0B00028A 6800 LDR r0, [x0, $0x00]
source code (When 0x0B800028C FSBOTFF9 CMP r0,#0x1F2
available) When thiS iS —>0x028000290 DDFA BLE 0x08000288
* 23: msTicks = 0:

the active WiIldOW, then 0x08000282 2000 MOVS r0,#0x00

all debug stepping

commands work at the

assembly level.

The window margin

shows markers for

«

LED.c - [%] main.c LED.h

19/*
2 * CMS5IS5-RICS

'main' function template
3 u
4 Finclude "LED.R"
5 #include "atm32f4xx.h"

breakpoints, bookmarks, and for the next execution statement.

66

Debug Applications

Component Viewer

The Component Viewer shows information about:

= Software components that are provided in static memory variables or

structures.

= Objects that are addressed by an object handle.

Component Viewer windows containing objects are listed in the menu View —

Watch Windows.

The picture below is an example showing static component information for a

USB HID example project:

USB Device and Host

Property
¥ Library Version
=-Device 0
? VendorID
? Product ID

¥ Speed

“ Endpoint 0 Maximum Packet Size

? Number of Interfaces
¥ Assigned Address
¥ Configuration Status
& Endpoint Activity
Human Interface Device 0
=-Device 1
¥ Vendor ID
“ Product ID
¢ Speed
Endpoint 0 Maximum Packet Size
Number of Interfaces
¥ Assigned Address
Configuration Status
#-Endpoint Activity

¥ Human Interface Device 1

7
Value
6.9.6

0xC251

0x2501
Low/Full/High Speed
64

1

10

Configured

In reports 1, Out reports 1, EP INT IN: 1, EP INT OUT: 1

0xC251
0x2511
Low/Full Speed
8

1

0

Unconfigured

In reports 1, Qut reports 1, EP INT IN: 1, EP INT QUT: 1

Getting Started with MDK: Create Applications with pVision 67

Event Recorder

The Event Recorder shows execution status and event information, and helps to
analyze the operation of software components. MDK middleware and the Keil
RTXS5 already offer the required description files.

The event recorder:
» increases the visibility to the dynamic execution of an application program.
= provides filter capabilities for the different event types.

= allows unrestricted calls to event recorder functions from threads, RTOS
kernel, and ISRs.

* implements recording functions that do not disable ISR on ARMv7-M.

= supplies fast time-deterministic execution of event recorder functions with
minimal code and timing overhead. Thus, event annotations can remain in
production code without the need to create a debug or release build.

To add the event recorder to the Blinky with Keil RTX5 example from page 46,
do the following:

* In the Manage Run-Time Environment window, select the component
Compiler:Event Recorder and change the component CMSIS:RTOS2
(API):Keil RTXS to variant Source.

= Change the line EventRecorderInitialize (EventRecordError,
1U) ; to EventRecorderInitialize (EventRecordAll, 10U);

= Rebuild the project, download the code to the target and start a debug
session.

68 Debug Applications

Open the event recorder window from the toolbar or the menu using View —
Analysis Windows — Event Recorder.

While debugging, all events issued by Keil RTX5 are displayed in this window:

Event Recorder n
Enable Recorder: v | | ‘ Y ‘ Mark: m All Operations FH Stopped
Event Time (sec) Component Event Property Value
0 Init Event Restart Count=0x00000001 lle=d
1 0.03997310 RTX Kernel Kernellnitialize
2 0.04001890 RTX Kernel .KernelinitializeComDIeted
3 |0.04006410 RTX Thread |ThreadNew func=app_main, argument=0x00000000, attr=0x000...
4 |0.04014510 RTX Memory .Memog{Alloc mem=0x10000000, size=80, type=1, block=0x10000...
5 .0.04021760 RTX Memory .Memom}—\lloc mem=0x10000000, size=208, type=0, block=0x1000...
6 |0.04029790 RTX Thread |ThreadCreated thread id=0x10000010
7 |0.04035480 RTXKemnel |KemelStart =
8 |0.04043350 RTX Thread |ThreadCreated thread_id=0x10001284
9 0.04049430 RTX Thread |ThreadSwitch thread id=0x10000010
10 |0.04054020 RTX Kemel | KernelStarted
11 .0.04058720 RTX Thread .ThreadNew func=blink_LED, argument=0x00000000, attr=0x0000...
12 |0.04067020 RTX Memory |MemoryAlloc mem=0x10000000, size=80, type=1, block=0x10000...
12 0.04074650 RTX Memory .MemomAlloc mem=0x10000000, size=208, type=0, block=0x1000...
14 0.04082680 RTX Thread .ThreadCreated thread_id=0x10000130
15 10.14857680 RTX Thread | ThreadSwitch thread id=0x10000130
16 |014862670 RTX Thread |ThreadDelay ticks=500
317 .0.1486?520 RTX Thread .ThreadBIocked thread_id=0x10000130, timeout=500
10 N1A07ICEN DTV Theaad ThenndCiitoh thennd id— N1 0000010 ﬂ

RTX RTOS Event Recorder

The documentation explains how to use Event Recorder in a user application:
www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html

Getting Started with MDK: Create Applications with pVision

69

Breakpoints

You can set breakpoints

* While creating or editing your program source code. Click in the grey margin

of the editor or Disassembly window to set a breakpoint.

= Using the breakpoint buttons in the toolbar.

= Using the menu Debug — Breakpoints.

= Entering commands in the Command window.

= Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define complex
breakpoints using the
Breakpoints window.

Open the Breakpoints
window from the menu
Debug.

Enable or disable
breakpoints using the
checkbox in the field
Current Breakpoints.
Double-click on an
existing breakpoint to
modify the definition.

Breakpoints X

Current Breakpoints:

< >
Access
Expression: | ™ Read [~ Write
Count: |1 J;I Size: E
Command: | L= r
| NIISeIedad| Kl Al | Cose | Help

Enter an Expression to add a new breakpoint. Depending on the expression, one
of the following breakpoint types is defined:

= Execution Breakpoint (E): is created when the expression specifies a code
address and triggers when the code address is reached.

= Access Breakpoint (A): is created when the expression specifies a memory
access (read, write, or both) and triggers on the access to this memory
address. Use a compare (=) operator to compare for a specified value.

If a Command is specified for a breakpoint, uVision executes the command and
resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint halts program execution.

70

Debug Applications

Watch Window

The Watch window allows you to observe Watch 1

program symbols, registers, memory areas, Nam: —
. meslicks
and expressions. & CORE_CLK/1000000
£t SysTick
&1 Open a Watch window from the M
toolbar or the menu using @ vaL
View — Watch Windows. ¢ CalB
W SystemCoreClock
Add variables to the Watch window with:

Value

168

(0xEQO0EQLO
0:00010007
0x0002903F

0x4000493E
163000000

Type

int

uleng
pointer
unsigned int
unsigned int
unsigned int
unsigned int

unsigned int

* Click on the field <Enter expression> and double-click or press F2.

= In the Editor when the cursor is located on a variable, use the context menu

select Add <item name> to...
* Drag and drop a variable into a Watch window.

= In the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during

program execution when View — Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window | canstack + Locais

shows the function nesting and Name Location¥elug
¥ osTimerThread:1 0:08000A2C

variables of the current program 5 ¢

location. & main 0x080003CE
=% blink_LED: 3
9 =% osDelay 0x080005E4
@3 Open the Call Stack + Locals * milscc [notinscopss
window from the toolbar or =% blink_LED 0x08000410
the menu using View — Call *¥ argument | <notinscope>

¥ os_idle_demen: 255 | 0x08000433

Stack Window.

Type
Task
Task
int f()
Task

enum (int) flunsigned int)

param - unsigned int
void f{void *)

param - void *

Task

When program execution stops, the Call Stack + Locals window automatically
shows the current function nesting along with local variables. Threads are shown

for applications that use the CMSIS-RTOS RTX.

Getting Started with MDK: Create Applications with pVision

Register Window

The Register window shows the content of the
microcontroller registers.

= Open the Registers window
from the toolbar or the menu
View — Registers Window.

Registers

Register

Value |

(00000000

20000058
20000678

(61000000

MSF k20000678
You can modify the content of a register by double- L v 00000000
clicking on the value of a register, or pressing F2 to i
edit the selected value. Currently modified registers are FAULTMASK 0
. . . . CONTROL (kD4
highlighted in blue. The window updates the values =~ Intemal
: Mode Thread
when program execution halts. Piege Prviaged
Stack MSP
States 52395004552
Sec 311.87502548
*-FPU
Memory Window
Monitor memory areas using e =
Memory Windows. Address:fumsTicks HE
0%20000000: [IEJIENE| 0A037A00 00000000 00000000
Open a Memory WlndOW 0x20000010: 04030201 09080706 00000000 00000000
0x20000020: 00000000 00000000 O0O0O0O0O0 00000000
from the toolbar or the 0x20000030: 00000000 00000000 00000000 00000000
. . 0x20000040: 00000000 00000000 OOQOQOO0OO OQOODOOOQOOD
menu using View — 0x20000050: 00000000 00000000 00000000 00000000
. 0x20000060: 00000000 00000000 OOQOQOO0O0 Q0000000D
Memory Wlndows‘ 0x20000070: 20000018 0800020D 00000000 00000000
0x20000080: 00000000 00000000 OOQOQOC0O0 0O0000000D
u Enter an expression in the 0x20000090: 00000000 00000000 OOQOQOC0O0 O00D0000D il

AR S TaTaTaTaTAF-Na M o aTa lalaYata 1]

nanannann

[alalalalatalals]

[aTaTalatalalalsl

Address field to monitor the
memory area.

» To modify memory content, use the Modify Memory at ... command from
context menu of the Memory window double-click on the value.

* The Context Menu allows you to select the output format.

= To update the Memory Window periodically, enable View — Periodic
Window Update. Use Update Windows in the Toolbox to refresh the

windows manually.

11" Stop refreshing the Memory window by clicking the Lock button. You can
use the Lock feature to compare values of the same address space by
viewing the same section in a second Memory window.

72 Debug Applications

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write
to and read from to control a peripheral. The menu Peripherals provides access
to Core Peripherals, such as the Nested Vector Interrupt Controller or the
System Tick Timer. You can access device peripheral registers using the System
Viewer.

NOTE
The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information GPioD 8
about device peripheral registers. s]
Property Value
@ Open a peripheral register from the toolbar |~ MO;ECF:DEMS '1"” B =
or the menu Peripherals — System OTVPER o
Viewer. GPIOB_OSPEEDR [N
B o |
; ; . = IR
With the System Viewer, you can: _— =
: : : : ODR
* View peripheral register prope@qs and BRR DR |
values. Values are updated periodically LCkR o]
when View — Periodic Window Update AFRH CH
1 IDR
18 enabled' [Bits 31..0] RO (@ 0:40020C10) GPIO port input data
. . register
= Change property values while debugging.

= Search for specific properties using TR1 Regular Expressions in the search
field. The appendix of the uVision User’s Guide describes the syntax of
regular expressions.

For details about accessing and using peripheral registers, refer to the online
documentation.

http://www.keil.com/support/man/docs/uv4/uv4_f_search_expr.htm

Getting Started with MDK: Create Applications with pVision 73

Trace

Run/stop debugging, as described previously, has some limitations that become
apparent when testing time-critical programs, such as motor control or complex
communication applications. As an example, breakpoints and single stepping
commands change the dynamic behavior of the system. As an alternative, use the
trace features explained in this section to analyze running systems.

ARM Cortex-M processors integrate CoreSight logic that is able to generate the
following trace information using:

Cortex-M Debug & Trace IP

= Data Watchpoints record

memory accesses with data Breakpoint Unit Debug
value and program address and, Access Port
optionally, stop program Memory Access (DAP)
execution.

= Exception Trace outputs Data Watchpoints
details'about interrupts and Exception & -I;:\T;if::;t
exceptions. Instrumented Trace

Unit (TPIU)

= Instrumented Trace
communicates program events
and enables printf-style debug
messages and the RTOS Event Viewer.

Instruction Trace

* Instruction Trace streams the complete program execution for recording and
analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-
M4, and Cortex-M7 processor-based microcontrollers and outputs above trace
information via:

= Serial Wire Trace Output (SWO) works only in combination with the
Serial Wire Debug mode (not with JTAG) and does not support Instruction
Trace.

* 4-Pin Trace Output is available on high-end microcontrollers and has the
high bandwidth required for Instruction Trace.

On some microcontrollers, the trace information can be stored in an on-chip
Trace Buffer that can be read using the standard debug interface.

= Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace
Buffer (ETB) that stores all trace data described above.

* Cortex-MO+ has an optional Micro Trace Buffer (MTB) that supports
instruction trace only.

74

Debug Applications

The required trace interface needs to be supported by both the microcontroller
and the debug adapter. The following table shows supported trace methods of
various debug adapters.

Feature ULINKpro ULINKplus ULINK2
Serial Wire Output (SWO) v v v
Maximum SWO Clock Frequency 200 MHz 60 MHz 3.75 MHz
4-Pin Trace Output for Streaming Trace v
Embedded Trace Buffer (ETB) Support v v v
Micro Trace Buffer (MTB) Support v v v
Trace with Serial Wire Output
To use the serial wire trace output (SWO), use the following steps:
#% Click Options for Target on the toolbar and select the Debug tab. Verify
that you have selected and enabled the correct debug adapter.
Options for Target 'Target 1' >

Device | Target | Output | Listing | User | C/C++| Asm | Linker l Debug |Uti|'rtie5 |

" Use Simulator with restrictions
[Limit Speed to Real-Time

Settings |

g Use:[IULINK Pro Cortex Debugger _v| Settings |

(% Click the Settings button. In the Debug dialog, select the debug Port: SW
and set the Max Clock frequency for communicating with the debug unit of

the device.

Cortex-M Target Driver Setup

Trace I Aash Download |
 ULINK USB - JTAG/SW Adapter —
Serial Mo: F1MBD§ vI
ULINK Version: IULINKpm
Device Family: ICortex—I‘u'I
Firmware Version: IV'I 57

WV swJ Por:[sw v]

Max[]ock:l‘]MHz vI

— SW Device

IDCODE | Device Name [

SWDIO | & 2BAD1477 ARM CoreSight SW-DP

& &utomatic Detection |0 CODE: I
" Manual Configuration Device Name: |
Add | | Delete | | Update | AP: [Bx00

fdove
Lue |

Getting Started with MDK: Create Applications with pVision

(% Click the Trace tab. Ensure the Core Clock has the right setting. Set Trace
Enable and select the Trace Events you want to monitor.

= Enable ITM Stimulus Port 0 for print f-style debugging.
= Enable ITM Stimulus Port 31 to view RTOS Events.

Cortex-M Target Driver Setup *
Debug Flash Download]
{Core Cloc:k:i 180.000000 MHz ¥ Tace Enable} [T UnlimtedTace [ETM Trace Enable
~Trace Port - 1 Timestamps 1 Trace Events-

]Serial Wire Output - Manchester __V_] ¥ Enable Prescaler: |1 71

SWO Clock Prescaler:i 1 PC Sampling -

[V Austodstect Prescaler:i1ﬂ24‘15 Vi
SWO Clok: | 180.000000 MHz I™ Periodic Period: | <Disabled>
™ on Data R/W Sample

[~ ICPI: Cycles per Instruction

: Exception overhead

I~ ISLEEP: Slesp Cycles

[|LSU: Load Store Unit Cycles

[|FOLD: Folded Instnuctions
v |EXCTRC: Exception Tracing

I TM Stimulus Ports - —— ST

31| Pot 2423 Pot 16 15 Port 8 7 Part 0
Enable: [G<80000001 2 1/ N
Privilege: (00000008 Port 31.24 ¥ Port 23.16 [~ Port 15.8 [~ Port 7.0 [C

6.8 | Cancel Help

NOTE
When many trace features are enabled, the Serial Wire Output communication
can overflow. The uVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such
communication overflows are rare. Enable only the trace features that are
currently required to avoid overflows in the trace communication.

76 Debug Applications

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and
interrupts.

4 Click on Trace Windows and select Trace Exceptions from the toolbar or
use the menu View — Trace — Trace Exceptions to open the window.

Trace Exceptions IE'
= ‘ -] ‘ (7] ‘ [¥ EXCTRC Exception Tracing | [V Timestamps Enable
Num Name Count Total Time Min Timeln Max Time... Min Time Out Max Time Qut First Time [s] Last Time [s]
4] UsageFault 1] Os j
n SVCall 0 0s 1
12 DebugMeonitor 1] Os
Pend5V 0

14 Os
SysTick 1258 [74643us [59524ns 59524 ns [136805ns [1000ms [000103002 (125403151
16 s

WWDG 0
17 PVD 0s
18 TAMP_STAMP Os

1]
0
0
19 RTC_WKUP 1] Os j

To retrieve data in the Trace Exceptions window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.
* Enable EXCTRC: Exception Tracing.

= Set Timestamps Enable.

NOTE
The variable accesses configured in the Logic Analyzer are also shown in the
Trace Data Window.

Getting Started with MDK: Create Applications with pVision 77

Logic Analyzer

The Logic Analyzer window displays changes of up to four variable values over
time. To add a variable to the Logic Analyzer, right click it in while in debug
mode and select Add <variable> to... - Logic Analyzer. Open the Logic
Analyzer window by choosing View - Analysis Windows - Logic Analyzer.

oG s E
[Setp |[load .| M Tme MaxTime Gad Zoom Min/Max | Update Screen Transtion | Jumpto | Signalifo [Ampltude
Seve.|| 05 (04765545 [05ms |[in [Ou] Al | [Ao][Undo] [Stop | Clesr | Prev [Next||[Code|[Trace] ™ Show Cycies ' Cursor
16263 R i] |
sine E o H : d . | { } = -_..___7..77
! [-
1638 | | [EEE —] e
32767 |
disturbed wﬂf—\ﬁv—i\‘w—f\‘ : ! |
| | I I = |
i ||15?1: |!.:~_szc d 18737
32767 | |
— | m
L e | filtered
Mouse Pos Reference Point Delta
e | Time 0458738 5 0457832 3 0.90541 ms = 110447
e | (15254 —> T5572] | value 14629 15512 883
f ‘ ‘ 27 v ‘ | PC §: 030 03b0
1 1:\I 1‘|L | |||I U [|l |]
i | I I I II | | y iy |
nun_fiag 156 568 | 569 | 570 {57 | |57 51 |57 ‘|:575 |57 |57 |
i i | I Il | | fl fl |
\ I Il [} il | | \ | 1 |
| I /1 It 11 |.l | \|| ‘ I \ |
U il L L et w53+ — I L. (I W
0453878 |0457637 788 [D458738 4, d 050541 ma] 04628789
KT B S =

To retrieve data in the Logic Analyzer window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.

= Set Timestamps Enable.

NOTE

The variable accesses monitored in the Logic Analyzer are also shown in the
Trace Data Window. Refer to the uVision User’s Guide — Debugging for more
information.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

78 Debug Applications

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted
sequentially through the ITM Stimulus Port 0. To enable printf() debugging, use
the Compiler:1/O software component as described on page 43.

This fputc() function redirects any printf{) messages (as shown below) to the
Debug (printf) Viewer.

int seconds; // Second counter

while (1) {

LED On (); // Switch on
delay (); // Delay
LED Off (); // Switch off
delay (); // Delay
printf ("Seconds=%d\n", seconds++) ; // Debug output
}
=+ Click on Serial Windows and sclect Debug (printf) Debug (printf) Viewer & [

Seconds=0 -

Viewer from the toolbar or use the menu View — Serial |sccna-—
Windows — Debug (printf) Viewer to open the Seconds=2

Seconds=3

window. Seconds=4 -

.;,-'j Ca @DE..‘ = M

To retrieve data in the Debug (printf) Viewer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

= Enable ITM Stimulus Port 0.

Alternatively, on targets that do not support ITM (such as ARM Cortex-
MO0/MO0+), you can use the event recorder to display printf messages. The
Compiler component documentation explains how to enable this feature:
www.keil.com/pack/doc/compiler/RetargetlO/html/ retarget examples er.html

ms-its:C:%5CMDK5%5CARM%5CHLP%5Culinkpro.chm::/ulinkpro_tr_stimulusports.htm
http://www.keil.com/pack/doc/compiler/RetargetIO/html/_retarget__examples_er.html

Getting Started with MDK: Create Applications with pVision

79

Event Counters

Event Counters displays cumulative

Event Counters

numbers, which show how often an event is H| ®R| @
triggered. Name Value
CPICNT 698857
=4 From toolbar use Trace Windows — EXCCNT 540
SLEEPCNT 256
Event Counters e
FOLDCNT 0

From menu View — Trace — Event

Enable

EURC R

Counters

To retrieve data in this window:

Set Trace Enable in the Debug Settings Trace dialog as described above.

Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

CPICNT: Exception overhead cycle: indicates Flash wait states.

EXCCNT: Extra Cycle per Instruction: indicates exception frequency.
SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.
LSUCNT: Load Store Unit Cycle: indicates additional cycles required to

execute a multi-cycle load-store instruction.

FOLDCNT: Folded Instructions: indicates instructions that execute in zero

cycles.

80 Debug Applications

Trace with 4-Pin Output

Using the 4-pin trace output provides all the features described in the section
Trace with Serial Wire Output, but has a higher trace communication
bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output
(also called ETM Trace) which gives detailed insight into program execution.

NOTE
Refer to the uVision User’s Guide — Debugging for more information about the
features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the
following advanced analysis features:

* Code Coverage marks code that has been executed and gives statistics on
code execution. This helps to identify sporadic execution errors and is
frequently a requirement for software certification.

= The Performance Analyzer records and displays execution times for
functions and program blocks. It shows the processor cycle usage and enables
you to find hotspots in algorithms for optimization.

= The Trace Data Window shows the history of executed instructions for
Cortex-M devices.

Trace with On-Chip Trace Buffer

In some cases, trace output pins are no available on the microcontroller or target
hardware. As an alternative, an on-chip Trace Buffer can be used that supports
the Trace Data Window.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

Getting Started with MDK: Create Applications with pVision

81

Middleware

Today’s microcontroller devices offer a wide range of communication peripherals
to meet many embedded design requirements. Middleware is essential to make
efficient use of these complex on-chip peripherals.

NOTE

This chapter describes the middleware that is part of MDK-Professional and
MDK-Plus. MDK also works with middleware available from several other
vendors. Refer to www.keil.com/pack for a list of public software packs.

The MDK-Middleware software pack includes royalty-free middleware with
components for TCP/IP networking, USB Host and USB Device
communication, file system for data storage, and a graphical user interface.

Refer to www.keil.com/middleware for more information.

[¥] MDK-Professional Midd X 4 = O X

& > O | wewzkeiicomymdks/middieware *| = @ O

ARMKEIL

Microcontroller Tools

f Products Download Events Support

Home / MDK Version 5 / Middleware . Learning
MDK-Professional Middleware Al

Wicrocontrollers offer a wide range of interfaces to meet today's
embedded design requirements. However, implementing
applications that efficiently utilize these interfaces presents software = MDK Overview
developers with real challenges. Flexible and easy-to-use
middleware components are essential to unieash the power of
communication and interface peripherals in modem microcontrollers

¢ Quick Links

Middleware User's Guide
CMSIS

Knowledgebase

Compare MDK Editions

This web page provides an overview of the middleware and links to:

= MDK Middleware User’s Guide
= Device List along with information about device-specific drivers
= Information about Example Projects with usage instructions

The middleware interfaces to the device peripherals using device-specific
CMSIS-Drivers. Refer to CMSIS-Driver on page 39 for more information.

Combining several components is common for a microcontroller application. The
Manage Run-Time Environment dialog makes it easy to select and combine

http://www.keil.com/pack
http://www.keil.com/middleware

82 Middleware

MDK Middleware. It is even possible to expand the middleware component list
with third-party components that are supplied as a software pack.

Typical examples for the usage of MDK Middleware are:
= Web server with storage capabilities: Network and File System Component
= USB memory stick: USB Device and File System Component

* Industrial control unit with display and logging functionality: Graphics, USB
Host, and File System Component

Refer to the FTP Server Example on page 90 that exemplifies a combination of
several middleware components.

The following sections give an overview for each software component of the
MDK Middleware.

NOTE
A seven days evaluation license for MDK-Professional is delivered with each
installation. Refer to the Installation chapter on page 9 for more information.

Getting Started with MDK: Create Applications with pVision

83

Network Component

The Network Component uses TCP/IP communication protocols and contains
support for services, protocol sockets, and physical communication interfaces. It
supports IPv4 and IPv6 connections.

Network Component
Compact Full Web Server FTP TFTP Telnet
Web Server Using File System Server Server Server
SNMP SNTP FTP TFTP SMTP
Agent Client Client Client Client
with

Service

Socket

IPv4/IPvé

Dual-
PPP (Serial) SLIP (Serial) Stack

Interface

CMSIS-Driver

The various services provide program templates for common networking tasks.

= Compact Web Server stores web pages in ROM whereas the Full Web
Server uses the File System component for page data storage. Both servers
support dynamic page content using CGI scripting, AJAX, and SOAP
technologies.

* FTP or TFTP support file transfer. FTP provides full file manipulation
commands, whereas TFTP can boot load remote devices. Both are available
for the client and server.

» Telnet Server provides a command line interface over an IP network.

= SNMP Agent reports device information to a network manager using the
Simple Network Management Protocol.

= DNS Client resolves domain names to the respective [P address. It makes use
of a freely configurable name server.

= SNTP Client synchronizes clocks and enables a device to get an accurate
time signal over the data network.

= SMTP Client sends status emails using the Simple Mail Transfer Protocol.

84 Middleware

All Services rely on a communication socket that can be either TCP (a
connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented
protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial
connection such as PPP (for a direct connection between two devices) or SLIP
(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on a CMSIS-Driver
to be present for providing the device-specific hardware interface. Ethernet
requires an Ethernet MAC and PHY driver, whereas serial connections
(PPP/SLIP) require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic
messages and a Release variant that omits these diagnostics. It supports IP
communication using IPv4 and IPv6. To see events coming from the network
component in the event recorder, you need to enable a debug variant.

Getting Started with MDK: Create Applications with pVision 85

File System Component

The File System Component allows your embedded applications to create, save,
read, and modify files in storage devices such as RAM, NAND or NOR Flash,
memory cards, or USB memory sticks.

File Systemm Component

USB MSC SD/MMC
Mass Storage Class Memory Card File System

CMSIS-Driver

Each storage device is accessed and referenced as a Drive. The File System
Component supports multiple drives of the same type. For example, you might
have more than one memory card in your system.

2
8

The File System Core is thread-safe, supports simultaneous access to multiple
drives, and uses a FAT system available in two file name variants: short 8.3 file
names and long file names with up to 255 characters. It also provides a Debug
variant with extensive diagnostic messages and a Release variant that omits these
diagnostics. To see events coming from the file system component in the event
recorder, you need to enable a debug variant.

To access the physical media, for example NAND and NOR Flash chips, or
memory cards using MCI or SPI, CMSIS-Driver have to be present.

86 Middleware

USB Component

The USB Device component implements USB Host and Device functionality
and uses standard device driver classes that are available on most computer
systems, avoiding host driver development.

USB Component

HID CcDC
MSC Custom
Mass Storage Class Custom Device Class

HID CcDC .
Human Interface Device USB Device Core
MSC Custom ADC
Mass Storage Class Custom Device Class Audio Device Class

CMSIS-Driver

= Human Interface Device Class (HID) implements a keyboard, joystick or
mouse. However, HID can also be used for simple data exchange.

USB Host

USB Device

= Use the Mass Storage Class (MSC) for file exchange (for example a USB
memory stick).

= Communication Device Class (CDC) implements a virtual serial port (using
the sub-class ACM) or a network connection (using the sub-class NCM).

= Audio Device Class (ADC) performs audio streaming.

= Use the Custom Class for new or unsupported USB classes.

The USB Component supports Composite USB devices that implement multiple
device classes.

This component requires a USB CMSIS-Driver to be present. Depending on the
application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB
2.0 (High-Speed USB) specification.

The USB Core is available in a Debug variant with extensive diagnostic
messages and a Release variant that omits these diagnostics. To see events
coming from the USB component in the event recorder, you need to enable the
debug variant.

Getting Started with MDK: Create Applications with pVision

87

Graphics Component

The Graphics Component is a comprehensive library that includes everything
you need to build graphical user interfaces.

Graphics Component

£ . . s
6 Bitmap Support Window Manager Antialiasing
LCD Configuration GUI Configuration

Interface Template Preconfigured Interfaces

Input

Display

Core functions include:

A Window Manager to manipulate any number of windows or dialogs.
Ready-to-use Fonts and window elements, called Widgets, and Dialogs.
Bitmap Support including JPEG and other common formats.
Anti-Aliasing for smooth display.

Flexible, configurable Display and User Interface parameters.

The user interface can be controlled using input devices like a Touch Screen
or a Joystick.

The Graphics Component interfaces to a wide range of display controllers
using preconfigured interfaces for popular displays. Adapt the interface
template to add support for new displays.

The VNC Server allows remote control of your graphical user interface via
TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

88 Middleware

loT Connectivity

The middleware in MDK-Professional provides interfaces to mbed software
components that enable secure communication and Internet of Things (IoT)
connectivity.

* mbed TLS adds cryptographic and SSL/TLS capabilities with a library
collection optimized for embedded systems.

* mbed Client implements the OMA Lightweight M2M protocol (from Open
Mobile Alliance http://openmobilealliance.org) and interfaces to the mbed
Device Server that connects IoT devices to web applications.

http://openmobilealliance.org/

Getting Started with MDK: Create Applications with pVision 89

Migrating to Middleware Version 7

MDK has built-in features that help you to migrate your pVision projects to the
new Middleware Version 7. Most components only require a configuration file
update (see below). However, the Network Component requires more migration
work as it has changed from [Pv4-only to dual-stack support for [Pv4/IPv6.

Network Component Changes

Core Changes

The Network Component’s Core was previously available in a Release or Debug
variant. In Middleware Version 7 this is changed to IPv4/IPv6 Release or
IPv4/IPv6 Debug. When you open a project with the old component, you will
see an error in the Build Output window. Please change to the corresponding
new variant.

Configuration File Update

Special icons in the Project window of nVision highlight configuration files that
require an update. You have the option either to overwrite the old configuration
file or to update and merge the contents:

=4 Network
ﬁ FTP_Server_FS.c (Service:FTP Server) To test this €
B3 Net_Config—=~~= address frn://
. \ Options for Component Class ‘Network’ Alt+F7
%) Net_Config
) Net_Config Update Config File (Ver: 5.0.4 -> 7.0.0) -
B Net_Config Update Config File and Launch Merge
e1
L] Net_Config Y Manage Project Items...
BT et oML

Open Net_Config.c as
ne
cC

Translate Net_Config.c

v | show Include File Dependencies

[
Go to Tools = Configure Merge Tool to specify the merge tool of your choice.

API Changes

The Network Component’s documentation offers sections on how to migrate
projects from the old to the new API. It offers general recommendations on the
migration of services, sockets, and interfaces, as well as a side-by-side
comparison of the API whether you are migrating from Middleware v5/v6 or
even RL-TCPnet.

90 Middleware

FTP Server Example

The FTP server example is a reference application that shows a combination of
several middleware components. Refer to Verify Installation using Example
Projects on page 12 for more information on the various example projects that
are available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP
network. The middleware documentation has more details about the FTP Server
and the reference application:

B3 Fre server X = bd

O
&« >y O D loanictoe eritar i ; = @A &

ARM KEIL Network Component versin 6.6

Microcontroller Tools MDK-Professional Middleware for IP Networking

General | File System | Graphic Network usB Board Support |

v Network Component

FTP Server

Revision History

¥ Creating a Network Application
This tutorial creates a FTP server that allows you to manage files from any machine using a FTP client. The following

» Using Network Components
picture shows an exemplary connection of the development board and a Computer.

¥ Network Examples

» HTTP Server Local Area Network
HTTP Upload

Ethernet Ethernet

Telnet Server

SMTP Client

SNMP Agent

BSD Clieni/Server
Differences to RL-TCPnet
» Resource Requirements

i usB

GKEL UUNKA.

v

v

Reference

b Data Structures
Data Structure Index
Data Fields

Network Examples / Generated on Fri Oct 30 2015 11:38:55 for Network Component by ARM Ltd, All rights reserved.

Getting Started with MDK: Create Applications with pVision

Several middleware components are the building blocks of this FTP server. A
File System is required to handle the file manipulation. Various parts of the
Network component build up the networking interface.

The following software components from the MDK Middleware are required to
create the FTP Server example:

Network File System
¥
& with emory Car
IPv4/IPvé
w
g Dual-
é I FTP Stack File System Core
< g Server
CMSIS-Driver

As explained before, CMSIS-Driver provides the interface between the
microcontroller peripherals and the MDK Middleware.

The Manage Run-Time Environment dialog shows the software components
selected for the FTP Server example:

Softwars Compenernt Sel, Warant Vesion Desciption | Soltware Compennn S, Vanant Vesian. Descriptan
1= @ CMSTS Diiver ice Oramrs complises = @ File System MO¥-Pro [624 | FileAcoess anvadious starge devices
A @ Cthemet (471 | 1201 | Ethuernes MAT and PLIY Driver A% For ¢ I @ CORE (e [2loee ke Systom with Lang iename suggort tor
= & Cthemet MAC JART |20t | Ethernes MAZ Driver 471 for Core i I | | e Divic v T
@ Ethemet MAC i 20 | Etfeernes MAC Dnver tor LECLEOD Sevies =] * Gr phics. MOE-Pra 526,10
S St FHY (APT) a0 | ; | =@ Nework MO BED |1 i t or Seinl oo
@ DPEIRAC o |6cn @ CORE - Release []620 |Networkng Core for Conte-t (Reenss)
@ NSTEBIRNA T [BE0 | Ethernes PHY KSZE0SLANA Diiver | o @ iertace Connestan Wec hanism
@ LaET | (600 |Ethernet PHY mrm Dm:) W 1 :
@ ST [| | I @ P [Sandad Mz |
@ sash (A8 I pe @ e |5 Myr | Jl
A DO AP 5 4 Senice Network Se
=4 MCTAPD I @ DS Client =l [62D [DNE Clizrs
@ = i @ i Cheat i
o @ MAND (48D] 21| NSND Fash D 821 fpr Cotschd | @ FTR e (G
o A S A QL |1 D A Far Cortex M | ¥ TRt
@ @ = 21 @ WP Ager T
o 4 USART (47 | 281 I @ WIFClies T
4 @ USD Dedee (A1) 2l |us i : @ TFIF Clert =
7 & USE Host (47 | 280 | U5 Hos Driver 51 for ot I @ S T
@ @ Compiler 9 Tekiet Server =
[EE I @ WebSeveron [|
@ Geran = | e by RTE D for L1 % Wk Sever T | I [3
@ G il TLE0 | GPIC driver used by RTE rreers far LPC | = Socket Metwork pretocal
@ s] [LE0 | SCU driver used by RTE Drwers far LPCLI | @ ush T (20| Bl Sackt
@ St = 100 |System Startup far hitP LPCLBOD Sevies @ Tor (5 520 |TEP Suckd
O bl S Vol o l63a | bis Aveess on vangus starans doness__ | @_ume [1620 _ |UDP Socket

92 Using Middleware

Using Middleware

Create your own applications using MDK Middleware components. For more
information, refer to the MDK Middleware User’s Guide that has sections for
every component describing:

= Example projects outline key product features of software components. The
examples are tested, implemented, and proven on several evaluation boards.

= Resource Requirements describe the thread and stack resources for CMSIS-
RTOS and the memory footprint.

= Create an Application contains the required steps for using the components
in an embedded application.

= Reference contains the API and file documentation.

B3 File System Examples X+ = m] x
= > O e = &# O
ARMKEIL File System Component version6s
Microcontroller Tools MDK-Professional Middleware for Devices with Flash File System
General File System Graphic | Network | usB | Board Support |
Main Page Usage and Description Reference | Q- Search

¥ File System Component

File System Examples

Revision History
I Create an Application Using the F
» File System Examples The File System Component is used in many different applications and examples. One stand-alone example is
= available to demonstrate the usage of the File System. Other examples use the File System Component in
» Theory of Operation =
conjunction with other Components (such as USB or Network for example).
¥ Differences to RL-FlashFS

» Resource Requirements ® The File Syst_em Example shows the basic functionality of the File System.)))
® The USB Device Mass Storage Example shows how to create an USB MSC Device that will be recognized as

¥ Reference such by an USB Host controller.

» Data Structures * The USB Host Mass Storage Example explains how to use the File System to access data from an attached
Data Structure Index USB memory device. X)) 3) X
T ® The FTP Server Example is made for getting access to the device's File System via a network connection.

Generated on Fri Oct 30 2015 11:38:53 for File System Component by ARM Ltd, All rights reserved.

The learning platform www.keil.com/learn offers several tutorials and videos

that exemplify typical use cases of the middleware. Refer also to these application
notes:

= USB Host Application with File System and Graphical User Interface:
www.keil.com/appnotes/docs/apnt 268.asp

= Web-Enabled MEMS Sensor Platform:
www.keil.com/appnotes/docs/apnt 271.asp

= Web-Enabled Voice Recorder:
www.keil.com/appnotes/docs/apnt_272.asp

= Analog/Digital Data Logger with USB Device Interface:
www.keil.com/appnotes/docs/apnt 273.asp

http://www.keil.com/learn
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/appnotes/docs/apnt_271.asp
http://www.keil.com/appnotes/docs/apnt_272.asp
http://www.keil.com/appnotes/docs/apnt_273.asp

Getting Started with MDK: Create Applications with pVision 93

The generic steps to use the various middleware components are:

Add Software Components (page 95): In the Manage Run-Time
Environment dialog select the software components that are required for
your application.

Configure Middleware (page 97): Adjust the parameters of the software
components in the related configuration files.

Configure Drivers (page 99): Identify and configure the peripheral
interfaces that connect the middleware components to physical I/O pins of the
microcontroller.

Implement Application Features (page 100): Use the API functions of the
selected components to implement the application specific behaviour. Code
templates help you to create the related source code.

Build and Download (page 103): After compiling and linking of the
application use the steps described in the chapter Using the Debugger on
page 63 to download the image to your target hardware.

Verify and Debug (page 103): Test utilities along with debug and trace
features are described in the chapter Create Applications (page 46).

94 Using Middleware

USB Device HID Example

While above steps are generic and apply to all components of the MDK
Middleware, the following USB Device HID example shows these steps in
practice. This example creates a USB HID Device application that connects a
microcontroller to a host computer via USB. On the PC the utility program
HIDClient.exe is used to control LEDs on the development board.

This USB Device HID example uses the MCB1800 development board populated
with a LPC1857 microcontroller. It is based on the project Blinky with Keil
RTX on page 46 along with the source files main.c, LED.c, LED.h, and the
configuration files.

NOTE

You must adapt the code and pin configurations when using this example on other
starter kits or evaluation boards.

This example is available as a pre-built project in Pack Installer for many
microcontroller device families supporting CMSIS Driver.

Getting Started with MDK: Create Applications with pVision

95

Add Software Components

To create the USB Device HID example, start with the project Blinky with Keil
RTX described on page 46.

4 Use the Manage Run-Time Environment dialog to add specific software
components.

From USB Component (described on page 86):

= Select ::USB:CORE to include the basic functionality required for USB
communication.

= Set ::USB:Device to 'l' to create one USB Device instance.

= Set ::USB:Device:HID to '1' to create a HID Device Class instance. If you
select multiple instances of the same class or include other device classes,
you will create a Composite USB Device.

From CMSIS-Driver (described on page 39):

Select from ::CMSIS Driver:USB Device (API) an appropriate driver suitable
for your application. Some devices may have specific drivers for USB full-speed
and high-speed whereas other microcontrollers may have a combined driver.
Here, select USBO.

T1P: Click on the hyperlinks in the Description column to view detailed
documentation for each software component.

NOTE
For MDK Middleware < version 7.4.0, you also need to add the Keil RTX5
compatibility layer. Please select ::CMSIS:RTOS (API):Keil RTX5

96

Using Middleware

The picture below shows the Manage Run-Time Environment dialog after

adding these components.

Manage Run-Time Environment

Software Component Sel. Variant
w4 CMsis
EI @ CMSIS Driver
& 4 Ethernet (API)
o Ethemet MAC @en |
i€ Ethemet PHY (API)
o & Flash (API)
8. 12 (AP))
MCI (&P1)
NAND (API)
SAl (API)
SPI (API)
USART (API)
USE Device (API)
L. @ USBO o
oL@ Usel IE
@€ USB Host (AP])
E|0 Compiler
EI ‘@ Device
w4 File System
3 & Graphics
w4 Network
= Use
% CORE i
Device
i \P@ Host
I_l 0 Device
.#% ADC
% cnC
@% Custom Class
% HID
L MsC

- e B D D

-

®
000000

e T

| MDK-Pro
| MDK-Pro
| MDK-Pro
| MDK-Pro

=
RSN

[=]

Sl oo o)
ERUSIE NUNE BUSIE BURE B

Version Description

[2.01
[2.01
[2.00
[2.00
[202
[2.02
[2.01
[1.00
[2.01
[201
[20
[27

|25

[2.01

|66.0
[5300
|65.2
|66.6
|6.6.6
|6.6.6
|66.6

|6.6.6
|66.6
[6.6.6
|6.6.6
666

| Cortex Microcontroller Software Interface Compaol

| Unified Device Drivers comgllant to CMSIS-Driver
. Ethemet MAC and F'H"fr Driver AP| for Cortex |
. Ethernet MAC Driver AP| for Corfex-M

| Ethernet PHY Driver API for Cortex-M

| Flash Driver API for Cortex-M

| I2C Driver API for Cortex-M

| MCI Driver AP! for Cortex-M

. NAND Flash Drlver API for Corta(M

[SAIl Driver AP| for Cortex-M

| SPI Driver AP| for Cortex-M

| USART Driver API for Cortex-M

| USB Device Driver API for Cortex-M

| USBO Device Driver for the LPC1800 series

| U._‘.;.E-‘I I:-).ev:rce Driver f.or tHe LI5 C1BDD sefi-es

| USB Host Driver API for Cortex-M

| ARM Com ;.Ji.l-er Software Extensions

:Startug Systern Setup

File Access on various storage devices

. User Interface on graphical LCD dlsglags

P Networkma using Ethernet or Serial protocols

| USB Communication with various device classes
| USB Core for Cortex-M

| USB Device

| USE Host

. USE Device Classes

. USB Device: Audio Device .C.I.ass iADC

| USB Device: Communication Device Class (CDC)
| USB Device; Custom Class

| USB Device: Human Interface Device (HID) Class
| USB Device: Mass S{orage Class !MS.l':

Getting Started with MDK: Create Applications with pVision 97

Configure Middleware

Every MDK Middleware component has a set of configuration files that adjusts
application specific parameters and determines the driver interfaces. Access these
configuration files from the Project window in the component class group. They
usually have names like <Component> Config 0.c or
<Component>_Config 0.h.

Some of the settings in these files require corresponding settings in the driver and
device configuration file (RTE Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:
USBD Config 0.c and USBD Config HID 0.h.

_] uSBD_Config_0.c v X
Bpand Al | Collapse Al | Hlp | I~ ShowGnd
Option Value
Bussocico g
Connect to hardware via Driver_ USBD#]
High-speed r
E-Device Settings
Max Endpoint 0 Packet Size 8 Bytes
Vendor ID xC231
Product 1D 00000
Device Release Number 00100
=-Configuration Settings
Power Bus-powered
Remote Wakeup r
Maximum Power Consumption (in m&) 500
(=) String Settings
Language ID Onc0409
Manufacturer String Keil Software
Preduct String Keil USB Device 0
[=--Serial Number [+
Serial Mumnber String 0001A0000000 —
(=105 Resources Settings
Core Thread Stack Size 512 j
USB Device 0

TextEditor _}, Configuration Wizard

98

Using Middleware

The file USBD Config 0.c contains a number of important settings for the
specific USB Device:

The setting Connect to Hardware via Driver USBD# specifies the control
struct that reflects the peripheral interface, in this case, the USB controller
used as device interface. For microcontrollers with only one USB controller
the number is ‘0’. Refer to CMSIS-Driver on page 39 for more information.

Select High-Speed if supported by the USB controller. Using this setting
requires a driver that supports USB high-speed communication.

Set the Max Endpoint 0 Packet Size to 64.

Set the Vendor ID (VID) to a private VID. The USB Implementer’s
Forum www.usb.org/developers/vendor provides more information on how
to apply for a valid vendor ID.

Every device needs a unique Product ID. The host computer's operating
system uses it together with the VID to find a suitable driver for your device.

Set the Manufacturer and the Product String to identify the USB device in
PC operating systems.

The file USBD_Config HID 0.h contains device class specific Endpoint settings.
For this example, no changes are required.

http://www.usb.org/developers/vendor

Getting Started with MDK: Create Applications with pVision 99

Configure Drivers

Drivers have certain properties that define attributes such as I/O pin assignments,
clock configuration, or usage of DMA channels. For many devices, the

RTE Device.h configuration file contains these driver properties. It typically
requires configuration of the actual peripheral interfaces used by the application.
Depending on the microcontroller device, you can enable different hardware
peripherals, specify pin settings, or change the clock settings for your
implementation.

The USB HID Device example requires the following settings:
= Enable USB0 Controller and expand this section.

= Change the Pin Configuration as depicted below.

= Enable Device:High-speed.

_] RTE Device.h v X
Bpand Al | Colapse Al | Help [~ Show Grid
Option Value

=1--U5B0 Controller [Driver_USBDO and Driver_USEHD] [+
-)--Pin Configuration

| v

USBO_PPWR (Host) P6_3
USBO_PWR_FAULT (Host) P6_6
USBO_INDO P3_2
USBO_INDL Pa_1

=--Device [Driver_USBDO]
High-speed I+

100

Using Middleware

Implement Application Features

Now, create the code that implements the application specific features. This
includes modifications to the files main.c, LED.c, and LED.h that were created
initially for the project Blinky with Keil RTX on page 46.

The middleware provides User Code Templates as starting point for the
application software.

% In the Project window, right-click Source Group 1 and open the dialog

Add New Item to Group. Select the user code template from

::USB:Device:HID - USB Device HID (Human Interface Device) and
click Add.

Add Mew ltem to Group 'Source Group 1'

@ C File {.c)

= Image File (%)

1@ User Code Template

Add template file(s) to the project.

* Component MName
@ C++ File (.cpp) @ CMSIS
\ﬂ Asm File () =@ use
Device USB Device
\ﬂ Header File {h) Device USE Device Serial Number
— USE Device HID (Human Interface Device)
\é Test File () Device:HID USB Device HID Mouse

Type:

Mame:

Location:

| User Code Template

| USBD_User_HID_0.c

| C:\Workspaces \MDK\NXPUISE_HID

Add Close |

=
Help

To connect the PC USB application to the microcontroller device, modify the
function USBD HID0 SetReport(), which handles data coming from the USB
Host. For this example, the data is created with the utility HIDClient.exe.

Getting Started with MDK: Create Applications with pVision

101

% Open the file USBD User HID 0.c in the editor and modify the code as
shown below. This will control the LEDs on the evaluation board.

#include "LED.h"

// access functions to LEDs

bool USBD HIDO_ SetReport (uint8 t rtype, uint8 t req, uint8_t rid,

}

uint8 t i;

switch (rtype) {

const uint8_ t *buf, Iht32_t len) {

case HID REPORT OUTPUT:

for (i =
if (*buf &
else

}

break;

0; i < 4; i++) {

(1 << i)) LED On (i);
LED Off (i);

case HID REPORT FEATURE:

break;

}

return true;

Expand the functions in the file LED.c to control several LEDs on the board and
remove the thread that blinks the LED, as it is no longer required.

% Open the file LED.c in the editor and modify the code as shown below.

#include "SCU LPC18xx.h"
#include "GPIO LPC18xx.h"

#include "cmsis os.h"

const GPIO_ID LED GPIO[] = {

};

{6, 241},
25 },
26 },

27 }

—— -

6/
6/
6!

// ARM: :CMSIS:RTOS:Keil RTX

// LED GPIO definitions

void LED Initialize (void) {

GPIO_PortClock

/* Configure pin:

SCU_PinConfigure
GPIO_SetDir
GPIO_PinWrite
SCU_PinConfigure
GPIO_SetDir
GPIO_PinWrite
SCU_PinConfigure
GPIO_SetDir
GPIO_PinWrite
SCU_PinConfigure
GPIO_SetDir

(1) ; // Enable GPIO clock

Output Mode with Pull-down resistors */

(13, 10, (SCU_CFG MODE FUNC4|SCU PIN CFG PULLDOWN EN));
(6, 24, GPIO_DIR OUTPUT) ;

(6, 24, 0);

(13, 11, (SCU_CFG MODE FUNCA4|SCU_PIN CFG PULLDOWN EN)) ;
(6, 25, GPIO DIR OUTPUT) ;

(6, 25, 0);

(13, 12, (SCU_CFG_MODE_FUNC4|SCU_PIN CFG_PULLDOWN_ EN));
(6, 26, GPIO DIR OUTPUT) ;

(6, 26, 0);

(13, 13, (SCU_CFG MODE FUNC4|SCU PIN CFG PULLDOWN EN));

(6, 27, GPIO_DIR OUTPUT) ;

102 Using Middleware

GPIO_PinWrite (6, 27, 0);
}

void LED On (uint32_ t num) {
GPIO_PinWrite (LED_GPIO[num] .port, LED GPIO[num].num, 1);
}

void LED Off (uint32_t num) {
GPIO_PinWrite (LED_GPIO[num] .port, LED GPIO [num].num, 0);
}

¥ Open the file LED.h in the editor and modify it to coincide with the changes
to LED.c. The functions LED On() and LED Off{) now have a parameter.

void LED Initialize (void);
void LED On (uint32 t num);
void LED Off (uint32_t num);

% Change the file main.c as shown below. Instead of starting the thread that
blinks the LED, add code to initialize and start the USB Device Component.
Refer to the Middleware User’s Guide for further details.

* CMSIS-RTOS 'main' function template

#include "RTE Components.h"

#include CMSIS device_ header

#include "cmsis_os2.h"

#include "LED.h"

#include "rl usb.h" // Keil .MDK-Pro: :USB:CORE

#ifdef RTE Compiler EventRecorder

#include "EventRecorder.h"
#endif

void app main (void *argument) {

USBD_Initialize (0); // USB Device 0 Initialization
USBD_Connect (0); // USB Device 0 Connect
for (;;) {}

}
int main (void) {

// System Initialization
SystemCoreClockUpdate () ;
#ifdef RTE Compiler EventRecorder
// Initialize and start Event Recorder
EventRecorderInitialize (EventRecordAll, 1U);
#endif
//

Getting Started with MDK: Create Applications with pVision

103

LED Initialize();

osKernellInitialize() ; // Initialize CMSIS-RTOS
osThreadNew (app_main, NULL, NULL) ; // Create application main thread
osKernelStart() ; // Start thread execution

for (;;) {}

Build and Download

Build the project and download it to the target as explained in chapters Create
Applications on page 46 and Using the Debugger on page 63.

Verify and Debug

Connect the development board to your PC using another USB cable. This
provides the connection to the USB device peripheral of the microcontroller.

Once the board is connected, a notification appears | HD Client X
that indicates the installation of the device driver Human Interface Device

for the USB HID Device. Devios{ Keil USE Device 0 i |
The utility program HIDClient.exe that is part of e [Buu;nslg 543210
MDK enables testing of the connection between CZNN ulalulnlnintaln
the PC and the development board. This utility is Quitputs (LEDs)

located the MDK installation folder o1 ; |E ﬁm

AKeil\ARM\Utilities\HID _Client\Release.

To test the functionality of the USB HID device run the HIDClient.exe utility
and follow these steps:

= Select the Device to establish the communication channel. In our example, it

1s “Keil USB Device 0.

= Test the application by changing the Outputs (LEDs) checkboxes. The
respective LEDs will switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the

debugger to find the root cause.

@} From the toolbar, select Start/Stop Debug Session.

104 Using Middleware

C\Workspaces\MDK\NXP\Boards\Keil\ MCB1200\Middleware\ USE\Device\ HIDVHID.uvpraje - uVision E
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
NEEd| s 2@ 4= = | B ®omR|E=EEEn o ERae@lecoa|d|X
®ERe vy v/ DR EaR-B-2-8-3- W %
Registers o EJ Disassembly [E§ System and Thread Viewer o x |
Register Value - Ox1A000D9A 1RO0O DCW ~ Property Value
T Cove § == e e e = System [| Value -
i E()O)CZLAOOODBC E7FE B ——
= (ors et Tick Timer. 1.000 mSec
Ox1A000DSE E7FE B Round Robin Timeout: 5.000 mSec
.) i | I
S i D et on Default Thread Stack Size: 200
. Thread Stack Overflow Check: Yes
_] RTX Cont cMc | |] HiDc il Thicad Usage Aailobles T, Ve & 5 os iIe OFrvan

234 /// \brief The idle da »
225 Fvoid os_idle demon (v

226
- Threads [Priority State Delay | Event Value
1

M 227 for (:7) {

hE T e osTimerThread High Wait MBX
229 3 2 man INormal | Wait_DLY -
230 |3 3 USBD_HIDD Thread AboveNor...| Wait OR D000
o T R — |4 USBDOCoreThreed | AboveMor.. Wait OR | 50000
s = 255 | oe_idle_deman None Running
234 T/ ———————————————————— S JLJ
< > | | »
&l Project | E Registers |\ Text Editor _Configuration Wizard] il s
Command 2 E Call Stack = Locals x|
Toad "C:\\Workspaces\\MDK\\NXE\\Boards\\Keil\\MCB1800\\Middle - | .. E—— TiE
SR USBD HIDD Theead 3 DEEVIRETE) Task -
5% osSignalWait 01005774 struct <untaggeds> fint,...
4 signals <notin scope> patam - int
millisec <notin scopex param - unsigned int
i B ret <notin scope> auto - struct <untagged>
[@ USBDO Core Thread: 4 Ox1ADD3TBC Task
@ % osTimerThread:1 |0x1A00384C Task
™ s E% main:2 18000454 Task
5 S @ osDelay Dx1AD0563C enum (int) f{unsigned int) El
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet ‘V\;VW‘HCHHSta(kAlU(EIS |:Mem:-\, 1
ULINK Pro Cortex Debugger t1: 237312401 sec 227

Use debug windows to narrow down the problem. Breakpoints help you to stop at
certain lines of code so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the
debugger or using breakpoints, communication protocol timeouts may exceed
making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target
hardware, run the application, and reconnect it to the PC.

Getting Started with MDK: Create Applications with pVision 105
Index
A System Viewer Window...........c.cc.c.... 72
Toolbar......ccccoveieiiinicccceee
Add New Item to Group.........cccooevvuenen. 100 Using Debuggerccoveeevneieeniennnnes
Applications Watch Window
Add Source Codecococevvviinrinnnnnne 50 Debug (printf) Viewer...
Blinky with Keil RTXS 46, 67 Debug tab...........co........
Build.....coveiieieecieeeeeee e 53 Device Database.........ooveeeeeeeeeeeeeeeeeeennn.
Configure Device Clock Frequency Device Startup Variations
Create Setup the Projectc.cccceveeeuenenn 57,59
Debug STM32Cube
Manage Run-Time Environment.......... 47 Documentation...........ccccceevevereveueeeeeenennns
Setup the Project.......ccccevevvvveninciennnnns 47
User Code Templatescccoeveveeennene. 50 E
B Example Code
Clock setup for STM32Cube................ 58
Board Support ... 42,45 Example Code
Breakpoints CMSIS-CORE layer........cccoecvrverennnene. 24
ACCESS ettt
Commandccceveeveneniienenieneneenne
Execution.... Blinky.....coccovenveiecne
Build Output.......ccceceeeeeneenne. Set PLL parameters
Example Projectsccccoeeveveveecnnns
C p)]
CMSIS..oiiiicireeeeeeee e 22 F
CORE ...ttt 23 File
DSP oo 37 CmSiS_08.N .. 28,29
Software Componentsccceeeennene 22 device.h.............
RTOS .o, 26 RTE Device.h.............. 39, 40, 56,97, 99
User code templateoceeerienne 33 RTX_<core>lib......ccevvveruerrrrerernnaes
CMSIS-DAP RTX_Conf CM.c.....
Code Coverage .. 80 startup7<device>_s
Compare Memory areas.........cceeevverveeneenne 71 system_<device™.C.......ccocerrrrrrnnne. 23,49
CoreSightcooiiiiiiiiic 73 File System
... 85
D Flashmmm 85
Debug G
Breakpointscccocevevenieeninenenenne 69
Breakpoints Window.........c.ccceceeenneeee 69 Graphics Component
Command Window Anti-Alasing.......cccevveeveeneeennreennne
Component Viewer Bitmap Support
Connectionccoevirerieiiiiiiiniiinen, DEIMO ..ottt
Disassembly Window..........cccovuriennnen. 65 DiHAlOES 1.eovvvreeereieireieereie e
Event Recorder Display
Memory Windowc.ccceeveirenenennee 71 Fonts........
Peripheral Registers..........c.cccovcenennee. 72 Joystick
Register Window Touch Screen..... .
Stack and Locals Window.................... 70 User Interface.... ...87
Start SeSSIONc.evververveeeirerereeeeaes 64 VINC SEIVET....oivieiieiieieeeceeeeeieeeeeeeiean 87

106 Index
WIAEELS ..o 87 SNTP Client ...c..cceoeeereneneciecncnnenn 83
Window Manager..........cceeeeerenennennee 87 TCP e 84

H

HIDCHENE.CXE ..cvveveeneeeienieieeiieiesieeieee 103

L

Learning Platformccccceveviriieneennnee. 21 (0]

Legacy Supportcccceeveenuenieneneenieneenenne 9
gacy Supp Options for Target........ccocevereeeencnne. 14, 63

M P

MDK
Core Install oo 9 Pack Installer..........ocevieienenienienieieniens 10
Editionscccovvveenreeneinineineenecneenens 8 Performance Analyzer...............occeoocee.. 80
Installation Requirements....................... 9 Q
Introduction
License Types Quick Start Guides.......c.cccevererreieeecnnenn 21
TOOIS e
Trial license... R

Middlewarecccvvevenenieinicninencee 81 o — 43
Add Software Components................... 95 RTOS
Adding Software Components.............. 24 Preemptive Thread Switching
Conﬁgure......_ 93,97 Single Thread Program................. i
Configure Drlvlers.. 93,99 System and Thread Viewer
Create an Application........................... 92 Thread Management............c.cccceceeennene
Debug....cccovvecverieienne, 3,103 RTX
Example projects.........ccoeevvecreneeeennenn 92 API functions
File System Component 85 Concepts
FTP Server EXample ... %0 Conﬁgura.l.t.i.(.).r.l
Graphics Compo_nen_t 87 RTOS Kernel advantages 27
Implement Application Features ..93, 100 Tread stack configuration............... 31,32
IoT Connectivity Using RTX 27
Migrating (o Version 7 .o 80 USIERTX
Network Componentoceveeeneen. S
Resource Requirements...........c.ccc...... -
USB Device Component..... Selecting Software Packs..........cccoeenenee. 19
USB HID Example..........cooooeervevecer. 94 Software Component
USINE oot 92 COMPILT oo, 43
Using COMPONENLSco.oeveverernnnne. 93 Software Components

OVEIVIEW ..ottt
N Software Packs..........ccoovveevveeeciiiicineeeene.
Install......coooiniiiicce

Network Component Install manually .
BSD 84 Manage Versions 19
DNS CLent........oovvvvvvvvvenciisisssi 83 Product Lifecyclecccooeveneienincnnns 18
Ethernet......c..cccecvvvenincneincncncene 84
FTP oo 83

Verify Installationc..cccceeeveincnenne.
Start/Stop Debug Session

Getting Started with MDK: Create Applications with pVision

4-Pin Trace Output...... .73, 80
Data Watchpointscccceeeeererenenee. 73
Debug (printf) Viewer.........cccccccevenuenee. 78

ETB oo 73
Event Counters.........ccoevveeeeieeeeinieeennes 79
Exception Trace........c.ccoevveevirenennennee 73
Instruction Tracec.cccoeevveeereecnnennen. 73
Instrumented Trace........cccocvveeveeennennnen. 73

ITM Stimulus

Trace Buffercooevvveeeeviiiiiccieen, 73
Trace Buffercooevvveeeeiiiiciecie, 80

Trace Data Windowccceeveveiennenns 80
Trace EXCeptions........ccecevveveeeeeiennnnns 76
U
ULINK oo
ULINKpro

USB Device

HID oo 86
MSC ..o 86
User Code Templates...........ccceenne.e. 33,100
\"/
Version Control............coeeveveeiveeeeieeeeennen.n.

Versioning Software Packs

	Preface
	Chapter overview

	MDK Introduction
	MDK Tools
	Software Packs
	MDK Editions
	License Types

	Installation
	Software and hardware requirements
	Install MDK-Core
	Install Software Packs
	MDK-Professional Trial License
	Verify Installation using Example Projects
	Copy an Example Project
	Use an Example Application with µVision
	Build the Application
	Download the Application
	Run the Application

	Use Software Packs
	Software Component Overview
	Product Lifecycle Management with Software Packs
	Software Version Control Systems (SVCS)

	Access Documentation
	Request Assistance
	Learning Platform
	Quick Start Guides

	CMSIS
	CMSIS-CORE
	Using CMSIS-CORE
	Adding Software Components to the Project
	Source Code Example

	CMSIS-RTOS2
	Software Concepts
	Infinite Loop Design
	Advantages of an RTOS Kernel

	Using Keil RTX5
	Header File cmsis_os2.h
	Keil RTX5 Configuration
	System Configuration
	Thread Configuration
	Other Configuration Options
	CMSIS-RTOS User Code Templates
	Keil RTX5 API Functions
	Thread Management
	Single Thread Program
	Preemptive Thread Switching

	Component Viewer for RTX RTOS

	CMSIS-DSP
	CMSIS-Driver
	Configuration
	Using RTE_Device.h
	Using STM32CubeMX

	Validation Suites for Drivers and RTOS

	Software Components
	Compiler:Event Recorder
	Compiler:I/O
	Board Support

	Create Applications
	Blinky with Keil RTX5
	Setup the Project
	Configure the Device Clock Frequency
	Create the Source Code Files
	Build the Application Image

	Blinky with Infinite Loop Design
	Build the Application Image

	Device Startup Variations
	Example: STM32Cube
	Setup the Project using the Classic Framework
	Setup the Project using STM32CubeMX

	Secure/non-secure programming
	Create ARMv8-M software projects

	Debug Applications
	Debugger Connection
	Using the Debugger
	Debug Toolbar
	Command Window
	Disassembly Window
	Component Viewer
	Event Recorder
	Breakpoints
	Breakpoints Window

	Watch Window
	Call Stack and Locals Window
	Register Window
	Memory Window
	Peripheral Registers
	System Viewer

	Trace
	Trace with Serial Wire Output
	Trace Exceptions
	Logic Analyzer
	Debug (printf) Viewer
	Event Counters
	Trace with 4-Pin Output
	Trace with On-Chip Trace Buffer

	Middleware
	Network Component
	File System Component
	USB Component
	Graphics Component
	IoT Connectivity
	Migrating to Middleware Version 7
	Core Changes
	Configuration File Update
	API Changes

	FTP Server Example

	Using Middleware
	USB Device HID Example
	Add Software Components
	Configure Middleware
	Configure Drivers
	Implement Application Features
	Build and Download
	Verify and Debug

	Index

